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PREFACE

Cookery is become an art,
a noble science;

cooks are gentlemen.
— TITUS LIVIUS, Ab Urbe Condita XXXIX.vi

(Robert Burton, Anatomy of Melancholy 1.2.2.2)

This book forms a natural sequel to the material on information structures in
Chapter 2 of Volume 1, because it adds the concept of linearly ordered data to
the other basic structural ideas.

The title “Sorting and Searching” may sound as if this book is only for those
systems programmers who are concerned with the preparation of general-purpose
sorting routines or applications to information retrieval. But in fact the area of
sorting and searching provides an ideal framework for discussing a wide variety
of important general issues:
• How are good algorithms discovered?
• How can given algorithms and programs be improved?
• How can the efficiency of algorithms be analyzed mathematically?
• How can a person choose rationally between different algorithms for the

same task?
• In what senses can algorithms be proved “best possible”?
• How does the theory of computing interact with practical considerations?
• How can external memories like tapes, drums, or disks be used efficiently

with large databases?
Indeed, I believe that virtually every important aspect of programming arises
somewhere in the context of sorting or searching!

This volume comprises Chapters 5 and 6 of the complete series. Chapter 5
is concerned with sorting into order; this is a large subject that has been divided
chiefly into two parts, internal sorting and external sorting. There also are
supplementary sections, which develop auxiliary theories about permutations
(Section 5.1) and about optimum techniques for sorting (Section 5.3). Chapter 6
deals with the problem of searching for specified items in tables or files; this is
subdivided into methods that search sequentially, or by comparison of keys, or
by digital properties, or by hashing, and then the more difficult problem of
secondary key retrieval is considered. There is a surprising amount of interplay

v



vi PREFACE

between both chapters, with strong analogies tying the topics together. Two
important varieties of information structures are also discussed, in addition to
those considered in Chapter 2, namely priority queues (Section 5.2.3) and linear
lists represented as balanced trees (Section 6.2.3).

Like Volumes 1 and 2, this book includes a lot of material that does not
appear in other publications. Many people have kindly written to me about
their ideas, or spoken to me about them, and I hope that I have not distorted
the material too badly when I have presented it in my own words.

I have not had time to search the patent literature systematically; indeed,
I decry the current tendency to seek patents on algorithms (see Section 5.4.5).
If somebody sends me a copy of a relevant patent not presently cited in this
book, I will dutifully refer to it in future editions. However, I want to encourage
people to continue the centuries-old mathematical tradition of putting newly
discovered algorithms into the public domain. There are better ways to earn a
living than to prevent other people from making use of one’s contributions to
computer science.

Before I retired from teaching, I used this book as a text for a student’s
second course in data structures, at the junior-to-graduate level, omitting most
of the mathematical material. I also used the mathematical portions of this book
as the basis for graduate-level courses in the analysis of algorithms, emphasizing
especially Sections 5.1, 5.2.2, 6.3, and 6.4. A graduate-level course on concrete
computational complexity could also be based on Sections 5.3, and 5.4.4, together
with Sections 4.3.3, 4.6.3, and 4.6.4 of Volume 2.

For the most part this book is self-contained, except for occasional discus-
sions relating to the MIX computer explained in Volume 1. Appendix B contains a
summary of the mathematical notations used, some of which are a little different
from those found in traditional mathematics books.

Preface to the Second Edition
This new edition matches the third editions of Volumes 1 and 2, in which I have
been able to celebrate the completion of TEX and METAFONT by applying those
systems to the publications they were designed for.

The conversion to electronic format has given me the opportunity to go
over every word of the text and every punctuation mark. I’ve tried to retain
the youthful exuberance of my original sentences while perhaps adding some
more mature judgment. Dozens of new exercises have been added; dozens of
old exercises have been given new and improved answers. Changes appear
everywhere, but most significantly in Sections 5.1.4 (about permutations and
tableaux), 5.3 (about optimum sorting), 5.4.9 (about disk sorting), 6.2.2 (about
entropy), 6.4 (about universal hashing), and 6.5 (about multidimensional trees
and tries).



PREFACE vii

The Art of Computer Programming is, however, still a work in progress.
Research on sorting and searching continues to grow at a phenomenal rate.

Therefore some parts of this book are headed by an “under construction” icon,
to apologize for the fact that the material is not up-to-date. For example, if I
were teaching an undergraduate class on data structures today, I would surely
discuss randomized structures such as treaps at some length; but at present, I
am only able to cite the principal papers on the subject, and to announce plans
for a future Section 6.2.5 (see page 478). My files are bursting with important
material that I plan to include in the final, glorious, third edition of Volume 3,
perhaps 17 years from now. But I must finish Volumes 4 and 5 first, and I do
not want to delay their publication any more than absolutely necessary.

I am enormously grateful to the many hundreds of people who have helped
me to gather and refine this material during the past 35 years. Most of the
hard work of preparing the new edition was accomplished by Phyllis Winkler
(who put the text of the first edition into TEX form), by Silvio Levy (who
edited it extensively and helped to prepare several dozen illustrations), and by
Jeffrey Oldham (who converted more than 250 of the original illustrations to
METAPOST format). The production staff at Addison–Wesley has also been
extremely helpful, as usual.

I have corrected every error that alert readers detected in the first edition —
as well as some mistakes that, alas, nobody noticed — and I have tried to avoid
introducing new errors in the new material. However, I suppose some defects still
remain, and I want to fix them as soon as possible. Therefore I will cheerfully
award $2.56 to the first finder of each technical, typographical, or historical error.
The webpage cited on page iv contains a current listing of all corrections that
have been reported to me.

Stanford, California D. E. K.
February 1998

There are certain common Privileges of a Writer,
the Benefit whereof, I hope, there will be no Reason to doubt;

Particularly, that where I am not understood, it shall be concluded,
that something very useful and profound is coucht underneath.

— JONATHAN SWIFT, Tale of a Tub, Preface (1704)
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NOTES ON THE EXERCISES

The exercises in this set of books have been designed for self-study as well as
for classroom study. It is difficult, if not impossible, for anyone to learn a subject
purely by reading about it, without applying the information to specific problems
and thereby being encouraged to think about what has been read. Furthermore,
we all learn best the things that we have discovered for ourselves. Therefore the
exercises form a major part of this work; a definite attempt has been made to
keep them as informative as possible and to select problems that are enjoyable
as well as instructive.

In many books, easy exercises are found mixed randomly among extremely
difficult ones. A motley mixture is, however, often unfortunate because readers
like to know in advance how long a problem ought to take — otherwise they
may just skip over all the problems. A classic example of such a situation is
the book Dynamic Programming by Richard Bellman; this is an important,
pioneering work in which a group of problems is collected together at the end
of some chapters under the heading “Exercises and Research Problems,” with
extremely trivial questions appearing in the midst of deep, unsolved problems.
It is rumored that someone once asked Dr. Bellman how to tell the exercises
apart from the research problems, and he replied, “If you can solve it, it is an
exercise; otherwise it’s a research problem.”

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general significance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked “in your head.”

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need about fifteen or twenty minutes to answer it
completely.

ix



x NOTES ON THE EXERCISES

30 A problem of moderate difficulty and/or complexity; this one may
involve more than two hours’ work to solve satisfactorily, or even more
if the TV is on.

40 Quite a difficult or lengthy problem that would be suitable for a term
project in classroom situations. A student should be able to solve the
problem in a reasonable amount of time, but the solution is not trivial.

50 A research problem that has not yet been solved satisfactorily, as far
as the author knew at the time of writing, although many people have
tried. If you have found an answer to such a problem, you ought to
write it up for publication; furthermore, the author of this book would
appreciate hearing about the solution as soon as possible (provided that
it is correct).

By interpolation in this “logarithmic” scale, the significance of other rating
numbers becomes clear. For example, a rating of 17 would indicate an exercise
that is a bit simpler than average. Problems with a rating of 50 that are
subsequently solved by some reader may appear with a 40 rating in later editions
of the book, and in the errata posted on the Internet (see page iv).

The remainder of the rating number divided by 5 indicates the amount of
detailed work required. Thus, an exercise rated 24 may take longer to solve
than an exercise that is rated 25, but the latter will require more creativity. All
exercises with ratings of 46 or more are open problems for future research, rated
according to the number of different attacks that they’ve resisted so far.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how formidable it
will be for someone else to find a solution; and everyone has more aptitude for
certain types of problems than for others. It is hoped that the rating numbers
represent a good guess at the level of difficulty, but they should be taken as
general guidelines, not as absolute indicators.

This book has been written for readers with varying degrees of mathematical
training and sophistication; as a result, some of the exercises are intended only for
the use of more mathematically inclined readers. The rating is preceded by an M
if the exercise involves mathematical concepts or motivation to a greater extent
than necessary for someone who is primarily interested only in programming
the algorithms themselves. An exercise is marked with the letters “HM” if its
solution necessarily involves a knowledge of calculus or other higher mathematics
not developed in this book. An “HM” designation does not necessarily imply
difficulty.

Some exercises are preceded by an arrowhead, “x”; this designates prob-
lems that are especially instructive and especially recommended. Of course, no
reader/student is expected to work all of the exercises, so those that seem to
be the most valuable have been singled out. (This distinction is not meant to
detract from the other exercises!) Each reader should at least make an attempt
to solve all of the problems whose rating is 10 or less; and the arrows may help
to indicate which of the problems with a higher rating should be given priority.
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Solutions to most of the exercises appear in the answer section. Please use
them wisely; do not turn to the answer until you have made a genuine effort to
solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may find the answer instructive and helpful. The solution given
will often be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means first. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later printings of this book will give the
improved solutions together with the solver’s name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless specifically forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise n + 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes:

x Recommended
M Mathematically oriented
HM Requiring “higher math”

00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)
30 Moderately hard
40 Term project
50 Research problem

EXERCISES
x 1. [00 ] What does the rating “M20 ” mean?

2. [10 ] Of what value can the exercises in a textbook be to the reader?
3. [HM45 ] Prove that when n is an integer, n > 2, the equation xn + yn = zn has

no solution in positive integers x, y, z.

Two hours’ daily exercise . . . will be enough
to keep a hack fit for his work.

— M. H. MAHON, The Handy Horse Book (1865)
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CHAPTER FIVE

SORTING

There is nothing more difficult to take in hand,
more perilous to conduct, or more uncertain in its success,

than to take the lead in the introduction of
a new order of things.

— NICCOLÒ MACHIAVELLI, The Prince (1513)

“But you can’t look up all those license
numbers in time,” Drake objected.

“We don’t have to, Paul. We merely arrange a list
and look for duplications.”

— PERRY MASON, in The Case of the Angry Mourner (1951)

“Treesort” Computer — With this new ‘computer-approach’
to nature study you can quickly identify over 260

different trees of U.S., Alaska, and Canada,
even palms, desert trees, and other exotics.

To sort, you simply insert the needle.
— EDMUND SCIENTIFIC COMPANY, Catalog (1964)

In this chapter we shall study a topic that arises frequently in programming:
the rearrangement of items into ascending or descending order. Imagine how
hard it would be to use a dictionary if its words were not alphabetized! We
will see that, in a similar way, the order in which items are stored in computer
memory often has a profound influence on the speed and simplicity of algorithms
that manipulate those items.

Although dictionaries of the English language define “sorting” as the process
of separating or arranging things according to class or kind, computer program-
mers traditionally use the word in the much more special sense of marshaling
things into ascending or descending order. The process should perhaps be called
ordering, not sorting; but anyone who tries to call it “ordering” is soon led
into confusion because of the many different meanings attached to that word.
Consider the following sentence, for example: “Since only two of our tape drives
were in working order, I was ordered to order more tape units in short order,
in order to order the data several orders of magnitude faster.” Mathematical
terminology abounds with still more senses of order (the order of a group, the
order of a permutation, the order of a branch point, relations of order, etc., etc.).
Thus we find that the word “order” can lead to chaos.

Some people have suggested that “sequencing” would be the best name for
the process of sorting into order; but this word often seems to lack the right

1



2 SORTING 5

connotation, especially when equal elements are present, and it occasionally
conflicts with other terminology. It is quite true that “sorting” is itself an
overused word (“I was sort of out of sorts after sorting that sort of data”),
but it has become firmly established in computing parlance. Therefore we shall
use the word “sorting” chiefly in the strict sense of sorting into order, without
further apologies.

Some of the most important applications of sorting are:
a) Solving the “togetherness” problem, in which all items with the same identi-

fication are brought together. Suppose that we have 10000 items in arbitrary
order, many of which have equal values; and suppose that we want to rearrange
the data so that all items with equal values appear in consecutive positions. This
is essentially the problem of sorting in the older sense of the word; and it can be
solved easily by sorting the file in the new sense of the word, so that the values
are in ascending order, v1 ≤ v2 ≤ · · · ≤ v10000. The efficiency achievable in this
procedure explains why the original meaning of “sorting” has changed.
b) Matching items in two or more files. If several files have been sorted into the

same order, it is possible to find all of the matching entries in one sequential pass
through them, without backing up. This is the principle that Perry Mason used
to help solve a murder case (see the quotation at the beginning of this chapter).
We can usually process a list of information most quickly by traversing it in
sequence from beginning to end, instead of skipping around at random in the
list, unless the entire list is small enough to fit in a high-speed random-access
memory. Sorting makes it possible to use sequential accessing on large files, as
a feasible substitute for direct addressing.

c) Searching for information by key values. Sorting is also an aid to searching,
as we shall see in Chapter 6, hence it helps us make computer output more
suitable for human consumption. In fact, a listing that has been sorted into
alphabetic order often looks quite authoritative even when the associated nu-
merical information has been incorrectly computed.

Although sorting has traditionally been used mostly for business data pro-
cessing, it is actually a basic tool that every programmer should keep in mind
for use in a wide variety of situations. We have discussed its use for simplify-
ing algebraic formulas, in exercise 2.3.2–17. The exercises below illustrate the
diversity of typical applications.

One of the first large-scale software systems to demonstrate the versatility
of sorting was the LARC Scientific Compiler developed by J. Erdwinn, D. E.
Ferguson, and their associates at Computer Sciences Corporation in 1960. This
optimizing compiler for an extended FORTRAN language made heavy use of
sorting so that the various compilation algorithms were presented with relevant
parts of the source program in a convenient sequence. The first pass was a
lexical scan that divided the FORTRAN source code into individual tokens, each
representing an identifier or a constant or an operator, etc. Each token was
assigned several sequence numbers; when sorted on the name and an appropriate
sequence number, all the uses of a given identifier were brought together. The
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“defining entries” by which a user would specify whether an identifier stood for a
function name, a parameter, or a dimensioned variable were given low sequence
numbers, so that they would appear first among the tokens having a given
identifier; this made it easy to check for conflicting usage and to allocate storage
with respect to EQUIVALENCE declarations. The information thus gathered about
each identifier was now attached to each token; in this way no “symbol table”
of identifiers needed to be maintained in the high-speed memory. The updated
tokens were then sorted on another sequence number, which essentially brought
the source program back into its original order except that the numbering scheme
was cleverly designed to put arithmetic expressions into a more convenient
“Polish prefix” form. Sorting was also used in later phases of compilation, to
facilitate loop optimization, to merge error messages into the listing, etc. In
short, the compiler was designed so that virtually all the processing could be
done sequentially from files that were stored in an auxiliary drum memory, since
appropriate sequence numbers were attached to the data in such a way that it
could be sorted into various convenient arrangements.

Computer manufacturers of the 1960s estimated that more than 25 percent
of the running time on their computers was spent on sorting, when all their
customers were taken into account. In fact, there were many installations in
which the task of sorting was responsible for more than half of the computing
time. From these statistics we may conclude that either (i) there are many
important applications of sorting, or (ii) many people sort when they shouldn’t,
or (iii) inefficient sorting algorithms have been in common use. The real truth
probably involves all three of these possibilities, but in any event we can see that
sorting is worthy of serious study, as a practical matter.

Even if sorting were almost useless, there would be plenty of rewarding rea-
sons for studying it anyway! The ingenious algorithms that have been discovered
show that sorting is an extremely interesting topic to explore in its own right.
Many fascinating unsolved problems remain in this area, as well as quite a few
solved ones.

From a broader perspective we will find also that sorting algorithms make a
valuable case study of how to attack computer programming problems in general.
Many important principles of data structure manipulation will be illustrated in
this chapter. We will be examining the evolution of various sorting techniques
in an attempt to indicate how the ideas were discovered in the first place. By
extrapolating this case study we can learn a good deal about strategies that help
us design good algorithms for other computer problems.

Sorting techniques also provide excellent illustrations of the general ideas
involved in the analysis of algorithms — the ideas used to determine performance
characteristics of algorithms so that an intelligent choice can be made between
competing methods. Readers who are mathematically inclined will find quite a
few instructive techniques in this chapter for estimating the speed of computer
algorithms and for solving complicated recurrence relations. On the other hand,
the material has been arranged so that readers without a mathematical bent can
safely skip over these calculations.
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Before going on, we ought to define our problem a little more clearly, and
introduce some terminology. We are given N items

R1, R2, . . . , RN

to be sorted; we shall call them records, and the entire collection of N records
will be called a file. Each record Rj has a key, Kj , which governs the sorting
process. Additional data, besides the key, is usually also present; this extra
“satellite information” has no effect on sorting except that it must be carried
along as part of each record.

An ordering relation “<” is specified on the keys so that the following
conditions are satisfied for any key values a, b, c:

i) Exactly one of the possibilities a < b, a = b, b < a is true. (This is called
the law of trichotomy.)

ii) If a < b and b < c, then a < c. (This is the familiar law of transitivity.)
Properties (i) and (ii) characterize the mathematical concept of linear ordering,
also called total ordering. Any relationship “<” satisfying these two properties
can be sorted by most of the methods to be mentioned in this chapter, although
some sorting techniques are designed to work only with numerical or alphabetic
keys that have the usual ordering.

The goal of sorting is to determine a permutation p(1) p(2) . . . p(N) of the
indices {1, 2, . . . , N} that will put the keys into nondecreasing order:

Kp(1) ≤ Kp(2) ≤ · · · ≤ Kp(N). (1)

The sorting is called stable if we make the further requirement that records with
equal keys should retain their original relative order. In other words, stable
sorting has the additional property that

p(i) < p(j) whenever Kp(i) = Kp(j) and i < j. (2)

In some cases we will want the records to be physically rearranged in storage
so that their keys are in order. But in other cases it will be sufficient merely to
have an auxiliary table that specifies the permutation in some way, so that the
records can be accessed in order of their keys.

A few of the sorting methods in this chapter assume the existence of either
or both of the values “∞” and “−∞”, which are defined to be greater than or
less than all keys, respectively:

−∞ < Kj <∞, for 1 ≤ j ≤ N. (3)

Such extreme values are occasionally used as artificial keys or as sentinel indica-
tors. The case of equality is excluded in (3); if equality can occur, the algorithms
can be modified so that they will still work, but usually at the expense of some
elegance and efficiency.

Sorting can be classified generally into internal sorting, in which the records
are kept entirely in the computer’s high-speed random-access memory, and ex-
ternal sorting, when more records are present than can be held comfortably in
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memory at once. Internal sorting allows more flexibility in the structuring and
accessing of the data, while external sorting shows us how to live with rather
stringent accessing constraints.

The time required to sort N records, using a decent general-purpose sorting
algorithm, is roughly proportional to N log N ; we make about log N “passes”
over the data. This is the minimum possible time, as we shall see in Section 5.3.1,
if the records are in random order and if sorting is done by pairwise comparisons
of keys. Thus if we double the number of records, it will take a little more
than twice as long to sort them, all other things being equal. (Actually, as N
approaches infinity, a better indication of the time needed to sort is N(log N)2,
if the keys are distinct, since the size of the keys must grow at least as fast as
log N ; but for practical purposes, N never really approaches infinity.)

On the other hand, if the keys are known to be randomly distributed with
respect to some continuous numerical distribution, we will see that sorting can
be accomplished in O(N) steps on the average.

EXERCISES — First Set
1. [M20 ] Prove, from the laws of trichotomy and transitivity, that the permutation
p(1) p(2) . . . p(N) is uniquely determined when the sorting is assumed to be stable.

2. [21 ] Assume that each record Rj in a certain file contains two keys, a “major key”
Kj and a “minor key” kj , with a linear ordering < defined on each of the sets of keys.
Then we can define lexicographic order between pairs of keys (K, k) in the usual way:

(Ki, ki) < (Kj , kj) if Ki < Kj or if Ki = Kj and ki < kj .

Alice took this file and sorted it first on the major keys, obtaining n groups of
records with equal major keys in each group,

Kp(1) = · · · = Kp(i1) < Kp(i1+1) = · · · = Kp(i2) < · · · < Kp(in−1+1) = · · · = Kp(in),

where in = N. Then she sorted each of the n groups Rp(ij−1+1), . . . , Rp(ij) on their
minor keys.

Bill took the same original file and sorted it first on the minor keys; then he took
the resulting file, and sorted it on the major keys.

Chris took the same original file and did a single sorting operation on it, using
lexicographic order on the major and minor keys (Kj , kj).

Did everyone obtain the same result?
3. [M25 ] Let < be a relation on K1, . . . ,KN that satisfies the law of trichotomy but

not the transitive law. Prove that even without the transitive law it is possible to sort
the records in a stable manner, meeting conditions (1) and (2); in fact, there are at
least three arrangements that satisfy the conditions!

x 4. [21 ] Lexicographers don’t actually use strict lexicographic order in dictionaries,
because uppercase and lowercase letters must be interfiled. Thus they want an ordering
such as this:

a < A < aa < AA < AAA < Aachen < aah < · · · < zzz < ZZZ.

Explain how to implement dictionary order.



6 SORTING 5

x 5. [M28 ] Design a binary code for all nonnegative integers so that if n is encoded as
the string ρ(n) we have m < n if and only if ρ(m) is lexicographically less than ρ(n).
Moreover, ρ(m) should not be a prefix of ρ(n) for any m ̸= n. If possible, the length of
ρ(n) should be at most lgn + O(log logn) for all large n. (Such a code is useful if we
want to sort texts that mix words and numbers, or if we want to map arbitrarily large
alphabets into binary strings.)

6. [15 ] Mr. B. C. Dull (a MIX programmer) wanted to know if the number stored in
location A is greater than, less than, or equal to the number stored in location B. So
he wrote ‘LDA A; SUB B’ and tested whether register A was positive, negative, or zero.
What serious mistake did he make, and what should he have done instead?

7. [17 ] Write a MIX subroutine for multiprecision comparison of keys, having the
following specifications:
Calling sequence: JMP COMPARE

Entry conditions: rI1 = n; CONTENTS(A + k) = ak and CONTENTS(B + k) = bk, for
1 ≤ k ≤ n; assume that n ≥ 1.

Exit conditions: CI = GREATER, if (an, . . . , a1) > (bn, . . . , b1);
CI = EQUAL, if (an, . . . , a1) = (bn, . . . , b1);
CI = LESS, if (an, . . . , a1) < (bn, . . . , b1);
rX and rI1 are possibly affected.

Here the relation (an, . . . , a1) < (bn, . . . , b1) denotes lexicographic ordering from left to
right; that is, there is an index j such that ak = bk for n ≥ k > j, but aj < bj .

x 8. [30 ] Locations A and B contain two numbers a and b, respectively. Show that it is
possible to write a MIX program that computes and stores min(a, b) in location C, without
using any jump operators. (Caution: Since you will not be able to test whether or not
arithmetic overflow has occurred, it is wise to guarantee that overflow is impossible
regardless of the values of a and b.)

9. [M27 ] After N independent, uniformly distributed random variables between 0
and 1 have been sorted into nondecreasing order, what is the probability that the rth
smallest of these numbers is ≤ x?

EXERCISES — Second Set
Each of the following exercises states a problem that a computer programmer might
have had to solve in the old days when computers didn’t have much random-access
memory. Suggest a “good” way to solve the problem, assuming that only a few thousand
words of internal memory are available, supplemented by about half a dozen tape units
(enough tape units for sorting). Algorithms that work well under such limitations also
prove to be efficient on modern machines.
10. [15 ] You are given a tape containing one million words of data. How do you
determine how many distinct words are present on the tape?
11. [18 ] You are the U. S. Internal Revenue Service; you receive millions of “informa-
tion” forms from organizations telling how much income they have paid to people, and
millions of “tax” forms from people telling how much income they have been paid. How
do you catch people who don’t report all of their income?
12. [M25 ] (Transposing a matrix.) You are given a magnetic tape containing one
million words, representing the elements of a 1000×1000 matrix stored in order by rows:
a1,1 a1,2 . . . a1,1000 a2,1 . . . a2,1000 . . . a1000,1000. How do you create a tape in which the



5 SORTING 7

elements are stored by columns a1,1 a2,1 . . . a1000,1 a1,2 . . . a1000,2 . . . a1000,1000 instead?
(Try to make less than a dozen passes over the data.)
13. [M26 ] How could you “shuffle” a large file of N words into a random rearrange-
ment?
14. [20 ] You are working with two computer systems that have different conventions
for the “collating sequence” that defines the ordering of alphameric characters. How do
you make one computer sort alphameric files in the order used by the other computer?
15. [18 ] You are given a list of the names of a fairly large number of people born in
the U.S.A., together with the name of the state where they were born. How do you
count the number of people born in each state? (Assume that nobody appears in the
list more than once.)
16. [20 ] In order to make it easier to make changes to large FORTRAN programs, you
want to design a “cross-reference” routine; such a routine takes FORTRAN programs
as input and prints them together with an index that shows each use of each identifier
(that is, each name) in the program. How should such a routine be designed?

x 17. [33 ] (Library card sorting.) Before the days of computerized databases, every
library maintained a catalog of cards so that users could find the books they wanted.
But the task of putting catalog cards into an order convenient for human use turned out
to be quite complicated as library collections grew. The following “alphabetical” listing
indicates many of the procedures recommended in the American Library Association
Rules for Filing Catalog Cards (Chicago: 1942):

Text of card Remarks
R. Accademia nazionale dei Lincei, Rome Ignore foreign royalty (except British)
1812; ein historischer Roman. Achtzehnhundertzwölf
Bibliothèque d’histoire révolutionnaire. Treat apostrophe as space in French
Bibliothèque des curiosités. Ignore accents on letters
Brown, Mrs. J. Crosby Ignore designation of rank
Brown, John Names with dates follow those without
Brown, John, mathematician . . . and the latter are subarranged
Brown, John, of Boston by descriptive words
Brown, John, 1715–1766 Arrange identical names by birthdate
BROWN, JOHN, 1715–1766 Works “about” follow works “by”
Brown, John, d. 1811 Sometimes birthdate must be estimated
Brown, Dr. John, 1810–1882 Ignore designation of rank
Brown-Williams, Reginald Makepeace Treat hyphen as space
Brown America. Book titles follow compound names
Brown & Dallison’s Nevada directory. & in English becomes “and”
Brownjohn, Alan
Den’, Vladimir Éduardovich, 1867– Ignore apostrophe in names
The den. Ignore an initial article
Den lieben langen Tag. . . . provided it’s in nominative case
Dix, Morgan, 1827–1908 Names precede words
1812 ouverture. Dix-huit cent douze
Le XIXe siècle français. Dix-neuvième
The 1847 issue of U. S. stamps. Eighteen forty-seven
1812 overture. Eighteen twelve
I am a mathematician. (a book by Norbert Wiener)



8 SORTING 5

Text of card Remarks
IBM journal of research and development. Initials are like one-letter words
ha-I ha-ehad. Ignore initial article
Ia; a love story. Ignore punctuation in titles
International Business Machines Corporation
al-Khuwārizmı̄, Muh. ammad ibn Mūsā,

fl. 813–846 Ignore initial “al-” in Arabic names
Labour. A magazine for all workers. Respell it “Labor”
Labor research association
Labour, see Labor Cross-reference card
McCall’s cookbook Ignore apostrophe in English
McCarthy, John, 1927– Mc = Mac
Machine-independent computer

programming. Treat hyphen as space
MacMahon, Maj. Percy Alexander,

1854–1929 Ignore designation of rank
Mrs. Dalloway. “Mrs.” = “Mistress”
Mistress of mistresses.
Royal society of London Don’t ignore British royalty
St. Petersburger Zeitung. “St.” = “Saint”, even in German
Saint-Saëns, Camille, 1835–1921 Treat hyphen as space
Ste-Marie, Gaston P Sainte
Seminumerical algorithms. (a book by Donald Ervin Knuth)
Uncle Tom’s cabin. (a book by Harriet Beecher Stowe)
U. S. bureau of the census. “U. S.” = “United States”
Vandermonde, Alexandre Théophile,

1735–1796
Van Valkenburg, Mac Elwyn, 1921– Ignore space after prefix in surnames
Von Neumann, John, 1903–1957
The whole art of legerdemain. Ignore initial article
Who’s afraid of Virginia Woolf? Ignore apostrophe in English
Wijngaarden, Adriaan van, 1916– Surname begins with uppercase letter
(Most of these rules are subject to certain exceptions, and there are many other rules
not illustrated here.)

If you were given the job of sorting large quantities of catalog cards by computer,
and eventually maintaining a very large file of such cards, and if you had no chance to
change these long-standing policies of card filing, how would you arrange the data in
such a way that the sorting and merging operations are facilitated?
18. [M25 ] (E. T. Parker.) Leonhard Euler once conjectured [Nova Acta Acad. Sci.
Petropolitanæ 13 (1795), 45–63, §3; written in 1778] that there are no solutions to the
equation

u6 + v6 + w6 + x6 + y6 = z6

in positive integers u, v, w, x, y, z. At the same time he conjectured that

xn
1 + · · ·+ xn

n−1 = xn
n

would have no positive integer solutions, for all n ≥ 3, but this more general conjecture
was disproved by the computer-discovered identity 275 + 845 + 1105 + 1335 = 1445;
see L. J. Lander, T. R. Parkin, and J. L. Selfridge, Math. Comp. 21 (1967), 446–459.
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Infinitely many counterexamples when n = 4 were subsequently found by Noam Elkies
[Math. Comp. 51 (1988), 825–835]. Can you think of a way in which sorting would
help in the search for counterexamples to Euler’s conjecture when n = 6?

x 19. [24 ] Given a file containing a million or so distinct 30-bit binary words x1, . . . , xN,
what is a good way to find all complementary pairs {xi, xj} that are present? (Two
words are complementary when one has 0 wherever the other has 1, and conversely;
thus they are complementary if and only if their sum is (11 . . . 1)2, when they are
treated as binary numbers.)

x 20. [25 ] Given a file containing 1000 30-bit words x1, . . . , x1000, how would you pre-
pare a list of all pairs (xi, xj) such that xi = xj except in at most two bit positions?

21. [22 ] How would you go about looking for five-letter anagrams such as CARET,
CARTE, CATER, CRATE, REACT, RECTA, TRACE; CRUEL, LUCRE, ULCER; DOWRY, ROWDY, WORDY?
[One might wish to know whether there are any sets of ten or more five-letter English
anagrams besides the remarkable set

APERS, ASPER, PARES, PARSE, PEARS, PRASE, PRESA, RAPES, REAPS, SPAER, SPARE, SPEAR,

to which we might add the French word APRÈS.]

22. [M28 ] Given the specifications of a fairly large number of directed graphs, what
approach will be useful for grouping the isomorphic ones together? (Directed graphs are
isomorphic if there is a one-to-one correspondence between their vertices and a one-to-
one correspondence between their arcs, where the correspondences preserve incidence
between vertices and arcs.)

23. [30 ] In a certain group of 4096 people, everyone has about 100 acquaintances.
A file has been prepared listing all pairs of people who are acquaintances. (The relation
is symmetric: If x is acquainted with y, then y is acquainted with x. Therefore the file
contains roughly 200,000 entries.) How would you design an algorithm to list all the
k-person cliques in this group of people, given k? (A clique is an instance of mutual
acquaintances: Everyone in the clique is acquainted with everyone else.) Assume that
there are no cliques of size 25, so the total number of cliques cannot be enormous.

x 24. [30 ] Three million men with distinct names were laid end-to-end, reaching from
New York to California. Each participant was given a slip of paper on which he wrote
down his own name and the name of the person immediately west of him in the line.
The man at the extreme western end didn’t understand what to do, so he threw his
paper away; the remaining 2,999,999 slips of paper were put into a huge basket and
taken to the National Archives in Washington, D.C. Here the contents of the basket
were shuffled completely and transferred to magnetic tapes.

At this point an information scientist observed that there was enough information
on the tapes to reconstruct the list of people in their original order. And a computer
scientist discovered a way to do the reconstruction with fewer than 1000 passes through
the data tapes, using only sequential accessing of tape files and a small amount of
random-access memory. How was that possible?

[In other words, given the pairs (xi, xi+1), for 1 ≤ i < N, in random order,
where the xi are distinct, how can the sequence x1x2 . . . xN be obtained, restricting
all operations to serial techniques suitable for use with magnetic tapes? This is the
problem of sorting into order when there is no easy way to tell which of two given keys
precedes the other; we have already raised this question as part of exercise 2.2.3–25.]
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25. [M21 ] (Discrete logarithms.) You know that p is a (rather large) prime number,
and that a is a primitive root modulo p. Therefore, for all b in the range 1 ≤ b < p,
there is a unique n such that an mod p = b, 1 ≤ n < p. (This n is called the index
of b modulo p, with respect to a.) Explain how to find n, given b, without needing
Ω(n) steps. [Hint: Let m = ⌈

√
p ⌉ and try to solve amn1 ≡ ba−n2 (modulo p) for

0 ≤ n1, n2 < m.]
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*5.1. COMBINATORIAL PROPERTIES OF PERMUTATIONS
A permutation of a finite set is an arrangement of its elements into a row.
Permutations are of special importance in the study of sorting algorithms, since
they represent the unsorted input data. In order to study the efficiency of
different sorting methods, we will want to be able to count the number of
permutations that cause a certain step of a sorting procedure to be executed
a certain number of times.

We have, of course, met permutations frequently in previous chapters. For
example, in Section 1.2.5 we discussed two basic theoretical methods of con-
structing the n! permutations of n objects; in Section 1.3.3 we analyzed some
algorithms dealing with the cycle structure and multiplicative properties of
permutations; in Section 3.3.2 we studied their “runs up” and “runs down.”
The purpose of the present section is to study several other properties of per-
mutations, and to consider the general case where equal elements are allowed to
appear. In the course of this study we will learn a good deal about combinatorial
mathematics.

The properties of permutations are sufficiently pleasing to be interesting in
their own right, and it is convenient to develop them systematically in one place
instead of scattering the material throughout this chapter. But readers who
are not mathematically inclined and readers who are anxious to dive right into
sorting techniques are advised to go on to Section 5.2 immediately, since the
present section actually has little direct connection to sorting.

*5.1.1. Inversions
Let a1 a2 . . . an be a permutation of the set {1, 2, . . . , n}. If i < j and ai > aj ,
the pair (ai, aj) is called an inversion of the permutation; for example, the
permutation 3 1 4 2 has three inversions: (3, 1), (3, 2), and (4, 2). Each inversion is
a pair of elements that is out of sort, so the only permutation with no inversions is
the sorted permutation 1 2 . . . n. This connection with sorting is the chief reason
why we will be so interested in inversions, although we have already used the
concept to analyze a dynamic storage allocation algorithm (see exercise 2.2.2–9).

The concept of inversions was introduced by G. Cramer in 1750 [Intr. à
l’Analyse des Lignes Courbes Algébriques (Geneva: 1750), 657–659; see Thomas
Muir, Theory of Determinants 1 (1906), 11–14], in connection with his famous
rule for solving linear equations. In essence, Cramer defined the determinant of
an n× n matrix in the following way:

det

 x11 x12 . . . x1n
...

...
...

xn1 xn2 . . . xnn

 =


(−1)inv(a1a2...an)x1a1x2a2 . . . xnan
,

summed over all permutations a1 a2 . . . an of {1, 2, . . . , n}, where inv(a1 a2 . . . an)
is the number of inversions of the permutation.

The inversion table b1 b2 . . . bn of the permutation a1 a2 . . . an is obtained by
letting bj be the number of elements to the left of j that are greater than j.
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In other words, bj is the number of inversions whose second component is j.
It follows, for example, that the permutation

5 9 1 8 2 6 4 7 3 (1)

has the inversion table
2 3 6 4 0 2 2 1 0, (2)

since 5 and 9 are to the left of 1; 5, 9, 8 are to the left of 2; etc. This permutation
has 20 inversions in all. By definition the numbers bj will always satisfy

0 ≤ b1 ≤ n− 1, 0 ≤ b2 ≤ n− 2, . . . , 0 ≤ bn−1 ≤ 1, bn = 0. (3)

Perhaps the most important fact about inversions is the simple observation
that an inversion table uniquely determines the corresponding permutation. We
can go back from any inversion table b1 b2 . . . bn satisfying (3) to the unique
permutation that produces it, by successively determining the relative placement
of the elements n, n−1, . . . , 1 (in this order). For example, we can construct the
permutation corresponding to (2) as follows: Write down the number 9; then
place 8 after 9, since b8 = 1. Similarly, put 7 after both 8 and 9, since b7 = 2.
Then 6 must follow two of the numbers already written down, because b6 = 2;
the partial result so far is therefore

9 8 6 7.

Continue by placing 5 at the left, since b5 = 0; put 4 after four of the numbers;
and put 3 after six numbers (namely at the extreme right), giving

5 9 8 6 4 7 3.

The insertion of 2 and 1 in an analogous way yields (1).
This correspondence is important because we can often translate a problem

stated in terms of permutations into an equivalent problem stated in terms of
inversion tables, and the latter problem may be easier to solve. For example,
consider the simplest question of all: How many permutations of {1, 2, . . . , n} are
possible? The answer must be the number of possible inversion tables, and they
are easily enumerated since there are n choices for b1, independently n−1 choices
for b2, . . . , 1 choice for bn, making n(n−1) . . . 1 = n! choices in all. Inversions are
easy to count, because the b’s are completely independent of each other, while
the a’s must be mutually distinct.

In Section 1.2.10 we analyzed the number of local maxima that occur when
a permutation is read from right to left; in other words, we counted how many
elements are larger than any of their successors. (The right-to-left maxima in (1),
for example, are 3, 7, 8, and 9.) This is the number of j such that bj has its
maximum value, n − j. Since b1 will equal n − 1 with probability 1/n, and
(independently) b2 will be equal to n − 2 with probability 1/(n − 1), etc., it is
clear by consideration of the inversions that the average number of right-to-left
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Fig. 1. The truncated octahedron, which shows the change in inversions when adjacent
elements of a permutation are interchanged.

maxima is
1
n

+ 1
n− 1 + · · ·+ 1

1 = Hn.

The corresponding generating function is also easily derived in a similar way.
If we interchange two adjacent elements of a permutation, it is easy to see

that the total number of inversions will increase or decrease by unity. Figure 1
shows the 24 permutations of {1, 2, 3, 4}, with lines joining permutations that
differ by an interchange of adjacent elements; following any line downward inverts
exactly one new pair. Hence the number of inversions of a permutation π is the
length of a downward path from 1234 to π in Fig. 1; all such paths must have
the same length.

Incidentally, the diagram in Fig. 1 may be viewed as a three-dimensional
solid, the “truncated octahedron,” which has 8 hexagonal faces and 6 square
faces. This is one of the classical uniform polyhedra attributed to Archimedes
(see exercise 10).

The reader should not confuse inversions of a permutation with the inverse
of a permutation. Recall that we can write a permutation in two-line form

1 2 3 . . . n
a1 a2 a3 . . . an


; (4)

the inverse a′
1 a′

2 a′
3 . . . a′

n of this permutation is the permutation obtained by
interchanging the two rows and then sorting the columns into increasing order
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of the new top row:
a1 a2 a3 . . . an

1 2 3 . . . n


=


1 2 3 . . . n
a′

1 a′
2 a′

3 . . . a′
n


. (5)

For example, the inverse of 5 9 1 8 2 6 4 7 3 is 3 5 9 7 1 6 8 4 2, since
5 9 1 8 2 6 4 7 3
1 2 3 4 5 6 7 8 9


=


1 2 3 4 5 6 7 8 9
3 5 9 7 1 6 8 4 2


.

Another way to define the inverse is to say that a′
j = k if and only if ak = j.

The inverse of a permutation was first defined by H. A. Rothe [in Samm-
lung combinatorisch-analytischer Abhandlungen, edited by C. F. Hindenburg, 2
(Leipzig: 1800), 263–305], who noticed an interesting connection between inverses
and inversions: The inverse of a permutation has exactly as many inversions as
the permutation itself. Rothe’s proof of this fact was not the simplest possible
one, but it is instructive and quite pretty nevertheless. We construct an n × n
chessboard having a dot in column j of row i whenever ai = j. Then we put
×’s in all squares that have dots lying both below (in the same column) and to
their right (in the same row). For example, the diagram for 5 9 1 8 2 6 4 7 3 is

× × × × •
× × × × × × × •
•
× × × × × •
•
× × •
× •
× •
•

The number of ×’s is the number of inversions, since it is easy to see that bj is the
number of ×’s in column j. Now if we transpose the diagram — interchanging
rows and columns — we get the diagram corresponding to the inverse of the
original permutation. Hence the number of ×’s (the number of inversions) is
the same in both cases. Rothe used this fact to prove that the determinant of a
matrix is unchanged when the matrix is transposed.

The analysis of several sorting algorithms involves the knowledge of how
many permutations of n elements have exactly k inversions. Let us denote that
number by In(k); Table 1 lists the first few values of this function.

By considering the inversion table b1 b2 . . . bn, it is obvious that In(0) = 1,
In(1) = n− 1, and there is a symmetry property

In

n

2


− k


= In(k). (6)
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Table 1
PERMUTATIONS WITH k INVERSIONS

n In(0) In(1) In(2) In(3) In(4) In(5) In(6) In(7) In(8) In(9) In(10) In(11)

1 1 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0
3 1 2 2 1 0 0 0 0 0 0 0 0
4 1 3 5 6 5 3 1 0 0 0 0 0
5 1 4 9 15 20 22 20 15 9 4 1 0
6 1 5 14 29 49 71 90 101 101 90 71 49

Furthermore, since each of the b’s can be chosen independently of the others, it
is not difficult to see that the generating function

Gn(z) = In(0) + In(1)z + In(2)z2 + · · · (7)

satisfies Gn(z) = (1 + z + · · · + zn−1)Gn−1(z); hence it has the comparatively
simple form noticed by O. Rodrigues [J. de Math. 4 (1839), 236–240]:

(1 + z + · · ·+ zn−1) . . . (1 + z)(1) = (1− zn) . . . (1− z2)(1− z)/(1− z)n. (8)

From this generating function, we can easily extend Table 1, and we can verify
that the numbers below the zigzag line in that table satisfy

In(k) = In(k − 1) + In−1(k), for k < n. (9)

(This relation does not hold above the zigzag line.) A more complicated argument
(see exercise 14) shows that, in fact, we have the formulas

In(2) =


n

2


− 1, n ≥ 2;

In(3) =


n + 1
3


−


n

1


, n ≥ 3;

In(4) =


n + 2
4


−


n + 1
2


, n ≥ 4;

In(5) =


n + 3
5


−


n + 2
3


+ 1, n ≥ 5;

in general, the formula for In(k) contains about 1.6
√

k terms:

In(k) =


n+k−2
k


−


n+k−3
k−2


+


n+k−6
k−5


+


n+k−8

k−7


− · · ·

+ (−1)j


n+k−uj−1
k−uj


+


n+k−uj−j−1
k−uj−j


+ · · · , n ≥ k, (10)

where uj = (3j2 − j)/2 is a so-called “pentagonal number.”
If we divide Gn(z) by n! we get the generating function gn(z) for the

probability distribution of the number of inversions in a random permutation
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of n elements. This is the product

gn(z) = h1(z)h2(z) . . . hn(z), (11)

where hk(z) = (1 + z + · · ·+ zk−1)/k is the generating function for the uniform
distribution of a random nonnegative integer less than k. It follows that

mean(gn) = mean(h1) + mean(h2) + · · ·+ mean(hn)

= 0 + 1
2 + · · ·+ n− 1

2 = n(n− 1)
4 ; (12)

var(gn) = var(h1) + var(h2) + · · ·+ var(hn)

= 0 + 1
4 + · · ·+ n2 − 1

12 = n(2n + 5)(n− 1)
72 . (13)

So the average number of inversions is rather large, about 1
4 n2; the standard

deviation is also rather large, about 1
6 n3/2.

A remarkable discovery about the distribution of inversions was made by
P. A. MacMahon [Amer. J. Math. 35 (1913), 281–322]. Let us define the index
of the permutation a1 a2 . . . an as the sum of all subscripts j such that aj > aj+1,
1 ≤ j < n. For example, the index of 5 9 1 8 2 6 4 7 3 is 2 + 4 + 6 + 8 = 20. By
coincidence the index is the same as the number of inversions in this case. If we
list the 24 permutations of {1, 2, 3, 4}, namely

Permutation Index Inversions Permutation Index Inversions
1 2 3 4 0 0 3|1 2 4 1 2
1 2 4|3 3 1 3|1 4|2 4 3
1 3|2 4 2 1 3|2|1 4 3 3
1 3 4|2 3 2 3|2 4|1 4 4
1 4|2 3 2 2 3 4|1 2 2 4
1 4|3|2 5 3 3 4|2|1 5 5
2|1 3 4 1 1 4|1 2 3 1 3
2|1 4|3 4 2 4|1 3|2 4 4
2 3|1 4 2 2 4|2|1 3 3 4
2 3 4|1 3 3 4|2 3|1 4 5
2 4|1 3 2 3 4|3|1 2 3 5
2 4|3|1 5 4 4|3|2|1 6 6

we see that the number of permutations having a given index, k, is the same as
the number having k inversions.

At first this fact might appear to be almost obvious, but further scrutiny
makes it very mysterious. MacMahon gave an ingenious indirect proof, as follows:
Let ind(a1 a2 . . . an) be the index of the permutation a1 a2 . . . an, and let

Hn(z) =


z ind(a1 a2...an) (14)

be the corresponding generating function; the sum in (14) is over all permutations
of {1, 2, . . . , n}. We wish to show that Hn(z) = Gn(z). For this purpose we will
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define a one-to-one correspondence between arbitrary n-tuples (q1, q2, . . . , qn) of
nonnegative integers, on the one hand, and ordered pairs of n-tuples

(a1, a2, . . . , an), (p1, p2, . . . , pn)


on the other hand, where a1 a2 . . . an is a permutation of the indices {1, 2, . . . , n}
and p1 ≥ p2 ≥ · · · ≥ pn ≥ 0. This correspondence will satisfy the condition

q1 + q2 + · · ·+ qn = ind(a1 a2 . . . an) + (p1 + p2 + · · ·+ pn). (15)

The generating function


zq1+q2+···+qn, summed over all n-tuples of nonnega-
tive integers (q1, q2, . . . , qn), is Qn(z) = 1/(1− z)n; and the generating function

zp1+p2+···+pn, summed over all n-tuples of integers (p1, p2, . . . , pn) such that
p1 ≥ p2 ≥ · · · ≥ pn ≥ 0, is

Pn(z) = 1/(1− z)(1− z2) . . . (1− zn), (16)

as shown in exercise 15. In view of (15), the one-to-one correspondence we are
about to establish will prove that Qn(z) = Hn(z)Pn(z), that is,

Hn(z) = Qn(z)/Pn(z). (17)

But Qn(z)/Pn(z) is Gn(z), by (8).
The desired correspondence is defined by a simple sorting procedure: Any

n-tuple (q1, q2, . . . , qn) can be rearranged into nonincreasing order qa1 ≥ qa2 ≥
· · · ≥ qan

in a stable manner, where a1 a2 . . . an is a permutation such that qaj
=

qaj+1 implies aj < aj+1. We set (p1, p2, . . . , pn) = (qa1 , qa2 , . . . , qan
) and then, for

1 ≤ j < n, subtract 1 from each of p1, . . . , pj for each j such that aj > aj+1. We
still have p1 ≥ p2 ≥ · · · ≥ pn, because pj was strictly greater than pj+1 whenever
aj > aj+1. The resulting pair


(a1, a2, . . . , an), (p1, p2, . . . , pn)


satisfies (15),

because the total reduction of the p’s is ind(a1 a2 . . . an). For example, if n = 9
and (q1, . . . , q9) = (3, 1, 4, 1, 5, 9, 2, 6, 5), we find a1 . . . a9 = 6 8 5 9 3 1 7 2 4 and
(p1, . . . , p9) = (5, 2, 2, 2, 2, 2, 1, 1, 1).

Conversely, we can easily go back to (q1, q2, . . . , qn) when a1 a2 . . . an and
(p1, p2, . . . , pn) are given. (See exercise 17.) So the desired correspondence has
been established, and MacMahon’s index theorem has been proved.

D. Foata and M. P. Schützenberger discovered a surprising extension of
MacMahon’s theorem, about 65 years after MacMahon’s original publication:
The number of permutations of n elements that have k inversions and index l is
the same as the number that have l inversions and index k. In fact, Foata and
Schützenberger found a simple one-to-one correspondence between permutations
of the first kind and permutations of the second (see exercise 25).

EXERCISES
1. [10 ] What is the inversion table for the permutation 2 7 1 8 4 5 9 3 6? What per-

mutation has the inversion table 5 0 1 2 1 2 0 0?
2. [M20 ] In the classical problem of Josephus (exercise 1.3.2–22), n men are initially

arranged in a circle; the mth man is executed, the circle closes, and every mth man is
repeatedly eliminated until all are dead. The resulting execution order is a permutation
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of {1, 2, . . . , n}. For example, when n = 8 and m = 4 the order is 5 4 6 1 3 8 7 2 (man 1
is 5th out, etc.); the inversion table corresponding to this permutation is 3 6 3 1 0 0 1 0.

Give a simple recurrence relation for the elements b1 b2 . . . bn of the inversion table
in the general Josephus problem for n men, when every mth man is executed.

3. [18 ] If the permutation a1 a2 . . . an corresponds to the inversion table b1 b2 . . . bn,
what is the permutation a1 a2 . . . an that corresponds to the inversion table

(n− 1− b1)(n− 2− b2) . . . (0− bn) ?

x 4. [20 ] Design an algorithm suitable for computer implementation that constructs
the permutation a1 a2 . . . an corresponding to a given inversion table b1 b2 . . . bn satis-
fying (3). [Hint: Consider a linked-memory technique.]

5. [35 ] The algorithm of exercise 4 requires an execution time roughly proportional
to n+ b1 + · · ·+ bn on typical computers, and this is Θ(n2) on the average. Is there an
algorithm whose worst-case running time is substantially better than order n2?

x 6. [26 ] Design an algorithm that computes the inversion table b1 b2 . . . bn corre-
sponding to a given permutation a1 a2 . . . an of {1, 2, . . . , n}, where the running time is
essentially proportional to n logn on typical computers.

7. [20 ] Several other kinds of inversion tables can be defined, corresponding to a
given permutation a1 a2 . . . an of {1, 2, . . . , n}, besides the particular table b1 b2 . . . bn

defined in the text; in this exercise we will consider three other types of inversion tables
that arise in applications.

Let cj be the number of inversions whose first component is j, that is, the number
of elements to the right of j that are less than j. [Corresponding to (1) we have the
table 0 0 0 1 4 2 1 5 7; clearly 0 ≤ cj < j.] Let Bj = baj and Cj = caj .

Show that 0 ≤ Bj < j and 0 ≤ Cj ≤ n − j, for 1 ≤ j ≤ n; furthermore show
that the permutation a1 a2 . . . an can be determined uniquely when either c1 c2 . . . cn

or B1 B2 . . . Bn or C1 C2 . . . Cn is given.
8. [M24 ] Continuing the notation of exercise 7, let a′1 a′2 . . . a′n be the inverse of

the permutation a1 a2 . . . an, and let the corresponding inversion tables be b′1 b′2 . . . b′n,
c′1 c

′
2 . . . c

′
n, B′

1 B
′
2 . . . B

′
n, and C′

1 C
′
2 . . . C

′
n. Find as many interesting relations as you

can between the numbers aj , bj , cj , Bj , Cj , a′j , b′j , c′j , B′
j , C′

j .
x 9. [M21 ] Prove that, in the notation of exercise 7, the permutation a1 a2 . . . an is an

involution (that is, its own inverse) if and only if bj = Cj for 1 ≤ j ≤ n.
10. [HM20 ] Consider Fig. 1 as a polyhedron in three dimensions. What is the diam-
eter of the truncated octahedron (the distance between vertex 1234 and vertex 4321),
if all of its edges have unit length?
11. [M25 ] If π = a1 a2 . . . an is a permutation of {1, 2, . . . , n}, let

E(π) = {(ai, aj) | i < j, ai > aj}

be the set of its inversions, and let

E(π) = {(ai, aj) | i > j, ai > aj}

be the non-inversions.
a) Prove that E(π) and E(π) are transitive. (A set S of ordered pairs is called

transitive if (a, c) is in S whenever both (a, b) and (b, c) are in S.)
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b) Conversely, let E be any transitive subset of T = {(x, y) | 1 ≤ y < x ≤ n} whose
complement E = T \E is also transitive. Prove that there exists a permutation π
such that E(π) = E.

12. [M28 ] Continuing the notation of the previous exercise, prove that if π1 and π2
are permutations and if E is the smallest transitive set containing E(π1)∪E(π2), then
E is transitive. [Hence, if we say π1 is “above” π2 whenever E(π1) ⊆ E(π2), a lattice
of permutations is defined; there is a unique “lowest” permutation “above” two given
permutations. Figure 1 is the lattice diagram when n = 4.]
13. [M23 ] It is well known that half of the terms in the expansion of a determinant
have a plus sign, and half have a minus sign. In other words, there are just as many
permutations with an even number of inversions as with an odd number, when n ≥ 2.
Show that, in general, the number of permutations having a number of inversions
congruent to t modulo m is n!/m, regardless of the integer t, whenever n ≥ m.
14. [M24 ] (F. Franklin.) A partition of n into k distinct parts is a representation
n = p1 + p2 + · · ·+ pk, where p1 > p2 > · · · > pk > 0. For example, the partitions of 7
into distinct parts are 7, 6 + 1, 5 + 2, 4 + 3, 4 + 2 + 1. Let fk(n) be the number of
partitions of n into k distinct parts; prove that


k(−1)kfk(n) = 0, unless n has the

form (3j2 ± j)/2, for some nonnegative integer j; in the latter case the sum is (−1)j .
For example, when n = 7 the sum is − 1 + 3 − 1 = 1, and 7 = (3 · 22 + 2)/2. [Hint:
Represent a partition as an array of dots, putting pi dots in the ith row, for 1 ≤ i ≤ k.
Find the smallest j such that pj+1 < pj −1, and encircle the rightmost dots in the first
j rows. If j < pk, these j dots can usually be removed, tilted 45◦, and placed as a new
(k+1)st row. On the other hand if j ≥ pk, the kth row of dots can usually be removed,
tilted 45◦, and placed to the right of the circled dots. (See Fig. 2.) This process pairs
off partitions having an odd number of rows with partitions having an even number of
rows, in most cases, so only unpaired partitions must be considered in the sum.]

Fig. 2. Franklin’s correspondence between partitions with distinct parts.

Note: As a consequence, we obtain Euler’s formula

(1− z)(1− z2)(1− z3) . . . = 1− z − z2 + z5 + z7 − z12 − z15 + · · ·

=


−∞<j<∞
(−1)jz(3j2+j)/2.

The generating function for ordinary partitions (whose parts are not necessarily dis-
tinct) is


p(n)zn = 1/(1 − z)(1 − z2)(1 − z3) . . . ; hence we obtain a nonobvious

recurrence relation for the partition numbers,

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− · · · .
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15. [M23 ] Prove that (16) is the generating function for partitions into at most n
parts; that is, prove that the coefficient of zm in 1/(1 − z)(1 − z2) . . . (1 − zn) is the
number of ways to write m = p1 + p2 + · · · + pn with p1 ≥ p2 ≥ · · · ≥ pn ≥ 0.
[Hint: Drawing dots as in exercise 14, show that there is a one-to-one correspondence
between n-tuples (p1, p2, . . . , pn) such that p1 ≥ p2 ≥ · · · ≥ pn ≥ 0 and sequences
(P1, P2, P3, . . . ) such that n ≥ P1 ≥ P2 ≥ P3 ≥ · · · ≥ 0, with the property that
p1 + p2 + · · ·+ pn = P1 +P2 +P3 + · · · . In other words, partitions into at most n parts
correspond to partitions into parts not exceeding n.]
16. [M25 ] (L. Euler.) Prove the following identities by interpreting both sides of the
equations in terms of partitions:

k≥0

1
(1− qkz) = 1

(1− z)(1− qz)(1− q2z) . . .

= 1 + z

1− q + z2

(1− q)(1− q2) + · · · =

n≥0

zn

 n
k=1

(1− qk).


k≥0

(1 + qkz) = (1 + z)(1 + qz)(1 + q2z) . . .

= 1 + z

1− q + z2q

(1− q)(1− q2) + · · · =

n≥0

znqn(n−1)/2
 n

k=1

(1− qk).

17. [20 ] In MacMahon’s correspondence defined at the end of this section, what are
the 24 quadruples (q1, q2, q3, q4) for which (p1, p2, p3, p4) = (0, 0, 0, 0)?
18. [M30 ] (T. Hibbard, CACM 6 (1963), 210.) Let n > 0, and assume that a sequence
of 2n n-bit integers X0, . . . , X2n−1 has been generated at random, where each bit of
each number is independently equal to 1 with probability p. Consider the sequence
X0 ⊕ 0, X1 ⊕ 1, . . . , X2n−1 ⊕ (2n − 1), where ⊕ denotes the “exclusive or” operation
on the binary representations. Thus if p = 0, the sequence is 0, 1, . . . , 2n−1, and if
p = 1 it is 2n−1, . . . , 1, 0; and when p = 1

2 , each element of the sequence is a random
integer between 0 and 2n− 1. For general p this is a useful way to generate a sequence
of random integers with a biased number of inversions, although the distribution of
the elements of the sequence taken as a whole is uniform in the sense that each n-bit
integer has the same distribution. What is the average number of inversions in such a
sequence, as a function of the probability p?
19. [M28 ] (C. Meyer.) When m is relatively prime to n, we know that the sequence
(mmod n)(2mmod n) . . . ((n− 1)mmod n) is a permutation of {1, 2, . . . , n− 1}. Show
that the number of inversions of this permutation can be expressed in terms of Dedekind
sums (see Section 3.3.3).
20. [M43 ] The following famous identity due to Jacobi [Fundamenta Nova Theoriæ
Functionum Ellipticarum (1829), §64] is the basis of many remarkable relationships
involving elliptic functions:

k≥1

(1− ukvk−1)(1− uk−1vk)(1− ukvk)

= (1− u)(1− v)(1− uv)(1− u2v)(1− uv2)(1− u2v2) . . .

= 1− (u+ v) + (u3v + uv3)− (u6v3 + u3v6) + · · ·

=


−∞<j<+∞
(−1)ju(j2)v(j+1

2 ).
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For example, if we set u = z, v = z2, we obtain Euler’s formula of exercise 14. If we
set z =

√
u/v, q =

√
uv, we obtain

k≥1

(1− q2k−1z)(1− q2k−1z−1)(1− q2k) =


−∞<n<∞
(−1)nznqn2

.

Is there a combinatorial proof of Jacobi’s identity, analogous to Franklin’s proof
of the special case in exercise 14? (Thus we want to consider “complex partitions”

m+ ni = (p1 + q1i) + (p2 + q2i) + · · ·+ (pk + qki)

where the pj + qji are distinct nonzero complex numbers, pj and qj being nonnegative
integers with |pj − qj | ≤ 1. Jacobi’s identity says that the number of such represen-
tations with k even is the same as the number with k odd, except when m and n
are consecutive triangular numbers.) What other remarkable properties do complex
partitions have?

x 21. [M25 ] (G. D. Knott.) Show that the permutation a1 . . . an is obtainable with
a stack, in the sense of exercise 2.2.1–5 or 2.3.1–6, if and only if Cj ≤ Cj+1 + 1 for
1 ≤ j < n in the notation of exercise 7.
22. [M26 ] Given a permutation a1 a2 . . . an of {1, 2, . . . , n}, let hj be the number of
indices i < j such that ai ∈ {aj+1, aj+2, . . . , aj+1}. (If aj+1 < aj , the elements of this
set “wrap around” from n to 1. When j = n we use the set {an+1, an+2, . . . , n}.) For
example, the permutation 5 9 1 8 2 6 4 7 3 leads to h1 . . . h9 = 0 0 1 2 1 4 2 4 6.

a) Prove that a1 a2 . . . an can be reconstructed from the numbers h1 h2 . . . hn.
b) Prove that h1 + h2 + · · ·+ hn is the index of a1 a2 . . . an.

x 23. [M27 ] (Russian roulette.) A group of n condemned men who prefer probability
theory to number theory might choose to commit suicide by sitting in a circle and
modifying Josephus’s method (exercise 2) as follows: The first prisoner holds a gun
and aims it at his head; with probability p he dies and leaves the circle. Then the
second man takes the gun and proceeds in the same way. Play continues cyclically,
with constant probability p > 0, until everyone is dead.

Let aj = k if man k is the jth to die. Prove that the death order a1 a2 . . . an

occurs with a probability that is a function only of n, p, and the index of the dual
permutation (n+ 1− an) . . . (n+ 1− a2) (n+ 1− a1). What death order is least likely?
24. [M26 ] Given integers t(1) t(2) . . . t(n) with t(j) ≥ j, the generalized index of a
permutation a1 a2 . . . an is the sum of all subscripts j such that aj > t(aj+1), plus the
total number of inversions such that i < j and t(aj) ≥ ai > aj . Thus when t(j) = j for
all j, the generalized index is the same as the index; but when t(j) ≥ n for all j it is the
number of inversions. Prove that the number of permutations whose generalized index
equals k is the same as the number of permutations having k inversions. [Hint: Show
that, if we take any permutation a1 . . . an−1 of {1, . . . , n− 1} and insert the number n
in all possible places, we increase the generalized index by the numbers {0, 1, . . . , n−1}
in some order.]

x 25. [M30 ] (Foata and Schützenberger.) If α = a1 . . . an is a permutation, let ind(α)
be its index, and let inv(α) count its inversions.

a) Define a one-to-one correspondence that takes each permutation α of {1, . . . , n}
to a permutation f(α) that has the following two properties: (i) ind(f(α)) =
inv(α); (ii) for 1 ≤ j < n, the number j appears to the left of j + 1 in f(α)
if and only if it appears to the left of j + 1 in α. What permutation does your
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construction assign to f(α) when α = 1 9 8 2 6 3 7 4 5? For what permutation α is
f(α) = 1 9 8 2 6 3 7 4 5? [Hint: If n > 1, write α = x1α1x2α2 . . . xkαkan, where
x1, . . . , xk are all the elements < an if a1 < an, otherwise x1, . . . , xk are all the
elements > an; the other elements appear in (possibly empty) strings α1, . . . , αk.
Compare the number of inversions of h(α) = α1x1α2x2 . . . αkxk to inv(α); in this
construction the number an does not appear in h(α).]

b) Use f to define another one-to-one correspondence g having the following two
properties: (i) ind(g(α)) = inv(α); (ii) inv(g(α)) = ind(α). [Hint: Consider
inverse permutations.]

26. [M25 ] What is the statistical correlation coefficient between the number of inver-
sions and the index of a random permutation? (See Eq. 3.3.2–(24).)
27. [M37 ] Prove that, in addition to (15), there is a simple relationship between
inv(a1 a2 . . . an) and the n-tuple (q1, q2, . . . , qn). Use this fact to generalize the deriva-
tion of (17), obtaining an algebraic characterization of the bivariate generating function

Hn(w, z) =


winv(a1 a2...an)zind(a1 a2...an),

where the sum is over all n! permutations a1 a2 . . . an.
x 28. [25 ] If a1 a2 . . . an is a permutation of {1, 2, . . . , n}, its total displacement is

defined to be
n

j=1 |aj − j|. Find upper and lower bounds for total displacement
in terms of the number of inversions.
29. [28 ] If π = a1 a2 . . . an and π′ = a′1 a

′
2 . . . a

′
n are permutations of {1, 2, . . . , n},

their product ππ′ is a′a1 a
′
a2 . . . a

′
an

. Let inv(π) denote the number of inversions, as in
exercise 25. Show that inv(ππ′) ≤ inv(π) + inv(π′), and that equality holds if and only
if ππ′ is “below” π′ in the sense of exercise 12.

*5.1.2. Permutations of a Multiset
So far we have been discussing permutations of a set of elements; this is just a
special case of the concept of permutations of a multiset. (A multiset is like a set
except that it can have repetitions of identical elements. Some basic properties
of multisets have been discussed in exercise 4.6.3–19.)

For example, consider the multiset

M = {a, a, a, b, b, c, d, d, d, d}, (1)

which contains 3 a’s, 2 b’s, 1 c, and 4 d’s. We may also indicate the multiplicities
of elements in another way, namely

M = {3 · a, 2 · b, c, 4 · d}. (2)

A permutation* of M is an arrangement of its elements into a row; for example,

c a b d d a b d a d.

From another point of view we would call this a string of letters, containing 3 a’s,
2 b’s, 1 c, and 4 d’s.

How many permutations of M are possible? If we regarded the elements
of M as distinct, by subscripting them a1, a2, a3, b1, b2, c1, d1, d2, d3, d4,

* Sometimes called a “permatution.”
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we would have 10! = 3,628,800 permutations; but many of those permutations
would actually be the same when we removed the subscripts. In fact, each
permutation of M would occur exactly 3! 2! 1! 4! = 288 times, since we can start
with any permutation of M and put subscripts on the a’s in 3! ways, on the
b’s (independently) in 2! ways, on the c in 1 way, and on the d’s in 4! ways.
Therefore the true number of permutations of M is

10!
3! 2! 1! 4! = 12,600.

In general, we can see by this same argument that the number of permutations
of any multiset is the multinomial coefficient

n

n1, n2, . . .


= n!

n1! n2! . . .
, (3)

where n1 is the number of elements of one kind, n2 is the number of another
kind, etc., and n = n1 + n2 + · · · is the total number of elements.

The number of permutations of a set has been known for more than 1500
years. The Hebrew Book of Creation (c. A.D. 400), which was the earliest literary
product of Jewish philosophical mysticism, gives the correct values of the first
seven factorials, after which it says “Go on and compute what the mouth cannot
express and the ear cannot hear.” [Sefer Yetzirah, end of Chapter 4. See Solomon
Gandz, Studies in Hebrew Astronomy and Mathematics (New York: Ktav, 1970),
494–496; Aryeh Kaplan, Sefer Yetzirah (York Beach, Maine: Samuel Weiser,
1993).] This is one of the first two known enumerations of permutations in
history. The other occurs in the Indian classic Anuyogadvārasūtra (c. 500), rule
97, which gives the formula

6× 5× 4× 3× 2× 1− 2

for the number of permutations of six elements that are neither in ascending nor
descending order. [See G. Chakravarti, Bull. Calcutta Math. Soc. 24 (1932),
79–88. The Anuyogadvārasūtra is one of the books in the canon of Jainism,
a religious sect that flourishes in India.]

The corresponding formula for permutations of multisets seems to have
appeared first in the L̄ılāvat̄ı of Bhāskara (c. 1150), sections 270–271. Bhāskara
stated the rule rather tersely, and illustrated it only with two simple examples
{2, 2, 1, 1} and {4, 8, 5, 5, 5}. Consequently the English translations of his work
do not all state the rule correctly, although there is little doubt that Bhāskara
knew what he was talking about. He went on to give the interesting formula

(4 + 8 + 5 + 5 + 5)× 120× 11111
5× 6

for the sum of the 20 numbers 48555 + 45855 + · · · .
The correct rule for counting permutations when elements are repeated was

apparently unknown in Europe until Marin Mersenne stated it without proof
as Proposition 10 in his elaborate treatise on melodic principles [Harmonie
Universelle 2, also entitled Traitez de la Voix et des Chants (1636), 129–130].
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Mersenne was interested in the number of tunes that could be made from a given
collection of notes; he observed, for example, that a theme by Boesset,

can be rearranged in exactly 15!/(4!3!3!2!) = 756,756,000 ways.
The general rule (3) also appeared in Jean Prestet’s Élémens des Mathéma-

tiques (Paris: 1675), 351–352, one of the very first expositions of combinatorial
mathematics to be written in the Western world. Prestet stated the rule correctly
for a general multiset, but illustrated it only in the simple case {a, a, b, b, c, c}.
A few years later, John Wallis’s Discourse of Combinations (Oxford: 1685),
Chapter 2 (published with his Treatise of Algebra) gave a clearer and somewhat
more detailed discussion of the rule.

In 1965, Dominique Foata introduced an ingenious idea called the “inter-
calation product,” which makes it possible to extend many of the known results
about ordinary permutations to the general case of multiset permutations. [See
Publ. Inst. Statistique, Univ. Paris, 14 (1965), 81–241; also Lecture Notes in
Math. 85 (Springer, 1969).] Assuming that the elements of a multiset have been
linearly ordered in some way, we may consider a two-line notation such as

a a a b b c d d d d
c a b d d a b d a d


, (4)

where the top line contains the elements of M sorted into nondecreasing order
and the bottom line is the permutation itself. The intercalation product α β of
two multiset permutations α and β is obtained by (a) expressing α and β in the
two-line notation, (b) juxtaposing these two-line representations, and (c) sorting
the columns into nondecreasing order of the top line. The sorting is supposed
to be stable, in the sense that left-to-right order of elements in the bottom line
is preserved when the corresponding top line elements are equal. For example,
c a d a b b d d a d = c a b d d a b d a d, since

a a b c d
c a d a b

 
a b d d d
b d d a d


=


a a a b b c d d d d
c a b d d a b d a d


. (5)

It is easy to see that the intercalation product is associative:

(α β) γ = α (β γ); (6)

it also satisfies two cancellation laws:
π α = π β implies α = β,

α π = β π implies α = β.
(7)

There is an identity element,

α ϵ = ϵ α = α, (8)
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where ϵ is the null permutation, the “arrangement” of the empty set. Although
the commutative law is not valid in general (see exercise 2), we do have

α β = β α if α and β have no letters in common. (9)

In an analogous fashion we can extend the concept of cycles in permutations
to cases where elements are repeated; we let

(x1 x2 . . . xn) (10)

stand for the permutation obtained in two-line form by sorting the columns of
x1 x2 . . . xn

x2 x3 . . . x1


(11)

by their top elements in a stable manner. For example, we have

( d b d d a c a a b d ) =


d b d d a c a a b d
b d d a c a a b d d


=


a a a b b c d d d d
c a b d d a b d a d


,

so the permutation (4) is actually a cycle. We might render this cycle in words
by saying something like “d goes to b goes to d goes to d goes . . . goes to d
goes back.” Note that these general cycles do not share all of the properties of
ordinary cycles; (x1 x2 . . . xn) is not always the same as (x2 . . . xn x1).

We observed in Section 1.3.3 that every permutation of a set has a unique
representation (up to order) as a product of disjoint cycles, where the “product”
of permutations is defined by a law of composition. It is easy to see that
the product of disjoint cycles is exactly the same as their intercalation; this
suggests that we might be able to generalize the previous results, obtaining a
unique representation (in some sense) for any permutation of a multiset, as the
intercalation of cycles. In fact there are at least two natural ways to do this,
each of which has important applications.

Equation (5) shows one way to factor c a b d d a b d a d as the intercala-
tion of shorter permutations; let us consider the general problem of finding all
factorizations π = α β of a given permutation π. It will be helpful to consider
a particular permutation, such as

π =


a a b b b b b c c c d d d d d
d b c b c a c d a d d b b b d


, (12)

as we investigate the factorization problem.
If we can write this permutation π in the form α β, where α contains the

letter a at least once, then the leftmost a in the top line of the two-line notation
for α must appear over the letter d, so α must also contain at least one occurrence
of the letter d. If we now look at the leftmost d in the top line of α, we see in
the same way that it must appear over the letter d, so α must contain at least
two d’s. Looking at the second d, we see that α also contains at least one b. We
have deduced the partial result

α =


a
. . .

b
. . .

d d
. . .

d d b


(13)
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on the sole assumption that α is a left factor of π containing the letter a.
Proceeding in the same manner, we find that the b in the top line of (13) must
appear over the letter c, etc. Eventually this process will reach the letter a again,
and we can identify this a with the first a if we choose to do so. The argument
we have just made essentially proves that any left factor α of (12) that contains
the letter a has the form (d d b c d b b c a) α′, for some permutation α′. (It
is convenient to write the a last in the cycle, instead of first; this arrangement
is permissible since there is only one a.) Similarly, if we had assumed that α
contains the letter b, we would have deduced that α = (c d d b) α′′ for some α′′.

In general, this argument shows that, if we have any factorization α β = π,
where α contains a given letter y, exactly one cycle of the form

(x1 . . . xn y), n ≥ 0, x1, . . . , xn ̸= y, (14)

is a left factor of α. This cycle is easily determined when π and y are given; it is
the shortest left factor of π that contains the letter y. One of the consequences
of this observation is the following theorem:

Theorem A. Let the elements of the multiset M be linearly ordered by the
relation “<”. Every permutation π of M has a unique representation as the
intercalation

π = (x11 . . . x1n1y1) (x21 . . . x2n2y2) · · · (xt1 . . . xtnt
yt), t ≥ 0, (15)

where the following two conditions are satisfied:

y1 ≤ y2 ≤ · · · ≤ yt and yi < xij for 1 ≤ j ≤ ni, 1 ≤ i ≤ t. (16)

(In other words, the last element in each cycle is smaller than every other element,
and the sequence of last elements is in nondecreasing order.)

Proof. If π = ϵ, we obtain such a factorization by letting t = 0. Otherwise
we let y1 be the smallest element permuted; and we determine (x11 . . . x1n1y1),
the shortest left factor of π containing y1, as in the example above. Now π =
(x11 . . . x1n1 y1) ρ for some permutation ρ; by induction on the length, we can
write

ρ = (x21 . . . x2n2 y2) · · · (xt1 . . . xtnt
yt), t ≥ 1,

where (16) is satisfied. This proves the existence of such a factorization.
Conversely, to prove that the representation (15) satisfying (16) is unique,

clearly t = 0 if and only if π is the null permutation ϵ. When t > 0, (16)
implies that y1 is the smallest element permuted, and that (x11 . . . x1n1 y1) is
the shortest left factor containing y1. Therefore (x11 . . . x1n1 y1) is uniquely
determined; by the cancellation law (7) and induction, the representation is
unique.

For example, the “canonical” factorization of (12), satisfying the given con-
ditions, is

(d d b c d b b c a) (b a) (c d b) (d), (17)
if a < b < c < d.
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It is important to note that we can actually drop the parentheses and the
’s in this representation, without ambiguity! Each cycle ends just after the first

appearance of the smallest remaining element. So this construction associates
the permutation

π′ = d d b c d b b c a b a c d b d

with the original permutation

π = d b c b c a c d a d d b b b d.

Whenever the two-line representation of π had a column of the form y
x , where

x < y, the associated permutation π′ has a corresponding pair of adjacent
elements . . . y x . . . . Thus our example permutation π has three columns of the
form d

b , and π′ has three occurrences of the pair d b. In general this construction
establishes the following remarkable theorem:

Theorem B. Let M be a multiset. There is a one-to-one correspondence
between the permutations of M such that, if π corresponds to π′, the following
conditions hold:
a) The leftmost element of π′ equals the leftmost element of π.
b) For all pairs of permuted elements (x, y) with x < y, the number of occur-

rences of the column y
x in the two-line notation of π is equal to the number of

times x is immediately preceded by y in π′.

When M is a set, this is essentially the same as the “unusual correspondence”
we discussed near the end of Section 1.3.3, with unimportant changes. The more
general result in Theorem B is quite useful for enumerating special kinds of
permutations, since we can often solve a problem based on a two-line constraint
more easily than the equivalent problem based on an adjacent-pair constraint.

P. A. MacMahon considered problems of this type in his extraordinary
book Combinatory Analysis 1 (Cambridge Univ. Press, 1915), 168–186. He
gave a constructive proof of Theorem B in the special case that M contains
only two different kinds of elements, say a and b; his construction for this
case is essentially the same as that given here, although he expressed it quite
differently. For the case of three different elements a, b, c, MacMahon gave
a complicated nonconstructive proof of Theorem B; the general case was first
proved constructively by Foata [Comptes Rendus Acad. Sci. 258 (Paris, 1964),
1672–1675].

As a nontrivial example of Theorem B, let us find the number of strings of
letters a, b, c containing exactly

A occurrences of the letter a;
B occurrences of the letter b;
C occurrences of the letter c;
k occurrences of the adjacent pair of letters ca;
l occurrences of the adjacent pair of letters cb;
m occurrences of the adjacent pair of letters ba. (18)
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The theorem tells us that this is the same as the number of two-line arrays of
the form

A B C        
a . . . a b . . . b c . . . c .
␣ . . . ␣ ␣ . . . ␣ ␣ . . . ␣


        
A−k−m a’s m a’s k a’s     

B−l b’s l b’s  
C c’s

(19)

The a’s can be placed in the second line in
A

A− k −m

 
B

m

 
C

k


ways;

then the b’s can be placed in the remaining positions in
B + k

B − l

 
C − k

l


ways.

The positions that are still vacant must be filled by c’s; hence the desired number
is 

A

A− k −m

 
B

m

 
C

k

 
B + k

B − l

 
C − k

l


. (20)

Let us return to the question of finding all factorizations of a given per-
mutation. Is there such a thing as a “prime” permutation, one that has no
intercalation factors except itself and ϵ? The discussion preceding Theorem A
leads us quickly to conclude that a permutation is prime if and only if it is a
cycle with no repeated elements. For if it is such a cycle, our argument proves
that there are no left factors except ϵ and the cycle itself. And if a permutation
contains a repeated element y, it has a nontrivial cyclic left factor in which y
appears only once.

A nonprime permutation can be factored into smaller and smaller pieces
until it has been expressed as a product of primes. Furthermore we can show
that the factorization is unique, if we neglect the order of factors that commute:

Theorem C. Every permutation of a multiset can be written as a product

σ1 σ2 · · · σt, t ≥ 0, (21)

where each σj is a cycle having no repeated elements. This representation is
unique, in the sense that any two such representations of the same permuta-
tion may be transformed into each other by successively interchanging pairs of
adjacent disjoint cycles.
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The term “disjoint cycles” means cycles having no elements in common. As
an example of this theorem, we can verify that the permutation

a a b b c c d
b a a c d b c


has exactly five factorizations into primes, namely

(a b) (a) (c d) (b c) = (a b) (c d) (a) (b c)
= (a b) (c d) (b c) (a)
= (c d) (a b) (b c) (a)
= (c d) (a b) (a) (b c). (22)

Proof. We must show that the stated uniqueness property holds. By induction
on the length of the permutation, it suffices to prove that if ρ and σ are unequal
cycles having no repeated elements, and if

ρ α = σ β,

then ρ and σ are disjoint, and

α = σ θ, β = ρ θ,

for some permutation θ.
If y is any element of the cycle ρ, then any left factor of σ β containing the

element y must have ρ as a left factor. So if ρ and σ have an element in common,
σ is a multiple of ρ; hence σ = ρ (since they are primes), contradicting our as-
sumption. Therefore the cycle containing y, having no elements in common with
σ, must be a left factor of β. The proof is completed by using the cancellation
law (7).

As an example of Theorem C, let us consider permutations of the multiset
M = {A · a, B · b, C · c} consisting of A a’s, B b’s, and C c’s. Let N(A, B, C, m)
be the number of permutations of M whose two-line representation contains no
columns of the forms a

a , b
b , c

c , and exactly m columns of the form a
b . It follows

that there are exactly A − m columns of the form a
c , B − m of the form c

b ,
C −B + m of the form c

a , C −A + m of the form b
c , and A + B −C −m of the

form b
a . Hence

N(A, B, C, m) =


A

m


B

C −A + m


C

B −m


. (23)

Theorem C tells us that we can count these permutations in another way:
Since columns of the form a

a , b
b , c

c are excluded, the only possible prime factors
of the permutation are

(a b), (a c), (b c), (a b c), (a c b). (24)

Each pair of these cycles has at least one letter in common, so the factorization
into primes is completely unique. If the cycle (a b c) occurs k times in the
factorization, our previous assumptions imply that (a b) occurs m − k times,
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(b c) occurs C − A + m − k times, (a c) occurs C − B + m − k times, and
(a c b) occurs A + B − C − 2m + k times. Hence N(A, B, C, m) is the number
of permutations of these cycles (a multinomial coefficient), summed over k:

N(A, B, C, m)

=

k

(C +m−k)!
(m−k)! (C−A+m−k)! (C−B +m−k)! k! (A+B−C−2m+k)!

=

k


m

k


A

m


A−m

C−B +m−k


C +m−k

A


. (25)

Comparing this with (23), we find that the following identity must be valid:
k


m

k


A−m

C −B + m− k


C + m− k

A


=


B

C −A + m


C

B −m


. (26)

This turns out to be the identity we met in exercise 1.2.6–31, namely
j


M −R + S

j


N + R− S

N − j


R + j

M + N


=


R

M


S

N


, (27)

with M = A+B−C−m, N = C−B+m, R = B, S = C, and j = C−B+m−k.
Similarly we can count the number of permutations of {A·a, B ·b, C ·c, D ·d}

such that the number of columns of various types is specified as follows:
Column
type:

a
d

a
b

b
a

b
c

c
b

c
d

d
a

d
c (28)

Frequency: r A−r q B−q B−A+r D−r A−q D−A+q

(Here A + C = B + D.) The possible cycles occurring in a prime factorization
of such permutations are then

Cycle: (a b) (b c) (c d) (d a) (a b c d) (d c b a) (29)
Frequency: A−r−s B−q−s D−r−s A−q−s s q−A+r+s

for some s (see exercise 12). In this case the cycles (a b) and (c d) commute with
each other, and so do (b c) and (d a), so we must count the number of distinct
prime factorizations. It turns out (see exercise 10) that there is always a unique
factorization such that no (c d) is immediately followed by (a b), and no (d a) is
immediately followed by (b c). Hence by the result of exercise 13, we have
s,t


B

t


A−q−s

A−r−s− t


B +D−r−s− t

B−q−s


× D!

(D−r−s)! (A−q−s)! s! (q−A+r+s)!

=


A

r


B +D−A

D−r


B

q


D

A−q


.
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Taking out the factor


D
A−q


from both sides and simplifying the factorials slightly

leaves us with the complicated-looking five-parameter identity
s,t


B

t


A−r− t

s


B +D−r−s− t

D+q−r− t


D−A+q

D−r−s


A−q

r+ t−q


=


A

r


B +D−A

D−r


B

q


. (30)

The sum on s can be performed using (27), and the resulting sum on t is easily
evaluated; so, after all this work, we were not fortunate enough to discover any
identities that we didn’t already know how to derive. But at least we have
learned how to count certain kinds of permutations, in two different ways, and
these counting techniques are good training for the problems that lie ahead.

EXERCISES
1. [M05 ] True or false: Let M1 and M2 be multisets. If α is a permutation of M1

and β is a permutation of M2, then α β is a permutation of M1 ∪M2.
2. [10 ] The intercalation of c a d a b and b d d a d is computed in (5); find the

intercalation b d d a d c a d a b that is obtained when the factors are interchanged.
3. [M13 ] Is the converse of (9) valid? In other words, if α and β commute under

intercalation, must they have no letters in common?
4. [M11 ] The canonical factorization of (12), in the sense of Theorem A, is given

in (17) when a < b < c < d. Find the corresponding canonical factorization when
d < c < b < a.

5. [M23 ] Condition (b) of Theorem B requires x < y; what would happen if we
weakened the relation to x ≤ y?

6. [M15 ] How many strings are there that contain exactly m a’s, n b’s, and no other
letters, with exactly k of the a’s preceded immediately by a b?

7. [M21 ] How many strings on the letters a, b, c satisfying conditions (18) begin
with the letter a? with the letter b? with c?

x 8. [20 ] Find all factorizations of (12) into two factors α β.
9. [33 ] Write computer programs that perform the factorizations of a given multiset

permutation into the forms mentioned in Theorems A and C.
x 10. [M30 ] True or false: Although the factorization into primes isn’t quite unique,

according to Theorem C, we can ensure uniqueness in the following way: “There is a
linear ordering ≺ of the set of primes such that every permutation of a multiset has a
unique factorization σ1 σ2 · · · σn into primes subject to the condition that σi ⪯ σi+1
whenever σi commutes with σi+1, for 1 ≤ i < n.”

x 11. [M26 ] Let σ1, σ2, . . . , σt be cycles without repeated elements. Define a partial or-
dering ≺ on the t objects {x1, . . . , xt} by saying that xi ≺ xj if i < j and σi has at least
one letter in common with σj . Prove the following connection between Theorem C and
the notion of “topological sorting” (Section 2.2.3): The number of distinct prime factor-
izations of σ1 σ2 · · · σt is the number of ways to sort the given partial ordering topo-
logically. (For example, corresponding to (22) we find that there are five ways to sort the
ordering x1 ≺ x2, x3 ≺ x4, x1 ≺ x4 topologically.) Conversely, given any partial order-
ing on t elements, there is a set of cycles {σ1, σ2, . . . , σt} that defines it in the stated way.
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12. [M16 ] Show that (29) is a consequence of the assumptions of (28).
13. [M21 ] Prove that the number of permutations of the multiset

{A · a, B · b, C · c, D · d, E · e, F · f}

containing no occurrences of the adjacent pairs of letters ca and db is
t


D

A− t


A+B + E + F

t


A+B + C + E + F − t

B


C +D + E + F

C,D,E, F


.

14. [M30 ] One way to define the inverse π− of a general permutation π, suggested by
other definitions in this section, is to interchange the lines of the two-line representation
of π and then to do a stable sort of the columns in order to bring the top row into
nondecreasing order. For example, if a < b < c < d, this definition implies that the
inverse of c a b d d a b d a d is a c d a d a b b d d.

Explore properties of this inversion operation; for example, does it have any simple
relation with intercalation products? Can we count the number of permutations such
that π = π−?

x 15. [M25 ] Prove that the permutation a1 . . . an of the multiset

{n1 · x1, n2 · x2, . . . , nm · xm},

where x1 < x2 < · · · < xm and n1 + n2 + · · · + nm = n, is a cycle if and only if the
directed graph with vertices {x1, x2, . . . , xm} and arcs from xj to an1+···+nj contains
precisely one oriented cycle. In the latter case, the number of ways to represent the
permutation in cycle form is the length of the oriented cycle. For example, the directed
graph corresponding to

a a a b b c c c d d
d c b a c a a b d c


is

a

d

b

c

and the two ways to represent the permutation as a cycle are (b a d d c a c a b c) and
(c a d d c a c b a b).
16. [M35 ] We found the generating function for inversions of permutations in the
previous section, Eq. 5.1.1–(8), in the special case that a set was being permuted.
Show that, in general, if a multiset is permuted, the generating function for inversions
of {n1 · x1, n2 · x2, . . . } is the “z-multinomial coefficient”

n

n1, n2, . . .


z

= n!z
n1!z n2!z . . .

, where m!z =
m

k=1

(1 + z + · · ·+ zk−1).

[Compare with (3) and with the definition of z-nomial coefficients in Eq. 1.2.6–(40).]
17. [M24 ] Find the average and standard deviation of the number of inversions in
a random permutation of a given multiset, using the generating function found in
exercise 16.
18. [M30 ] (P. A. MacMahon.) The index of a permutation a1 a2 . . . an was defined
in the previous section; and we proved that the number of permutations of a given
set that have a given index k is the same as the number of permutations that have k
inversions. Does the same result hold for permutations of a given multiset?
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19. [HM28 ] Define the Möbius function µ(π) of a permutation π to be 0 if π contains
repeated elements, otherwise (−1)k if π is the product of k primes. (Compare with the
definition of the ordinary Möbius function, exercise 4.5.2–10.)

a) Prove that if π ̸= ϵ, we have 
µ(λ) = 0,

summed over all permutations λ that are left factors of π (namely all λ such that
π = λ ρ for some ρ).

b) Given that x1 < x2 < · · · < xm and π = xi1 xi2 . . . xin , where 1 ≤ ik ≤ m for
1 ≤ k ≤ n, prove that

µ(π) = (−1)nϵ(i1 i2 . . . in), where ϵ(i1 i2 . . . in) = sign


1≤j<k≤n

(ik − ij).

x 20. [HM33 ] (D. Foata.) Let (aij) be any matrix of real numbers. In the notation of
exercise 19(b), define ν(π) = ai1j1 . . . ainjn , where the two-line notation for π is

xi1 xi2 . . . xin

xj1 xj2 . . . xjn


.

This function is useful in the computation of generating functions for permutations of
a multiset, because


ν(π), summed over all permutations π of the multiset

{n1 · x1, . . . , nm · xm},

will be the generating function for the number of permutations satisfying certain
restrictions. For example, if we take aij = z for i = j, and aij = 1 for i ̸= j,
then


ν(π) is the generating function for the number of “fixed points” (columns in

which the top and bottom entries are equal). In order to study

ν(π) for all multisets

simultaneously, we consider the function

G =


πν(π)

summed over all π in the set {x1, . . . , xm}∗ of all permutations of multisets involving
the elements x1, . . . , xm, and we look at the coefficient of xn1

1 . . . xnm
m in G.

In this formula for G we are treating π as the product of the x’s. For example,
when m = 2 we have
G= 1+x1ν(x1)+x2ν(x2)+x1x1ν(x1x1)+x1x2ν(x1x2)+x2x1ν(x2x1)+x2x2ν(x2x2)+· · ·

= 1+x1a11 +x2a22 +x2
1a

2
11 +x1x2a11a22 +x1x2a21a12 +x2

2a
2
22 + · · · .

Thus the coefficient of xn1
1 . . . xnm

m in G is

ν(π) summed over all permutations π of

{n1 ·x1, . . . , nm ·xm}. It is not hard to see that this coefficient is also the coefficient of
xn1

1 . . . xnm
m in the expression

(a11x1 + · · ·+ a1mxm)n1 (a21x1 + · · ·+ a2mxm)n2 . . . (am1x1 + · · ·+ ammxm)nm .

The purpose of this exercise is to prove what P. A. MacMahon called a “Master
Theorem” in his Combinatory Analysis 1 (1915), Section 3, namely the formula

G = 1/D, where D = det


1− a11x1 −a12x2 . . . −a1mxm

−a21x1 1− a22x2 −a2mxm

...
...

−am1x1 −am2x2 . . . 1− ammxm

 .
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For example, if aij = 1 for all i and j, this formula gives

G = 1/(1− (x1 + x2 + · · ·+ xm)),

and the coefficient of xn1
1 . . . xnm

m turns out to be (n1 + · · · + nm)!/n1! . . . nm!, as it
should. To prove the Master Theorem, show that

a) ν(π ρ) = ν(π)ν(ρ);
b) D =


πµ(π)ν(π), in the notation of exercise 19, summed over all permutations

π in {x1, . . . , xm}∗;
c) therefore D ·G = 1.

21. [M21 ] Given n1, . . . , nm, and d ≥ 0, how many permutations a1 a2 . . . an of the
multiset {n1 · 1, . . . , nm ·m} satisfy aj+1 ≥ aj − d for 1 ≤ j < n = n1 + · · ·+ nm?
22. [M30 ] Let P (xn1

1 . . . xnm
m ) denote the set of all possible permutations of the multi-

set {n1 ·x1, . . . , nm ·xm}, and let P0(xn0
0 xn1

1 . . . xnm
m ) be the subset of P (xn0

0 xn1
1 . . . xnm

m )
in which the first n0 elements are ̸= x0.

a) Given a number t with 1 ≤ t < m, find a one-to-one correspondence between
P (1n1 . . .mnm) and the set of all ordered pairs of permutations that belong re-
spectively to P0(0p1n1 . . . tnt) and P0(0p(t+1)nt+1 . . .mnm), for some p ≥ 0. [Hint:
For each π = a1 . . . an ∈ P (1n1 . . .mnm), let l(π) be the permutation obtained by
replacing t+ 1, . . . , m by 0 and erasing all 0s in the last nt+1 + · · ·+nm positions;
similarly, let r(π) be the permutation obtained by replacing 1, . . . , t by 0 and
erasing all 0s in the first n1 + · · ·+ nt positions.]

b) Prove that the number of permutations of P0(0n0 1n1 . . .mnm) whose two-line form
has pj columns 0

j and qj columns j
0 is

|P (xp1
1 . . . xpm

m yn1−p1
1 . . . ynm−pm

m )| |P (xq1
1 . . . xqm

m yn1−q1
1 . . . ynm−qm

m )|
|P0(0n0 1n1 . . .mnm)| .

c) Let w1, . . . , wm, z1, . . . , zm be complex numbers on the unit circle. Define the
weight w(π) of a permutation π ∈ P (1n1 . . .mnm) as the product of the weights
of its columns in two-line form, where the weight of j

k is wj/wk if j and k are
both ≤ t or both > t, otherwise it is zj/zk. Prove that the sum of w(π) over all
π ∈ P (1n1 . . .mnm) is


p≥0

p!2(n≤t − p)! (n>t − p)!
n1! . . . nm!


n1

p1


. . .


nm

pm


w1

z1

p1
. . .


wm

zm

pm

2,
where n≤t is n1 + · · ·+ nt, n>t is nt+1 + · · ·+ nm, and the inner sum is over all
(p1, . . . , pm) such that p≤t = p>t = p.

23. [M23 ] A strand of DNA can be thought of as a word on a four-letter alphabet.
Suppose we copy a strand of DNA and break it completely into one-letter bases, then
recombine those bases at random. If the resulting strand is placed next to the original,
prove that the number of places in which they differ is more likely to be even than odd.
[Hint: Apply the previous exercise.]
24. [27 ] Consider any relation R that might hold between two unordered pairs of
letters; if {w, x}R{y, z} we say {w, x} preserves {y, z}, otherwise {w, x} moves {y, z}.

The operation of transposing w
y

x
z with respect to R replaces w

y
x
z by x

y
w
z or x

z
w
y ,

according as the pair {w, x} preserves or moves the pair {y, z}, assuming that w ̸= x
and y ̸= z; if w = x or y = z the transposition always produces x

z
w
y .
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The operation of sorting a two-line array ( x1
y1

...

...
xn
yn

) with respect to R repeatedly
finds the largest xj such that xj > xj+1 and transposes columns j and j + 1, until
eventually x1 ≤ · · · ≤ xn. (We do not require y1 . . . yn to be a permutation of x1 . . . xn.)

a) Given ( x1
y1

...

...
xn
yn

), prove that for every x ∈ {x1, . . . , xn} there is a unique y ∈
{y1, . . . , yn} such that sort( x1

y1
...
...

xn
yn

) = sort( x x′
2

y y′
2

...

...
x′
n

y′
n

) for some x′2, y′2, . . . , x′n, y′n.
b) Let ( w1

y1
...
...

wk
yk

) R⃝ ( x1
z1

...

...
xl
zl

) denote the result of sorting ( w1
y1

...

...
wk
yk

x1
z1

...

...
xl
zl

) with
respect to R. For example, if R is always true, R⃝ sorts {w1, . . . , wk, x1, . . . , xl},
but it simply juxtaposes y1 . . . yk with z1 . . . zl; if R is always false, R⃝ is the inter-
calation product . Generalize Theorem A by proving that every permutation π
of a multiset M has a unique representation of the form

π = (x11 . . . x1n1 y1) R⃝ ((x21 . . . x2n2 y2) R⃝ ( · · · R⃝ (xt1 . . . xtnt yt) · · · ))
satisfying (16), if we redefine cycle notation by letting the two-line array (11)
correspond to the cycle (x2 . . . xn x1) instead of to (x1 x2 . . . xn). For example,
suppose {w, x}R{y, z} means that w, x, y, and z are distinct; then it turns out
that the factorization of (12) analogous to (17) is

(d d b c a) R⃝ ((c b b a) R⃝ ((c d b) R⃝ ((d b) R⃝ (d)))) .
(The operation R⃝ does not always obey the associative law; parentheses in the
generalized factorization should be nested from right to left.)

*5.1.3. Runs
In Chapter 3 we analyzed the lengths of upward runs in permutations, as a way
to test the randomness of a sequence. If we place a vertical line at both ends
of a permutation a1 a2 . . . an and also between aj and aj+1 whenever aj > aj+1,
the runs are the segments between pairs of lines. For example, the permutation

| 3 5 7 | 1 6 8 9 | 4 | 2 |

has four runs. The theory developed in Section 3.3.2G determines the average
number of runs of length k in a random permutation of {1, 2, . . . , n}, as well as
the covariance of the numbers of runs of lengths j and k. Runs are important in
the study of sorting algorithms, because they represent sorted segments of the
data, so we will now take up the subject of runs once again.

Let us use the notation n

k


(1)

to stand for the number of permutations of {1, 2, . . . , n} that have exactly k
“descents” aj > aj+1, thus exactly k + 1 ascending runs. These numbers


n
k


arise in several contexts, and they are usually called Eulerian numbers since
Euler discussed them in his famous book Institutiones Calculi Differentialis
(St. Petersburg: 1755), 485–487, after having introduced them several years
earlier in a technical paper [Comment. Acad. Sci. Imp. Petrop. 8 (1736), 147–
158, §13]; they should not be confused with the Euler numbers En discussed in
exercise 5.1.4–23. The angle brackets in


n
k


remind us of the “>” sign in the

definition of a descent. Of course

n
k


is also the number of permutations that

have k “ascents” aj < aj+1.
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We can use any given permutation of {1, . . . , n−1} to form n new permuta-
tions, by inserting the element n in all possible places. If the original permutation
has k descents, exactly k +1 of these new permutations will have k descents; the
remaining n − 1 − k will have k + 1, since we increase the number of descents
unless we place the element n at the end of an existing run. For example, the
six permutations formed from 3 1 2 4 5 are

6 3 1 2 4 5, 3 6 1 2 4 5, 3 1 6 2 4 5,
3 1 2 6 4 5, 3 1 2 4 6 5, 3 1 2 4 5 6;

all but the second and last of these have two descents instead of one. Therefore
we have the recurrence relation

n

k


= (k + 1)


n− 1

k


+ (n− k)


n− 1
k − 1


, integer n > 0, integer k. (2)

By convention we set 0
k


= δk0 , (3)

saying that the null permutation has no descents. The reader may find it
interesting to compare (2) with the recurrence relations for Stirling numbers
in Eqs. 1.2.6–(46). Table 1 lists the Eulerian numbers for small n.

Several patterns can be observed in Table 1. By definition, we have
n

0


+


n

1


+ · · ·+


n

n


= n! ; (4)

n

0


= 1 ; (5)

n

n− 1


= 1 ,


n

n


= 0 , for n ≥ 1. (6)

Eq. (6) follows from (5) because of a general rule of symmetry,
n

k


=


n

n− 1− k


, for n ≥ 1, (7)

which comes from the fact that each nonnull permutation a1 a2 . . . an having
k descents has n− 1− k ascents.

Another important property of the Eulerian numbers is the formula
k


n

k


m + k

n


= mn , n ≥ 0, (8)

which was discovered by the Chinese mathematician Li Shan-Lan and pub-
lished in 1867. [See J.-C. Martzloff, A History of Chinese Mathematics (Berlin:
Springer, 1997), 346–348; special cases for n ≤ 5 had already been known to
Yoshisuke Matsunaga in Japan, who died in 1744.] Li Shan-Lan’s identity follows
from the properties of sorting: Consider the mn sequences a1 a2 . . . an such that
1 ≤ ai ≤ m. We can sort any such sequence into nondecreasing order in a stable
manner, obtaining

ai1 ≤ ai2 ≤ · · · ≤ ain (9)
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Table 1
EULERIAN NUMBERS

n

n

0

 
n

1

 
n

2

 
n

3

 
n

4

 
n

5

 
n

6

 
n

7

 
n

8


0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0
3 1 4 1 0 0 0 0 0 0
4 1 11 11 1 0 0 0 0 0
5 1 26 66 26 1 0 0 0 0
6 1 57 302 302 57 1 0 0 0
7 1 120 1191 2416 1191 120 1 0 0
8 1 247 4293 15619 15619 4293 247 1 0
9 1 502 14608 88234 156190 88234 14608 502 1

where i1 i2 . . . in is a uniquely determined permutation of {1, 2, . . . , n} such that
aij = aij+1 implies ij < ij+1; in other words, ij > ij+1 implies that aij < aij+1 .
If the permutation i1 i2 . . . in has k runs, we will show that the number of
corresponding sequences a1 a2 . . . an is


m+n−k

n


. This will prove (8) if we replace

k by n− k and use (7), because

n
k


permutations have n− k runs.

For example, if n = 9 and i1 i2 . . . in = 3 5 7 1 6 8 9 4 2, we want to count the
number of sequences a1 a2 . . . an such that

1 ≤ a3 ≤ a5 ≤ a7 < a1 ≤ a6 ≤ a8 ≤ a9 < a4 < a2 ≤ m; (10)

this is the number of sequences b1 b2 . . . b9 such that

1 ≤ b1 < b2 < b3 < b4 < b5 < b6 < b7 < b8 < b9 ≤ m + 5,

since we can let b1 = a3, b2 = a5 + 1, b3 = a7 + 2, b4 = a1 + 2, b5 = a6 + 3,
etc. The number of choices of the b’s is simply the number of ways of choosing
9 things out of m + 5, namely


m+5

9

; a similar proof works for general n and k,

and for any permutation i1 i2 . . . in with k runs.
Since both sides of (8) are polynomials in m, we may replace m by any real

number x, and we obtain an interesting representation of powers in terms of
consecutive binomial coefficients:

xn =


n

0


x

n


+


n

1


x + 1

n


+ · · ·+


n

n− 1


x + n− 1

n


, n ≥ 1. (11)

For example,
x3 =


x

3


+ 4


x + 1

3


+


x + 2
3


.

This is the key property of Eulerian numbers that makes them useful in the
study of discrete mathematics.

Setting x = 1 in (11) proves again that


n
n−1


= 1, since the binomial

coefficients vanish in all but the last term. Setting x = 2 yields
n

n− 2


=


n

1


= 2n − n− 1, n ≥ 1. (12)
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Setting x = 3, 4, . . . shows that relation (11) completely defines the numbers
⟨nk ⟩, and leads to a formula originally given by Euler:

n

k


= (k + 1)n− kn


n + 1

1


+ (k− 1)n


n + 1

2


− · · ·+ (−1)k1n


n + 1

k


=

k
j=0

(−1)j


n + 1
j


(k + 1− j)n, n ≥ 0, k ≥ 0. (13)

Now let us study the generating function for runs. If we set

gn(z) =

k


n

k − 1


zk

n! , (14)

the coefficient of zk is the probability that a random permutation of {1, 2, . . . , n}
has exactly k runs. Since k runs are just as likely as n+1−k, the average number
of runs must be 1

2 (n+1), hence g′
n(1) = 1

2 (n+1). Exercise 2(b) shows that there
is a simple formula for all the derivatives of gn(z) at the point z = 1:

g(m)
n (1) =


n + 1

n + 1−m


n

m


, n ≥ m. (15)

Thus in particular the variance g′′
n(1) + g′

n(1)− g′
n(1)2 comes to (n + 1)/12, for

n ≥ 2, indicating a rather stable distribution about the mean.

We found this

same quantity in Eq. 3.3.2–(18), where it was called covar(R′
1, R′

1).


Since gn(z)
is a polynomial, we can use formula (15) to deduce the Taylor series expansions

gn(z) = 1
n!

n
k=0

(z− 1)n−kk!


n + 1
k + 1


= 1

n!

n
k=0

zk+1(1− z)n−kk!


n + 1
k + 1


.

(16)
The second of these equations follows from the first, since

gn(z) = zn+1gn(1/z), n ≥ 1, (17)

by the symmetry condition (7). The Stirling number recurrence
n + 1
k + 1


= (k + 1)


n

k + 1


+


n

k


gives two slightly simpler representations,

gn(z) = 1
n!

n
k=0

z(z − 1)n−kk!


n

k


= 1

n!

n
k=0

zk(1− z)n−kk!


n

k


, (18)

when n ≥ 1. The super generating function

g(z, x) =

n≥0

gn(z)xn

z
=


k,n≥0


n

k


zkxn

n! (19)
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is therefore equal to
k,n≥0


(z − 1)x


n

(z − 1)k


n

k


k!
n! =


k≥0


e(z−1)x − 1

z − 1

k

= (1− z)
e(z−1)x − z

; (20)

this is another relation discussed by Euler.
Further properties of the Eulerian numbers may be found in a survey pa-

per by L. Carlitz [Math. Magazine 32 (1959), 247–260]. See also J. Riordan,
Introduction to Combinatorial Analysis (New York: Wiley, 1958), 38–39, 214–
219, 234–237; D. Foata and M. P. Schützenberger, Lecture Notes in Math. 138
(Berlin: Springer, 1970).

Let us now consider the length of runs; how long will a run be, on the
average? We have already studied the expected number of runs having a given
length, in Section 3.3.2; the average run length is approximately 2, in agreement
with the fact that about 1

2 (n + 1) runs appear in a random permutation of
length n. For applications to sorting algorithms, a slightly different viewpoint is
useful; we will consider the length of the kth run of the permutation from left to
right, for k = 1, 2, . . . .

For example, how long is the first (leftmost) run of a random permutation
a1 a2 . . . an? Its length is always ≥ 1, and its length is ≥ 2 exactly one-half
the time (namely when a1 < a2). Its length is ≥ 3 exactly one-sixth of the
time (when a1 < a2 < a3), and, in general, its length is ≥ m with probability
qm = 1/m!, for 1 ≤ m ≤ n. The probability that its length is exactly equal to m
is therefore

pm = qm − qm+1 = 1/m!− 1/(m + 1)!, for 1 ≤ m < n;
pn = 1/n!. (21)

The average length of the first run therefore equals
p1 + 2p2 + · · ·+ npn = (q1− q2) + 2(q2− q3) + · · ·+ (n− 1)(qn−1− qn) + nqn

= q1 + q2 + · · ·+ qn = 1
1! + 1

2! + · · ·+ 1
n! . (22)

If we let n → ∞, the limit is e − 1 = 1.71828 . . . , and for finite n the value is
e− 1− δn where δn is quite small;

δn = 1
(n + 1)!


1 + 1

n + 2 + 1
(n + 2)(n + 3) + · · ·


≤ e− 1

(n + 1)! .

For practical purposes it is therefore convenient to study runs in a random infinite
sequence of distinct numbers

a1, a2, a3, . . . ;

by “random” we mean in this case that each of the n! possible relative orderings
of the first n elements in the sequence is equally likely. The average length of
the first run in a random infinite sequence is exactly e− 1.

By slightly sharpening our analysis of the first run, we can ascertain the
average length of the kth run in a random sequence. Let qkm be the probability
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that the first k runs have total length ≥ m; then qkm is 1/m! times the number
of permutations of {1, 2, . . . , m} that have ≤ k runs,

qkm =


m

0


+ · · ·+


m

k − 1


m! . (23)

The probability that the first k runs have total length m is qkm − qk(m+1).
Therefore if Lk denotes the average length of the kth run, we find that

L1 + · · ·+ Lk = average total length of first k runs
= (qk1 − qk2) + 2(qk2 − qk3) + 3(qk3 − qk4) + · · ·
= qk1 + qk2 + qk3 + · · · .

Subtracting L1 + · · ·+ Lk−1 and using the value of qkm in (23) yields the desired
formula

Lk = 1
1!

 1
k − 1


+ 1

2!

 2
k − 1


+ 1

3!

 3
k − 1


+ · · · =


m≥1


m

k − 1

 1
m! . (24)

Since
 0
k−1


= 0 except when k = 1, Lk turns out to be the coefficient of zk−1 in

the generating function g(z, 1)− 1 (see Eq. (19)), so we have

L(z) =

k≥0

Lkzk = z(1− z)
ez−1 − z

− z. (25)

From Euler’s formula (13) we obtain a representation of Lk as a polynomial in e:

Lk =

m≥0

k
j=0

(−1)k−j


m + 1
k − j


jm

m!

=
k

j=0
(−1)k−j


m≥0


m

k − j


jm

m! +
k−1
j=0

(−1)k−j

m≥0


m

k − j − 1


jm

m!

=
k

j=0

(−1)k−jjk−j

(k − j)!

n≥0

jn

n! +
k−1
j=0

(−1)k−jjk−j−1

(k − j − 1)!

n≥0

jn

n!

= k

k
j=0

(−1)k−jjk−j−1

(k − j)! ej . (26)

This formula for Lk was first obtained by B. J. Gassner [see CACM 10 (1967),
89–93]. In particular, we have

L1 = e− 1 ≈ 1.71828 . . . ;
L2 = e2 − 2e ≈ 1.95249 . . . ;
L3 = e3 − 3e2 + 3

2 e ≈ 1.99579 . . . .

The second run is expected to be longer than the first, and the third run will
be longer yet, on the average. This may seem surprising at first glance, but a
moment’s reflection shows that the first element of the second run tends to be
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Table 2
AVERAGE LENGTH OF THE kTH RUN

k Lk k Lk

1 1.71828 18284 59045+ 10 2.00000 00012 05997+
2 1.95249 24420 12560− 11 2.00000 00001 93672+
3 1.99579 13690 84285− 12 1.99999 99999 99909+
4 2.00003 88504 76806− 13 1.99999 99999 97022−
5 2.00005 75785 89716+ 14 1.99999 99999 99719+
6 2.00000 50727 55710− 15 2.00000 00000 00019+
7 1.99999 96401 44022+ 16 2.00000 00000 00006+
8 1.99999 98889 04744+ 17 2.00000 00000 00000+
9 1.99999 99948 43434− 18 2.00000 00000 00000−

small (it caused the first run to terminate); hence there is a better chance for
the second run to go on longer. The first element of the third run will tend to
be even smaller than that of the second.

The numbers Lk are important in the theory of replacement-selection sorting
(Section 5.4.1), so it is interesting to study their values in detail. Table 2 shows
the first 18 values of Lk to 15 decimal places. Our discussion in the preceding
paragraph might lead us to suspect at first that Lk+1 > Lk, but in fact the values
oscillate back and forth. Notice that Lk rapidly approaches the limiting value 2;
it is quite remarkable to see these monic polynomials in the transcendental
number e converging to the rational number 2 so quickly! The polynomials (26)
are also somewhat interesting from the standpoint of numerical analysis, since
they provide an excellent example of the loss of significant figures when nearly
equal numbers are subtracted; using 19-digit floating point arithmetic, Gassner
concluded incorrectly that L12 > 2, and John W. Wrench, Jr., has remarked that
42-digit floating point arithmetic gives L28 correct to only 29 significant digits.

The asymptotic behavior of Lk can be determined by using simple principles
of complex variable theory. The denominator of (25) is zero only when ez−1 = z,
namely when

ex−1 cos y = x and ex−1 sin y = y, (27)
if we write z = x + iy. Figure 3 shows the superimposed graphs of these two
equations, and we note that they intersect at the points z = z0, z1, z1, z2, z2, . . . ,
where z0 = 1,

z1 = (3.08884 30156 13044−) + (7.46148 92856 54255−) i, (28)

and the imaginary part ℑ(zk+1) is roughly equal to ℑ(zk)+2π for large k. Since

lim
z→zk

 1− z

ez−1 − z


(z − zk) = −1, for k > 0,

and since the limit is −2 for k = 0, the function

Rm(z) = L(z)+ 2z

z−z0
+ z

z−z1
+ z

z−z1
+ z

z−z2
+ z

z−z2
+ · · ·+ z

z−zm
+ z

z−zm
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has no singularities in the complex plane for |z| < |zm+1|. Hence Rm(z) has a
power series expansion


k ρkzk that converges absolutely when |z| < |zm+1|; it

follows that ρkMk → 0 as k → ∞, where M = |zm+1| − ϵ. The coefficients of
L(z) are the coefficients of

2z

1− z
+ z/z1

1− z/z1
+ z/z1

1− z/z1
+ · · ·+ z/zm

1− z/zm
+ z/zm

1− z/zm
+ Rm(z),

namely,

Ln = 2 + 2r−n
1 cos nθ1 + 2r−n

2 cos nθ2 + · · ·+ 2r−n
m cos nθm + O(r−n

m+1), (29)

if we let
zk = rkeiθk . (30)

This shows the asymptotic behavior of Ln. We have

r1 = 8.07556 64528 89526−,

r2 = 14.35456 68997 62106−,

r3 = 20.62073 15381 80628−,

r4 = 26.88795 29424 54546−,

θ1 = 1.17830 39784 74668+;
θ2 = 1.31268 53883 87636+;
θ3 = 1.37427 90757 91688−;
θ4 = 1.41049 72786 51865−; (31)

so the main contribution to Ln − 2 is due to r1 and θ1, and convergence of
(29) is quite rapid. Further analysis [W. W. Hooker, CACM 12 (1969), 411–
413] shows that Rm(z) → cz for some constant c as m → ∞; hence the series
2


k≥0 r−n
k cos nθk actually converges to Ln when n > 1. (See also exercise 28.)

A more careful examination of probabilities can be carried out to determine
the complete probability distribution for the length of the kth run and for the
total length of the first k runs (see exercises 9, 10, 11). The sum L1 + · · ·+ Lk

turns out to be asymptotically 2k − 1
3 + O(8−k).

Let us conclude this section by considering the properties of runs when equal
elements are allowed to appear in the permutations. The famous nineteenth-
century American astronomer Simon Newcomb amused himself by playing a
game of solitaire related to this question. He would deal a deck of cards into a
pile, so long as the face values were in nondecreasing order; but whenever the
next card to be dealt had a face value lower than its predecessor, he would start
a new pile. He wanted to know the probability that a given number of piles
would be formed after the entire deck had been dealt out in this manner.

Simon Newcomb’s problem therefore consists of finding the probability dis-
tribution of runs in a random permutation of a multiset. The general answer
is rather complicated (see exercise 12), although we have already seen how to
solve the special case when all cards have a distinct face value. We will content
ourselves here with a derivation of the average number of piles that appear in
the game.

Suppose first that there are m different types of cards, each occurring exactly
p times. An ordinary bridge deck, for example, has m = 13 and p = 4 if suits
are disregarded. A remarkable symmetry applying to this case was discovered
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by P. A. MacMahon [Combinatory Analysis 1 (Cambridge, 1915), 212–213]:
The number of permutations with k + 1 runs is the same as the number with
mp − p − k + 1 runs. When p = 1, this relation is Eq. (7), but for p > 1 it is
quite surprising.

We can prove the symmetry by setting up a one-to-one correspondence
between the permutations in such a way that each permutation with k + 1 runs
corresponds to another having mp− p− k + 1 runs. The reader is urged to try
discovering such a correspondence before reading further.

No very simple correspondence is evident; MacMahon’s proof was based
on generating functions instead of a combinatorial construction. But Foata’s
correspondence (Theorem 5.1.2B) provides a useful simplification, because it
tells us that there is a one-to-one correspondence between multiset permutations
with k + 1 runs and permutations whose two-line notation contains exactly k
columns y

x with x < y.
Suppose the given multiset is {p · 1, p · 2, . . . , p · m}, and consider the

permutation whose two-line notation is
1 . . . 1 2 . . . 2 . . . m . . . m

x11 . . . x1p x21 . . . x2p . . . xm1 . . . xmp


. (32)

We can associate this permutation with another one, 1 . . . 1 2 . . . 2 . . . m . . . m
x′

11 . . . x′
1p x′

m1 . . . x′
mp . . . x′

21 . . . x′
2p


, (33)

where x′ = m + 1−x. If (32) contains k columns of the form y
x with x < y, then

(33) contains (m−1)p−k such columns; for we need only consider the case y > 1,
and x < y is equivalent to x′ ≥ m+2−y. Now (32) corresponds to a permutation
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with k +1 runs, and (33) corresponds to a permutation with mp−p−k +1 runs,
and the transformation that takes (32) into (33) is reversible — it takes (33) back
into (32). Therefore MacMahon’s symmetry condition has been established. See
exercise 14 for an example of this construction.

Because of the symmetry property, the average number of runs in a random
permutation must be 1

2

(k + 1) + (mp − p − k + 1)


= 1 + 1

2 p(m − 1). For
example, the average number of piles resulting from Simon Newcomb’s solitaire
game using a standard deck will be 25 (so it doesn’t appear to be a very exciting
way to play solitaire).

We can actually determine the average number of runs in general, using a
fairly simple argument, given any multiset {n1 · x1, n2 · x2, . . . , nm · xm} where
the x’s are distinct. Let n = n1 + n2 + · · · + nm, and imagine that all of the
permutations a1 a2 . . . an of this multiset have been written down; we will count
how often ai is greater than ai+1, for each fixed value of i, 1 ≤ i < n. The
number of times ai > ai+1 is just half of the number of times ai ̸= ai+1; and it
is not difficult to see that ai = ai+1 = xj exactly Nnj(nj − 1)/n(n − 1) times,
where N is the total number of permutations. Hence ai = ai+1 exactly

N

n(n− 1)

n1(n1 − 1) + · · ·+ nm(nm − 1)


= N

n(n− 1)(n2
1 + · · ·+ n2

m − n)

times, and ai > ai+1 exactly

N

2n(n− 1)

n2 − (n2

1 + · · ·+ n2
m)


times. Summing over i and adding N, since a run ends at an in each permutation,
we obtain the total number of runs among all N permutations:

N


n

2 −
1

2n
(n2

1 + · · ·+ n2
m) + 1


. (34)

Dividing by N gives the desired average number of runs.
Since runs are important in the study of “order statistics,” there is a fairly

large literature dealing with them, including several other types of runs not
considered here. For additional information, see the book Combinatorial Chance
by F. N. David and D. E. Barton (London: Griffin, 1962), Chapter 10; and the
survey paper by D. E. Barton and C. L. Mallows, Annals of Math. Statistics 36
(1965), 236–260.

EXERCISES
1. [M26 ] Derive Euler’s formula (13).

x 2. [M22 ] (a) Extend the idea used in the text to prove (8), considering those se-
quences a1 a2 . . . an that contain exactly q distinct elements, in order to prove the
formula 

k


n

k


k

n− q


=

n

q


q!, integer q ≥ 0.
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(b) Use this identity to prove that
k


n

k


k + 1
m


=


n+ 1
n+ 1−m


(n−m)!, for n ≥ m.

3. [HM25 ] Evaluate the sum


k⟨
n
k
⟩(−1)k.

4. [M21 ] What is the value of


k(−1)k


n
k


k!


n−k
m


?

5. [M20 ] Deduce the value of


p
k


mod p when p is prime.

x 6. [M21 ] Mr. B. C. Dull noticed that, by Eqs. (4) and (13),

n! =

k≥0


n

k


=

k≥0


j≥0

(−1)k−j

n+ 1
k − j


(j + 1)n.

Carrying out the sum on k first, he found that


k≥0(−1)k−j


n+1
k−j


= 0 for all j ≥ 0;

hence n! = 0 for all n ≥ 0. Did he make a mistake?
7. [HM40 ] Is the probability distribution of runs, given by (14), asymptotically

normal? (See exercise 1.2.10–13.)
8. [M24 ] (P. A. MacMahon.) Show that the probability that the first run of a

sufficiently long permutation has length l1, the second has length l2, . . . , and the kth
has length ≥ lk, is

det


1/l1! 1/(l1 + l2)! 1/(l1 + l2 + l3)! . . . 1/(l1 + l2 + l3 + · · ·+ lk)!

1 1/l2! 1/(l2 + l3)! . . . 1/(l2 + l3 + · · ·+ lk)!
0 1 1/l3! . . . 1/(l3 + · · ·+ lk)!
...

...
0 0 . . . 1 1/lk!

 .

9. [M30 ] Let hk(z) =

pkmz

m, where pkm is the probability that m is the total
length of the first k runs in a random (infinite) sequence. Find “simple” expressions
for h1(z), h2(z), and the super generating function h(z, x) =


k hk(z)xk.

10. [HM30 ] Find the asymptotic behavior of the mean and variance of the distribu-
tions hk(z) in the preceding exercise, for large k.
11. [M40 ] Let Hk(z) =


Pkmz

m, where Pkm is the probability that m is the length
of the kth run in a random (infinite) sequence. Express H1(z), H2(z), and the super
generating function H(z, x) =


k Hk(z)xk in terms of familiar functions.

12. [M33 ] (P. A. MacMahon.) Generalize Eq. (13) to permutations of a multiset, by
proving that the number of permutations of {n1 · 1, n2 · 2, . . . , nm ·m} having exactly
k runs is

k
j=0

(−1)j

n+ 1
j


n1 − 1 + k − j

n1


n2 − 1 + k − j

n2


. . .


nm − 1 + k − j

nm


,

where n = n1 + n2 + · · ·+ nm.
13. [05 ] If Simon Newcomb’s solitaire game is played with a standard bridge deck,
ignoring face value but treating clubs < diamonds < hearts < spades, what is the
average number of piles?
14. [M18 ] The permutation 3 1 1 1 2 3 1 4 2 3 3 4 2 2 4 4 has 5 runs; find the correspond-
ing permutation with 9 runs, according to the text’s construction for MacMahon’s
symmetry condition.
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x 15. [M21 ] (Alternating runs.) The classical nineteenth-century literature of combi-
natorial analysis did not treat the topic of runs in permutations, as we have considered
them, but several authors studied “runs” that are alternately ascending and descending.
Thus 5 3 2 4 7 6 1 8 was considered to have 4 runs: 5 3 2, 2 4 7, 7 6 1, and 1 8. (The first
run would be ascending or descending, according as a

1

< a
2

or a
1

> a
2

; thus a
1

a
2

. . . an

and an . . . a
2

a
1

and (n + 1 � a
1

)(n + 1 � a
2

) . . . (n + 1 � an) all have the same number
of alternating runs.) When n elements are being permuted, the maximum number of
runs of this kind is n � 1.

Find the average number of alternating runs in a random permutation of the set
{1, 2, . . . , n}. [Hint: Consider the proof of (34).]
16. [M30 ] Continuing the previous exercise, let i

⌦
n
k

↵
h be the number of permutations

of {1, 2, . . . , n} that have exactly k alternating runs. Find a recurrence relation, by
means of which a table of i

⌦
n
k

↵
h can be computed; and find the corresponding recurrence

relation for the generating function Gn(z) =
P

k i
⌦

n
k

↵
hzk/n!. Use the latter recurrence

to discover a simple formula for the variance of the number of alternating runs in a
random permutation of {1, 2, . . . , n}.
17. [M25 ] Among all 2n sequences a

1

a
2

. . . an, where each aj is either 0 or 1, how
many have exactly k runs (that is, k � 1 occurrences of aj > aj+1

)?
18. [M28 ] Among all n! sequences b

1

b
2

. . . bn such that each bj is an integer in the
range 0  bj  n � j, how many have (a) exactly k descents (that is, k occurrences of
bj > bj+1

)? (b) exactly k distinct elements?

Fig. 4. Nonattacking rooks on a chessboard, with k = 3 rooks below the main diagonal.

x 19. [M26 ] (I. Kaplansky and J. Riordan, 1946.) (a) In how many ways can n non-
attacking rooks — no two in the same row or column — be placed on an n⇥n chessboard,
so that exactly k lie below the main diagonal? (b) In how many ways can k nonattacking
rooks be placed below the main diagonal of an n ⇥ n chessboard?

For example, Fig. 4 shows one of the 15619 ways to put eight nonattacking rooks
on a standard chessboard with exactly three rooks in the unshaded portion below the
main diagonal, together with one of the 1050 ways to put three nonattacking rooks on
a triangular board.x 20. [M21 ] A permutation is said to require k readings if we must scan it k times from
left to right in order to read o� its elements in nondecreasing order. For example, the
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permutation 4 9 1 8 2 5 3 6 7 requires four readings: On the first we obtain 1, 2, 3; on the
second we get 4, 5, 6, 7; then 8; then 9. Find a connection between runs and readings.
21. [M22 ] If the permutation a1 a2 . . . an of {1, 2, . . . , n} has k runs and requires
j readings, in the sense of exercise 20, what can be said about an . . . a2 a1?
22. [M26 ] (L. Carlitz, D. P. Roselle, and R. A. Scoville.) Show that there is no
permutation of {1, 2, . . . , n} with n + 1 − r runs, and requiring s readings, if rs < n;
but such permutations do exist if n ≥ n+ 1− r ≥ s ≥ 1 and rs ≥ n.
23. [HM42 ] (Walter Weissblum.) The “long runs” of a permutation a1 a2 . . . an are
obtained by placing vertical lines just before a segment fails to be monotonic; long
runs are either increasing or decreasing, depending on the order of their first two
elements, so the length of each long run (except possibly the last) is ≥ 2. For example,
7 5 | 6 2 | 3 8 9 | 1 4 has four long runs. Find the average length of the first two long
runs of an infinite permutation, and prove that the limiting long-run length is

(1 + cot 1
2 )/(3− cot 1

2 ) ≈ 2.4202.

24. [M30 ] What is the average number of runs in sequences generated as in exercise
5.1.1–18, as a function of p?
25. [M25 ] Let U1, . . . , Un be independent uniform random numbers in [0 . . 1). What
is the probability that ⌊U1 + · · ·+ Un⌋ = k?
26. [M20 ] Let ϑ be the operation z d

dz
, which multiplies the coefficient of zn in a

generating function by n. Show that the result of applying ϑ to 1/(1 − z) repeatedly,
m times, can be expressed in terms of Eulerian numbers.

x 27. [M21 ] An increasing forest is an oriented forest in which the nodes are labeled
{1, 2, . . . , n} in such a way that parents have smaller numbers than their children. Show
that


n
k


is the number of n-node increasing forests with k + 1 leaves.

28. [HM35 ] Find the asymptotic value of the numbers zm in Fig. 3 as m → ∞, and
prove that

∞
m=1(z−1

m + z̄−1
m ) = e− 5/2.

x 29. [M30 ] The permutation a1 . . . an has a “peak” at aj if 1 < j < n and aj−1 < aj >
aj+1. Let snk be the number of permutations with exactly k peaks, and let tnk be the
number with k peaks and k descents. Prove that (a) snk = 1

2 ⟩


n
2k


⟨ + ⟩


n

2k+1

⟨ + 1

2 ⟩


n
2k+2


⟨

(see exercise 16); (b) snk = 2n−1−2ktnk; (c)


k


n
k


xk =


k tnkx

k(1 + x)n−1−2k.

*5.1.4. Tableaux and Involutions
To complete our survey of the combinatorial properties of permutations, we
will discuss some remarkable relations that connect permutations with arrays
of integers called tableaux. A Young tableau of shape (n1, n2, . . . , nm), where
n1 ≥ n2 ≥ · · · ≥ nm > 0, is an arrangement of n1 + n2 + · · · + nm distinct
integers in an array of left-justified rows, with ni elements in row i, such that
the entries of each row are in increasing order from left to right, and the entries
of each column are increasing from top to bottom. For example,

1 2 5 9 10 15
3 6 7 13
4 8 12 14
11

(1)
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is a Young tableau of shape (6, 4, 4, 1). Such arrangements were introduced by
Alfred Young as an aid to the study of matrix representations of permutations
[see Proc. London Math. Soc. (2) 28 (1928), 255–292; Bruce E. Sagan, The
Symmetric Group (Pacific Grove, Calif.: Wadsworth & Brooks/Cole, 1991)]. For
simplicity, we will simply say “tableau” instead of “Young tableau.”

An involution is a permutation that is its own inverse. For example, there
are ten involutions of {1, 2, 3, 4}:

1 2 3 4
1 2 3 4

 
1 2 3 4
2 1 3 4

 
1 2 3 4
3 2 1 4

 
1 2 3 4
4 2 3 1

 
1 2 3 4
1 3 2 4




1 2 3 4
1 4 3 2

 
1 2 3 4
1 2 4 3

 
1 2 3 4
2 1 4 3

 
1 2 3 4
3 4 1 2

 
1 2 3 4
4 3 2 1

 (2)

The term “involution” originated in classical geometry problems; involutions in
the general sense considered here were first studied by H. A. Rothe when he
introduced the concept of inverses (see Section 5.1.1).

It may appear strange that we should be discussing both tableaux and
involutions at the same time, but there is an extraordinary connection be-
tween these two apparently unrelated concepts: The number of involutions of
{1, 2, . . . , n} is the same as the number of tableaux that can be formed from the
elements {1, 2, . . . , n}. For example, exactly ten tableaux can be formed from
{1, 2, 3, 4}, namely,

1 2 3 4 1 3 4
2

1 4
2
3

1 3
2
4

1 2 4
3

1 2
3
4

1 2 3
4

1 3
2 4

1 2
3 4

1
2
3
4

(3)

corresponding respectively to the ten involutions (2).
This connection between involutions and tableaux is by no means obvious,

and there is probably no very simple way to prove it. The proof we will discuss
involves an interesting tableau-construction algorithm that has several other
surprising properties. It is based on a special procedure that inserts new elements
into a tableau.

For example, suppose that we want to insert the element 8 into the tableau

1 3 5 9 12 16
2 6 10 15
4 13 14
11
17

. (4)
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The method we will use starts by placing the 8 into row 1, in the spot previously
occupied by 9, since 9 is the least element greater than 8 in that row. Element 9 is
“bumped down” into row 2, where it displaces the 10. The 10 then “bumps” the
13 from row 3 to row 4; and since row 4 contains no element greater than 13, the
process terminates by inserting 13 at the right end of row 4. Thus, tableau (4)
has been transformed into

1 3 5 8 12 16
2 6 9 15
4 10 14
11 13
17

. (5)

A precise description of this process, together with a proof that it always
preserves the tableau properties, appears in Algorithm I.

Algorithm I (Insertion into a tableau). Let P = (Pij) be a tableau of positive
integers, and let x be a positive integer not in P . This algorithm transforms P
into another tableau that contains x in addition to its original elements. The new
tableau has the same shape as the old, except for the addition of a new position
in row s, column t, where s and t are quantities determined by the algorithm.

(Parenthesized remarks in this algorithm serve to prove its validity, since
it is easy to verify inductively that the remarks are valid and that the array P
remains a tableau throughout the process. For convenience we will assume that
the tableau has been bordered by zeros at the top and left and with ∞’s to the
right and below, so that Pij is defined for all i, j ≥ 0. If we define the relation

a <∼ b if and only if a < b or a = b = 0 or a = b =∞, (6)

the tableau inequalities can be expressed in the convenient form

Pij = 0 if and only if i = 0 or j = 0;
Pij <∼ Pi(j+1) and Pij <∼ P(i+1)j , for all i, j ≥ 0.

(7)

The statement “x ̸∈ P” means that either x =∞ or x ̸= Pij for all i, j ≥ 0.)

I1. [Input x.] Set i ← 1, set x1 ← x, and set j to the smallest value such that
P1j =∞.

I2. [Find xi+1.] (At this point P(i−1)j < xi < Pij and xi ̸∈ P .) If xi < Pi(j−1),
decrease j by 1 and repeat this step. Otherwise set xi+1 ← Pij and set
ri ← j.

I3. [Replace by xi.] (Now Pi(j−1) < xi < xi+1 = Pij <∼ Pi(j+1), P(i−1)j < xi <
xi+1 = Pij <∼ P(i+1)j , and ri = j.) Set Pij ← xi.

I4. [Is xi+1 = ∞?] (Now Pi(j−1) < Pij = xi < xi+1 <∼ Pi(j+1), P(i−1)j < Pij =
xi < xi+1 <∼ P(i+1)j , ri = j, and xi+1 /∈ P .) If xi+1 ̸=∞, increase i by 1 and
return to step I2.
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I5. [Determine s, t.] Set s ← i, t ← j, and terminate the algorithm. (At this
point the conditions

Pst ̸=∞ and P(s+1)t = Ps(t+1) =∞ (8)

are satisfied.)

Algorithm I defines a “bumping sequence”

x = x1 < x2 < · · · < xs < xs+1 =∞, (9)

as well as an auxiliary sequence of column indices

r1 ≥ r2 ≥ · · · ≥ rs = t; (10)

element Piri has been changed from xi+1 to xi, for 1 ≤ i ≤ s. For example,
when we inserted 8 into (4), the bumping sequence was 8, 9, 10, 13, ∞, and the
auxiliary sequence was 4, 3, 2, 2. We could have reformulated the algorithm so
that it used much less temporary storage; only the current values of j, xi, and
xi+1 need to be remembered. But sequences (9) and (10) have been introduced
so that we can prove interesting things about the algorithm.

The key fact we will use about Algorithm I is that it can be run backwards:
Given the values of s and t determined in step I5, we can transform P back
into its original form again, determining and removing the element x that was
inserted. For example, consider (5) and suppose we are told that element 13 is
in the position that used to be blank. Then 13 must have been bumped down
from row 3 by the 10, since 10 is the greatest element less than 13 in that row;
similarly the 10 must have been bumped from row 2 by the 9, and the 9 must
have been bumped from row 1 by the 8. Thus we can go from (5) back to (4).
The following algorithm specifies this process in detail:

Algorithm D (Deletion from a tableau). Given a tableau P and positive
integers s, t satisfying (8), this algorithm transforms P into another tableau,
having almost the same shape, but with ∞ in column t of row s. An element x,
determined by the algorithm, is deleted from P .

(As in Algorithm I, parenthesized assertions are included here to facilitate
a proof that P remains a tableau throughout the process.)

D1. [Input s, t.] Set j ← t, i← s, xs+1 ←∞.
D2. [Find xi.] (At this point Pij < xi+1 <∼ P(i+1)j and xi+1 ̸∈ P .) If Pi(j+1) <

xi+1, increase j by 1 and repeat this step. Otherwise set xi ← Pij and
ri ← j.

D3. [Replace by xi+1.] (Now Pi(j−1) < Pij = xi < xi+1 <∼ Pi(j+1), P(i−1)j <
Pij = xi < xi+1 <∼ P(i+1)j , and ri = j.) Set Pij ← xi+1.

D4. [Is i = 1?] (Now Pi(j−1) < xi < xi+1 = Pij <∼ Pi(j+1), P(i−1)j < xi <
xi+1 = Pij <∼ P(i+1)j , and ri = j.) If i > 1, decrease i by 1 and return to
step D2.

D5. [Determine x.] Set x← x1; the algorithm terminates. (Now 0 < x <∞.)
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The parenthesized assertions appearing in Algorithms I and D are not only a
useful way to prove that the algorithms preserve the tableau structure; they also
serve to verify that Algorithms I and D are perfect inverses of each other. If we
perform Algorithm I first, given some tableau P and some positive integer x ̸∈ P ,
it will insert x and determine positive integers s, t satisfying (8); Algorithm D
applied to the result will recompute x and will restore P . Conversely, if we
perform Algorithm D first, given some tableau P and some positive integers
s, t satisfying (8), it will modify P , deleting some positive integer x; Algorithm I
applied to the result will recompute s, t and will restore P . The reason is that the
parenthesized assertions of steps I3 and D4 are identical, as are the assertions of
steps I4 and D3, and these assertions characterize the value of j uniquely. Hence
the auxiliary sequences (9), (10) are the same in each case.

Now we are ready to prove a basic property of tableaux:

Theorem A. There is a one-to-one correspondence between the set of all
permutations of {1, 2, . . . , n} and the set of ordered pairs (P, Q) of tableaux
formed from {1, 2, . . . , n}, where P and Q have the same shape.

(An example of this theorem appears within the proof that follows.)

Proof. It is convenient to prove a slightly more general result. Given any two-line
array 

q1 q2 . . . qn
p1 p2 . . . pn


,

q1 < q2 < · · · < qn,
p1, p2, . . . , pn distinct, (11)

we will construct two corresponding tableaux P and Q, where the elements of P
are {p1, . . . , pn} and the elements of Q are {q1, . . . , qn} and the shape of P is the
shape of Q.

Let P and Q be empty initially. Then, for i = 1, 2, . . . , n (in this order),
do the following operation: Insert pi into tableau P using Algorithm I; then set
Qst ← qi, where s and t specify the newly filled position of P .

For example, if the given permutation is
 1 3 5 6 8

7 2 9 5 3

, we obtain

P Q

Insert 7: 7 1

Insert 2: 2 1
7 3

Insert 9: 2 9 1 5
7 3

Insert 5: 2 5 1 5
7 9 3 6

Insert 3: 2 3 1 5
5 9 3 6
7 8

(12)
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so the tableaux (P, Q) corresponding to
 1 3 5 6 8

7 2 9 5 3


are

P =
2 3
5 9
7

, Q =
1 5
3 6
8

. (13)

It is clear from this construction that P and Q always have the same shape;
furthermore, since we always add elements on the periphery of Q, in increasing
order, Q is a tableau.

Conversely, given two equal-shape tableaux P and Q, we can find the cor-
responding two-line array (11) as follows. Let the elements of Q be

q1 < q2 < · · · < qn.

For i = n, . . . , 2, 1 (in this order), let pi be the element x that is removed when
Algorithm D is applied to P , using the values s and t such that Qst = qi.

For example, this construction will start with (13) and will successively undo
the calculation (12) until P is empty, and

 1 3 5 6 8
7 2 9 5 3


is obtained.

Since Algorithms I and D are inverses of each other, the two constructions
we have described are inverses of each other, and the one-to-one correspondence
has been established.

The correspondence defined in the proof of Theorem A has many startling
properties, and we will now proceed to derive some of them. The reader is urged
to work out the example in exercise 1, in order to become familiar with the
construction, before proceeding further.

Once an element has been bumped from row 1 to row 2, it doesn’t affect
row 1 any longer; furthermore rows 2, 3, . . . are built up from the sequence of
bumped elements in exactly the same way as rows 1, 2, . . . are built up from the
original permutation. These facts suggest that we can look at the construction
of Theorem A in another way, concentrating only on the first rows of P and Q.
For example, the permutation

 1 3 5 6 8
7 2 9 5 3


causes the following action in row 1,

according to (12):
1: Insert 7, set Q11 ← 1.
3: Insert 2, bump 7.
5: Insert 9, set Q12 ← 5.
6: Insert 5, bump 9.
8: Insert 3, bump 5.

(14)

Thus the first row of P is 2 3, and the first row of Q is 1 5. Furthermore, the
remaining rows of P and Q are the tableaux corresponding to the “bumped”
two-line array 

3 6 8
7 9 5


. (15)

In order to study the behavior of the construction on row 1, we can consider
the elements that go into a given column of this row. Let us say that (qi, pi) is
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in class t with respect to the two-line array
q1 q2 . . . qn
p1 p2 . . . pn


,

q1 < q2 < · · · < qn,
p1, p2, . . . , pn distinct, (16)

if pi = P1t after Algorithm I has been applied successively to p1, p2, . . . , pi,
starting with an empty tableau P . (Remember that Algorithm I always inserts
the given element into row 1.)

It is easy to see that (qi, pi) is in class 1 if and only if pi has i− 1 inversions,
that is, if and only if pi = min{p1, p2, . . . , pi} is a “left-to-right minimum.” If we
cross out the columns of class 1 in (16), we obtain another two-line array

q′1 q′2 . . . q′m
p′1 p′2 . . . p′m


(17)

such that (q, p) is in class t with respect to (17) if and only if it is in class t+1 with
respect to (16). The operation of going from (16) to (17) represents removing
the leftmost position of row 1. This gives us a systematic way to determine the
classes. For example in

 1 3 5 6 8
7 2 9 5 3


the elements that are left-to-right minima are

7 and 2, so class 1 is {(1, 7), (3, 2)}; in the remaining array
 5 6 8

9 5 3


all elements
are minima, so class 2 is {(5, 9), (6, 5), (8, 3)}. In the “bumped” array (15), class
1 is {(3, 7), (8, 5)} and class 2 is {(6, 9)}.

For any fixed value of t, the elements of class t can be labeled

(qi1 , pi1), . . . , (qik , pik)

in such a way that
qi1 < qi2 < · · · < qik ,
pi1 > pi2 > · · · > pik , (18)

since the tableau position P1t takes on the decreasing sequence of values pi1 , . . . ,
pik as the insertion algorithm proceeds. At the end of the construction we have

P1t = pik , Q1t = qi1 ; (19)

and the “bumped” two-line array that defines rows 2, 3, . . . of P and Q contains
the columns 

qi2 qi3 . . . qik
pi1 pi2 . . . pik−1


(20)

plus other columns formed in a similar way from the other classes.
These observations lead to a simple method for calculating P and Q by

hand (see exercise 3), and they also provide us with the means to prove a rather
unexpected result:

Theorem B. If the permutation
1 2 . . . n
a1 a2 . . . an


corresponds to tableaux (P, Q) in the construction of Theorem A, then the
inverse permutation corresponds to (Q, P ).
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This fact is quite startling, since P and Q are formed by such completely
different methods in Theorem A, and since the inverse of a permutation is
obtained by juggling the columns of the two-line array rather capriciously.

Proof. Suppose that we have a two-line array (16); its columns are essentially
independent and can be rearranged. Interchanging the lines and sorting the
columns so that the new top line is in increasing order gives the “inverse” array

q1 q2 . . . qn
p1 p2 . . . pn

−
=


p1 p2 . . . pn
q1 q2 . . . qn


=


p′1 p′2 . . . p′n
q′1 q′2 . . . q′n


,

p′1 < p′2 < · · · < p′n;
q′1, q′2, . . . , q′n distinct.

(21)

We will show that this operation corresponds to interchanging P and Q in the
construction of Theorem A.

Exercise 2 reformulates our remarks about class determination so that the
class of (qi, pi) doesn’t depend on the fact that q1, q2, . . . , qn are in ascending
order. Since the resulting condition is symmetrical in the q’s and the p’s, the
operation (21) does not destroy the class structure; if (q, p) is in class t with
respect to (16), then (p, q) is in class t with respect to (21). If we therefore
arrange the elements of the latter class t as

pik < · · · < pi2 < pi1 ,
qik > · · · > qi2 > qi1 , (22)

by analogy with (18), we have

P1t = qi1 , Q1t = pik (23)

as in (19), and the columns
pik−1 . . . pi2 pi1

qik . . . qi3 qi2


(24)

go into the “bumped” array as in (20). Hence the first rows of P and Q are
interchanged. Furthermore the “bumped” two-line array for (21) is the inverse
of the “bumped” two-line array for (16), so the proof is completed by induction
on the number of rows in the tableaux.

Corollary B. The number of tableaux that can be formed from {1, 2, . . . , n} is
the number of involutions on {1, 2, . . . , n}.

Proof. If π is an involution corresponding to (P, Q), then π = π− corresponds
to (Q, P ); hence P = Q. Conversely, if π is any permutation corresponding
to (P, P ), then π− also corresponds to (P, P ); hence π = π−. So there is a
one-to-one correspondence between involutions π and tableaux P .

It is clear that the upper-left corner element of a tableau is always the
smallest. This suggests a possible way to sort a set of numbers: First we can
put the numbers into a tableau, by using Algorithm I repeatedly; this brings the
smallest element to the corner. Then we delete the smallest element, rearranging
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the remaining elements so that they form another tableau; then we delete the
new smallest element; and so on.

Let us therefore consider what happens when we delete the corner element
from the tableau

1 3 5 7 11 15
2 6 8 14
4 9 13
10 12
16

. (25)

If the 1 is removed, the 2 must come to take its place. Then we can move the
4 up to where the 2 was, but we can’t move the 10 to the position of the 4; the
9 can be moved instead, then the 12 in place of the 9. In general, we are led to
the following procedure.

Algorithm S (Delete corner element). Given a tableau P , this algorithm deletes
the upper left corner element of P and moves other elements so that the tableau
properties are preserved. The notational conventions of Algorithms I and D are
used.
S1. [Initialize.] Set r ← 1, s← 1.
S2. [Done?] If Prs =∞, the process is complete.
S3. [Compare.] If P(r+1)s <∼ Pr(s+1), go to step S5. (We examine the elements

just below and to the right of the vacant cell, and we will move the smaller
of the two.)

S4. [Shift left.] Set Prs ← Pr(s+1), s← s + 1, and return to S3.
S5. [Shift up.] Set Prs ← P(r+1)s, r ← r + 1, and return to S2.

It is easy to prove that P is still a tableau after Algorithm S has deleted its
corner element (see exercise 10). So if we repeat Algorithm S until P is empty,
we can read out its elements in increasing order. Unfortunately this doesn’t
turn out to be as efficient a sorting algorithm as other methods we will see; its
minimum running time is proportional to n1.5, but similar algorithms that use
trees instead of tableau structures have an execution time on the order of n log n.

In spite of the fact that Algorithm S doesn’t lead to a superbly efficient
sorting algorithm, it has some very interesting properties.

Theorem C (M. P. Schützenberger). If P is the tableau formed by the con-
struction of Theorem A from the permutation a1 a2 . . . an, and if

ai = min{a1, a2, . . . , an},

then Algorithm S changes P to the tableau corresponding to a1. . . ai−1ai+1. . . an.

Proof. See exercise 13.



56 SORTING 5.1.4

After we apply Algorithm S to a tableau, let us put the deleted element into
the newly vacated place Prs, but in italic type to indicate that it isn’t really part
of the tableau. For example, after applying this procedure to the tableau (25)
we would have

2 3 5 7 11 15
4 6 8 14
9 12 13
10 1
16

,

and two more applications yield

4 5 7 11 15 2
6 8 13 14
9 12 3
10 1
16

.

Continuing until all elements are removed gives

16 14 13 12 10 2
15 9 6 4
11 5 3
8 1
7

, (26)

which has the same shape as the original tableau (25). This configuration may
be called a dual tableau, since it is like a tableau except that the “dual order”
has been used (reversing the roles of < and >). Let us denote the dual tableau
formed from P in this way by the symbol PS .

From PS we can determine P uniquely; in fact, we can obtain the original
tableau P from PS , by applying exactly the same algorithm — but reversing the
order and the roles of italic and regular type, since PS is a dual tableau. For
example, two steps of the algorithm applied to (26) give

14 13 12 10 2 15
11 9 6 4
8 5 3
7 1
16

,

and eventually (25) will be reproduced again! This remarkable fact is one of the
consequences of our next theorem.

Schensted, M. P. Schützenberger) + .
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Theorem D (C. Schensted, M. P. Schützenberger). Let
q1 q2 . . . qn
p1 p2 . . . pn


(27)

be the two-line array corresponding to the tableaux (P, Q).
a) Using dual (reverse) order on the q’s, but not on the p’s, the two-line array

qn . . . q2 q1
pn . . . p2 p1


(28)

corresponds to

PT , (QS)T


.

As usual, “T” denotes the operation of transposing rows and columns; PT is a
tableau, while (QS)T is a dual tableau, since the order of the q’s is reversed.
b) Using dual order on the p’s, but not on the q’s, the two-line array (27)

corresponds to

(PS)T , QT


.

c) Using dual order on both the p’s and the q’s, the two-line array (28) corre-
sponds to (PS , QS).

Proof. No simple proof of this theorem is known. The fact that case (a)
corresponds to (PT , X) for some dual tableau X is proved in exercise 5; hence
by Theorem B, case (b) corresponds to (Y, QT ) for some dual tableau Y , and
Y must have the shape of PT.

Let pi = min{p1, . . . , pn}; since pi is the “largest” element in the dual order,
it appears on the periphery of Y , and it doesn’t bump any elements in the con-
struction of Theorem A. Thus, if we successively insert p1, . . . , pi−1, pi+1, . . . , pn
using the dual order, we get Y −{pi}, that is, Y with pi removed. By Theorem C
if we successively insert p1, . . . , pi−1, pi+1, . . . , pn using the normal order, we get
the tableau d(P ) obtained by applying Algorithm S to P . By induction on n,
Y − {pi} =


d(P )S


T. But since

(PS)T − {pi} =

d(P )S


T , (29)

by definition of the operation S, and since Y has the same shape as (PS)T, we
must have Y = (PS)T.

This proves part (b), and part (a) follows by an application of Theorem B.
Applying parts (a) and (b) successively then shows that case (c) corresponds
to


((PT )S)T, ((QS)T )T


; and this is (PS , QS) since (PS)T = (PT )S by the

row-column symmetry of operation S.

In particular, this theorem establishes two surprising facts about the tableau
insertion algorithm: If successive insertion of distinct elements p1, . . . , pn into an
empty tableau yields tableau P , insertion in the opposite order pn, . . . , p1 yields
the transposed tableau PT. And if we not only insert the p’s in this order
pn, . . . , p1 but also interchange the roles of < and >, as well as 0 and ∞, in
the insertion process, we obtain the dual tableau PS . The reader is urged to
try out these processes on some simple examples. The unusual nature of these
coincidences might lead us to suspect that some sort of witchcraft is operating
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behind the scenes! No simple explanation for these phenomena is yet known;
there seems to be no obvious way to prove even that case (c) corresponds to
tableaux having the same shape as P and Q, although the characterization of
classes in exercise 2 does provide a significant clue.

The correspondence of Theorem A was given by G. de B. Robinson [Amer-
ican J. Math. 60 (1938), 745–760, §5], in a somewhat vague and different form,
as part of his solution to a rather difficult problem in group theory. Robinson
stated Theorem B without proof. Many years later, C. Schensted independently
rediscovered the correspondence, which he described in terms of “bumping” as
we have done in Algorithm I; Schensted also proved the “P ” part of Theorem
D(a) [see Canadian J. Math. 13 (1961), 179–191]. M. P. Schützenberger [Math.
Scand. 12 (1963), 117–128] proved Theorem C and the “Q” part of Theorem
D(a), from which (b) and (c) follow. It is possible to extend the correspondence
to permutations of multisets; the case that p1, . . . , pn need not be distinct was
considered by Schensted, and the “ultimate” generalization to the case that both
the p’s and the q’s may contain repeated elements was investigated by Knuth
[Pacific J. Math. 34 (1970), 709–727].

Let us now turn to a related question: How many tableaux formed from
{1, 2, . . . , n} have a given shape (n1, n2, . . . , nm), where n1 + n2 + · · ·+ nm = n?
If we denote this number by f(n1, n2, . . . , nm), and if we allow the parameters nj

to be arbitrary integers, the function f must satisfy the relations

f(n1, n2, . . . , nm) = 0 unless n1 ≥ n2 ≥ · · · ≥ nm ≥ 0; (30)

f(n1, n2, . . . , nm, 0) = f(n1, n2, . . . , nm); (31)

f(n1, n2, . . . , nm) = f(n1−1, n2, . . . , nm) + f(n1, n2−1, . . . , nm)

+ · · ·+ f(n1, n2, . . . , nm−1),
if n1 ≥ n2 ≥ · · · ≥ nm ≥ 1. (32)

Recurrence (32) comes from the fact that a tableau with its largest element
removed is always another tableau; for example, the number of tableaux of shape
(6, 4, 4, 1) is f(5, 4, 4, 1) + f(6, 3, 4, 1) + f(6, 4, 3, 1) + f(6, 4, 4, 0) = f(5, 4, 4, 1) +
f(6, 4, 3, 1) + f(6, 4, 4), since every tableau of shape (6, 4, 4, 1) on {1, 2, . . . , 15}
is formed by inserting the element 15 into the appropriate place in a tableau of
shape (5, 4, 4, 1), (6, 4, 3, 1), or (6, 4, 4). Schematically:

15

= + 15 +
15

(33)

The function f(n1, n2, . . . , nm) that satisfies these relations has a fairly
simple form,

f(n1, n2, . . . , nm) = ∆(n1 + m− 1, n2 + m− 2, . . . , nm) n!
(n1 + m− 1)! (n2 + m− 2)! . . . nm! , (34)



5.1.4 TABLEAUX AND INVOLUTIONS 59

provided that the relatively mild conditions

n1 + m− 1 ≥ n2 + m− 2 ≥ · · · ≥ nm

are satisfied; here ∆ denotes the “square root of the discriminant” function

∆(x1, x2, . . . , xm) = det


xm−1

1 xm−1
2 . . . xm−1

m
...

...
...

x2
1 x2

2 x2
m

x1 x2 xm

1 1 . . . 1

 =


1≤i<j≤m

(xi−xj). (35)

Formula (34) was derived by G. Frobenius [Sitzungsberichte preuß. Akad. der
Wissenschaften (1900), 516–534, §3], in connection with an equivalent problem
in group theory, using a rather deep group-theoretical argument; a combinatorial
proof was given independently by MacMahon [Philosophical Trans. A209 (1909),
153–175]. The formula can be established by induction, since relations (30) and
(31) are readily proved and (32) follows by setting y = −1 in the identity of
exercise 17.

Theorem A gives a remarkable identity in connection with this formula for
the number of tableaux. If we sum over all shapes, we have

n! =


k1≥k2≥···≥kn≥0
k1+k2+···+kn=n

f(k1, k2 . . . , kn)2

= n!2


k1≥k2≥···≥kn≥0
k1+k2+···+kn=n

∆(k1 + n− 1, k2 + n− 2, . . . , kn)2

(k1 + n− 1)!2 (k2 + n− 2)!2 . . . kn!2

= n!2


q1>q2>···>qn≥0
q1+q2+···+qn=(n+1)n/2

∆(q1, q2, . . . , qn)2

q1!2 q2!2 . . . qn!2 ;

hence 
q1+q2+···+qn=(n+1)n/2

q1,q2,...,qn≥0

∆(q1, q2, . . . , qn)2

q1!2 q2!2 . . . qn!2 = 1. (36)

The inequalities q1 > q2 > · · · > qn have been removed in the latter sum, since
the summand is a symmetric function of the q’s that vanishes when qi = qj .
A similar identity appears in exercise 24.

The formula for the number of tableaux can also be expressed in a much
more interesting way, based on the idea of “hooks.” The hook corresponding to
a cell in a tableau is defined to be the cell itself plus the cells lying below and
to its right. For example, the shaded area in Fig. 5 is the hook corresponding to
cell (2, 3) in row 2, column 3; it contains six cells. Each cell of Fig. 5 has been
filled in with the length of its hook.
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12 11 8 7 5 4 1
10 9 6 5 3 2 •
9 8 5 4 2 1 •
6 5 2 1 •
3 2 •
2 1 •

Fig. 5. Hooks and hook lengths.

If the shape of the tableau is (n1, n2, . . . , nm), the longest hook has length
n1 +m−1. Further examination of the hook lengths shows that row 1 con-
tains all the lengths n1 +m−1, n1 +m−2, . . . , 1 except for (n1 +m−1)−(nm),
(n1 +m−1)−(nm−1 +1), . . . , (n1 +m−1)−(n2 +m−2). In Fig. 5, for example,
the hook lengths in row 1 are 12, 11, 10, . . . , 1 except for 10, 9, 6, 3, 2; the
exceptions correspond to five nonexistent hooks, from nonexistent cells (6, 3),
(5, 3), (4, 5), (3, 7), (2, 7) leading up to cell (1, 7). Similarly, row j contains
all lengths nj +m−j, . . . , 1, except for (nj +m−j)−(nm), . . . , (nj +m−j)−
(nj+1 +m−j−1). It follows that the product of all the hook lengths is equal to

(n1 +m−1)! (n2 +m−2)! . . . nm!
∆(n1 +m−1, n2 +m−2, . . . , nm) .

This is just what happens in Eq. (34), so we have derived the following celebrated
result due to J. S. Frame, G. de B. Robinson, and R. M. Thrall [Canadian J.
Math. 6 (1954), 316–318]:
Theorem H. The number of tableaux on {1, 2, . . . , n} having a specified shape
is n! divided by the product of the hook lengths.

Since this is such a simple rule, it deserves a simple proof; a heuristic
argument runs as follows: Each element of the tableau is the smallest in its
hook. If we fill the tableau shape at random, the probability that cell (i, j) will
contain the minimum element of the corresponding hook is the reciprocal of the
hook length; multiplying these probabilities over all i and j gives Theorem H.
But unfortunately this argument is fallacious, since the probabilities are far from
independent! No direct proof of Theorem H, based on combinatorial properties of
hooks used correctly, was known until 1992 (see exercise 39), although researchers
did discover several instructive indirect proofs (exercises 35, 36, and 38).

Theorem H has an interesting connection with the enumeration of trees,
which we considered in Chapter 2. We observed that binary trees with n nodes
correspond to permutations that can be obtained with a stack, and that such
permutations correspond to sequences a1 a2 . . . a2n of n S’s and n X’s, where the
number of S’s is never less than the number of X’s as we read from left to right.
(See exercises 2.2.1–3 and 2.3.1–6.) The latter sequences correspond in a natural
way to tableaux of shape (n, n); we place in row 1 the indices i such that ai = S,
and in row 2 we put those indices with ai = X. For example, the sequence

S S S X X S S X X S X X
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corresponds to the tableau
1 2 3 6 7 10
4 5 8 9 11 12

. (37)

The column constraint is satisfied in this tableau if and only if the number of X’s
never exceeds the number of S’s from left to right. By Theorem H, the number
of tableaux of shape (n, n) is

(2n)!
(n + 1)! n! ;

so this is the number of binary trees, in agreement with Eq. 2.3.4.4–(14). Further-
more, this argument solves the more general “ballot problem” considered in
the answer to exercise 2.2.1–4, if we use tableaux of shape (n, m) for n ≥ m.
So Theorem H includes some rather complex enumeration problems as simple
special cases.

Any tableau A of shape (n, n) on the elements {1, 2, . . . , 2n} corresponds
to two tableaux (P, Q) of the same shape, in the following way suggested by
MacMahon [Combinatory Analysis 1 (1915), 130–131]: Let P consist of the ele-
ments {1, . . . , n} as they appear in A; then Q is formed by taking the remaining
elements, rotating the configuration by 180◦, and replacing n + 1, n + 2, . . . , 2n
by n, n− 1, . . . , 1, respectively. For example, (37) splits into

1 2 3 6 and 7 10
4 5 8 9 11 12

;

rotation and renaming of the latter yields

P = 1 2 3 6
4 5

, Q = 1 2 4 5
3 6

. (38)

Conversely, any pair of equal-shape tableaux of at most two rows, each containing
n cells, corresponds in this way to a tableau of shape (n, n). Hence by exercise 7
the number of permutations a1 a2 . . . an of {1, 2, . . . , n} containing no decreasing
subsequence ai > aj > ak for i < j < k is the number of binary trees with
n nodes. An interesting one-to-one correspondence between such permutations
and binary trees, more direct than the roundabout method via Algorithm I that
we have used here, has been found by D. Rotem [Inf. Proc. Letters 4 (1975),
58–61]; similarly there is a rather direct correspondence between binary trees
and permutations having no instances of ai > ak > aj for i < j < k (see exercise
2.2.1–5).

The number of ways to fill a tableau of shape (6, 4, 4, 1) is obviously the
number of ways to put the labels {1, 2, . . . , 15} onto the vertices of the directed
graph

(39)
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in such a way that the label of vertex u is less than the label of vertex v whenever
u→ v. In other words, it is the number of ways to sort the partial ordering (39)
topologically, in the sense of Section 2.2.3.

In general, we can ask the same question for any directed graph that contains
no oriented cycles. It would be nice if there were some simple formula generalizing
Theorem H to the case of an arbitrary directed graph; but not all graphs have
such pleasant properties as the graphs corresponding to tableaux. Some other
classes of directed graphs for which the labeling problem has a simple solution
are discussed in the exercises at the close of this section. Other exercises show
that some directed graphs have no simple formula corresponding to Theorem H.
For example, the number of ways to do the labeling is not always a divisor of n!.

To complete our investigations, let us count the total number of tableaux
that can be formed from n distinct elements; we will denote this number by tn.
By Corollary B, tn is the number of involutions of {1, 2, . . . , n}. A permutation
is its own inverse if and only if its cycle form consists solely of one-cycles (fixed
points) and two-cycles (transpositions). Since tn−1 of the tn involutions have
(n) as a one-cycle, and since tn−2 of them have (j n) as a two-cycle, for fixed
j < n, we obtain the formula

tn = tn−1 + (n− 1)tn−2, (40)

which Rothe devised in 1800 to tabulate tn for small n. The values for n ≥ 0
are 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, . . . .

Counting another way, let us suppose that there are k two-cycles and (n−2k)
one-cycles. There are


n
2k


ways to choose the fixed points, and the multinomial
coefficient (2k)!/(2!)k is the number of ways to arrange the other elements
into k distinguishable transpositions; dividing by k! to make the transpositions
indistinguishable we therefore obtain

tn =
⌊n/2⌋
k=0

tn(k), tn(k) = n!
(n− 2k)! 2kk! . (41)

Unfortunately, this sum has no simple closed form (unless we choose to regard the
Hermite polynomial in2−n/2Hn


−i/
√

2


as simple), so we resort to two indirect
approaches in order to understand tn better:
a) We can find the generating function

n

tnzn/n! = ez+z2/2; (42)

see exercise 25.
b) We can determine the asymptotic behavior of tn. This is an instructive

problem, because it involves some general techniques that will be useful to
us in other connections, so we will conclude this section with an analysis of
the asymptotic behavior of tn.
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The first step in analyzing the asymptotic behavior of (41) is to locate the
main contribution to the sum. Since

tn(k + 1)
tn(k) = (n− 2k)(n− 2k − 1)

2(k + 1) , (43)

we can see that the terms gradually increase from k = 0 until tn(k + 1) ≈ tn(k)
when k is approximately 1

2

n−
√

n

; then they decrease to zero when k exceeds

1
2 n. The main contribution clearly comes from the vicinity of k = 1

2 (n −
√

n ).
It is usually preferable to have the main contribution at the value 0, so we write

k = 1
2 (n−

√
n ) + x, (44)

and we will investigate the size of tn(k) as a function of x.
One useful way to get rid of the factorials in tn(k) is to use Stirling’s

approximation, Eq. 1.2.11.2–(18). For this purpose it is convenient (as we shall
see in a moment) to restrict x to the range

−nϵ+1/4 ≤ x ≤ nϵ+1/4, (45)

where ϵ = 0.001, say, so that an error term can be included. A somewhat
laborious calculation, which the author did by hand in the 60s but which is now
easily done with the help of computer algebra, yields the formula

tn(k) = exp
 1

2 n ln n− 1
2 n +

√
n− 1

4 ln n− 2x2/
√

n− 1
4 −

1
2 ln π

− 4
3 x3/n + 2x/

√
n + 1

3 /
√

n− 4
3 x4/n

√
n + O(n5ϵ−3/4)


. (46)

The restriction on x in (45) can be justified by the fact that we may set x =
±nϵ+1/4 to get an upper bound for all of the discarded terms, namely

e−2n2ϵ
exp

 1
2 n ln n− 1

2 n +
√

n− 1
4 ln n− 1

4 −
1
2 ln π + O(n3ϵ−1/4)


, (47)

and if we multiply this by n we get an upper bound for the sum of the excluded
terms. The upper bound is of lesser order than the terms we will compute for
x in the restricted range (45), because of the factor exp(−2n2ϵ), which is much
smaller than any polynomial in n.

We can evidently remove the factor

exp
 1

2 n ln n− 1
2 n +

√
n− 1

4 ln n− 1
4 −

1
2 ln π + 1

3 /
√

n


(48)

from the sum, and this leaves us with the task of summing

exp

−2x2/

√
n− 4

3 x3/n + 2x/
√

n− 4
3 x4/n

√
n + O(n5ϵ−3/4)


= exp


−2x2
√

n


1− 4

3
x3

n
+ 8

9
x6

n2


1 + 2 x√

n
+ 2x2

n



×


1− 4
3

x4

n
√

n


1 + O(n9ϵ−3/4)


(49)
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over the range x = α, α+1, . . . , β−2, β−1, where −α and β are approximately
equal to nϵ+1/4 (and not necessarily integers). Euler’s summation formula,
Eq. 1.2.11.2–(10), can be written

α≤x<β

f(x) =
 β

α

f(x) dx− 1
2f(x)

β
α

+ 1
2B2

f ′(x)
1!

β
α

+ · · ·+ 1
m + 1 Bm+1

f (m)(x)
m!

β
α

+ Rm+1, (50)

by translation of the summation interval. Here |Rm| ≤ (4/(2π)m)
 β

α

f (m)(x)
 dx.

If we let f(x) = xt exp

−2x2/

√
n

, where t is a fixed nonnegative integer, Euler’s

summation formula will give an asymptotic series for


f(x) as n→∞, since

f (m)(x) = n(t−m)/4g(m)(n−1/4x), g(y) = yte−2y2
, (51)

and g(y) is a well-behaved function independent of n. The derivative g(m)(y) is
e−2y2 times a polynomial in y, hence Rm = O(n(t+1−m)/4)

 +∞
−∞ |g

(m)(y)| dy =
O(n(t+1−m)/4). Furthermore if we replace α and β by −∞ and +∞ in the right-
hand side of (50), we make an error of at most O


exp(−2n2ϵ)


in each term.

Thus 
α≤x<β

f(x) =
 ∞

−∞
f(x) dx + O(n−m), for all m ≥ 0; (52)

only the integral is really significant, given this particular choice of f(x)! The
integral is not difficult to evaluate (see exercise 26), so we can multiply out and
sum formula (49), giving


π/2


n1/4 − 1

24 n−1/4 + O(n−1/2)

. Thus

tn = 1√
2

nn/2e−n/2+
√
n−1/41 + 7

24 n−1/2 + O(n−3/4)

. (53)

Actually the O-terms here should have an extra 9ϵ in the exponent, but our
manipulations make it clear that this 9ϵ would disappear if we had carried further
accuracy in the intermediate calculations. In principle, the method we have
used could be extended to obtain O(n−k) for any k, instead of O(n−3/4). This
asymptotic series for tn was first determined (using a different method) by Moser
and Wyman, Canadian J. Math. 7 (1955), 159–168.

The method we have used to derive (53) is an extremely useful technique for
asymptotic analysis that was introduced by P. S. Laplace [Mémoires Acad. Sci.
(Paris, 1782), 1–88]; it is discussed under the name “trading tails” in CMath,
§9.4. For further examples and extensions of tail-trading, see the conclusion of
Section 5.2.2.

EXERCISES
1. [16 ] What tableaux (P,Q) correspond to the two-line array

1 2 3 4 5 6 7 8 9
6 4 9 5 7 1 2 8 3


,
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in the construction of Theorem A? What two-line array corresponds to the tableaux

P =
1 4 7
2 8
5 9

, Q =
1 3 7
4 5
8 9

?

2. [M21 ] Prove that (q, p) belongs to class t with respect to (16) if and only if t is
the largest number of indices i1, . . . , it such that

pi1 < pi2 < · · · < pit = p, qi1 < qi2 < · · · < qit = q.

x 3. [M24 ] Show that the correspondence defined in the proof of Theorem A can also
be carried out by constructing a table such as this:

Line 0 1 3 5 6 8
Line 1 7 2 9 5 3
Line 2 ∞ 7 ∞ 9 5
Line 3 ∞ ∞ 7
Line 4 ∞

Here lines 0 and 1 constitute the given two-line array. For k ≥ 1, line k + 1 is formed
from line k by the following procedure:

a) Set p←∞.
b) Let column j be the leftmost column in which line k contains an integer < p, but

line k+ 1 is blank. If no such columns exist, and if p =∞, line k+ 1 is complete;
if no such columns exist and p <∞, return to (a).

c) Insert p into column j in line k + 1, then set p equal to the entry in column j of
line k and return to (b).

Once the table has been constructed in this way, row k of P consists of those integers
in line k that are not in line (k+ 1); row k of Q consists of those integers in line 0 that
appear in a column containing ∞ in line k + 1.

x 4. [M30 ] Let a1 . . . aj−1 aj . . . an be a permutation of distinct elements, and assume
that 1 < j ≤ n. The permutation a1 . . . aj−2 aj aj−1 aj+1 . . . an, obtained by inter-
changing aj−1 with aj , is called “admissible” if either

i) j ≥ 3 and aj−2 lies between aj−1 and aj ; or
ii) j < n and aj+1 lies between aj−1 and aj .

For example, exactly three admissible interchanges can be performed on the permuta-
tion 1 5 4 6 8 3 7; we can interchange the 1 and the 5 since 1 < 4 < 5; we can interchange
the 8 and the 3 since 3 < 6 < 8 (or since 3 < 7 < 8); but we cannot interchange the 5
and the 4, or the 3 and the 7.

a) Prove that an admissible interchange does not change the tableau P formed from
the permutation by successive insertion of the elements a1, a2, . . . , an into an
initially empty tableau.

b) Conversely, prove that any two permutations that have the same P tableau can be
transformed into each other by a sequence of one or more admissible interchanges.
[Hint: Given that the shape of P is (n1, n2, . . . , nm), show that any permuta-
tion that corresponds to P can be transformed into the “canonical permutation”
Pm1 . . . Pmnm . . . P21 . . . P2n2 P11 . . . P1n1 by a sequence of admissible interchanges.]

x 5. [M22 ] Let P be the tableau corresponding to the permutation a1 a2 . . . an; use
exercise 4 to prove that PT is the tableau corresponding to an . . . a2 a1.
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6. [M26 ] (M. P. Schützenberger.) Let π be an involution with k fixed points. Prove
that the tableau corresponding to π, in the proof of Corollary B, has exactly k columns
of odd length.

7. [M20 ] (C. Schensted.) Let P be the tableau corresponding to the permutation
a1 a2 . . . an. Prove that the number of columns in P is the longest length c of an
increasing subsequence ai1 < ai2 < · · · < aic , where i1 < i2 < · · · < ic; the number of
rows in P is the longest length r of a decreasing subsequence aj1 > aj2 > · · · > ajr ,
where j1 < j2 < · · · < jr.

8. [M18 ] (P. Erdős, G. Szekeres.) Prove that any permutation containing more than
n2 elements has a monotonic subsequence of length greater than n; but there are
permutations of n2 elements with no monotonic subsequences of length greater than n.
[Hint: See the previous exercise.]

9. [M24 ] Continuing exercise 8, find a “simple” formula for the exact number of
permutations of {1, 2, . . . , n2} that have no monotonic subsequences of length greater
than n.
10. [M20 ] Prove that P is a tableau when Algorithm S terminates, if it was a tableau
initially.
11. [20 ] Given only the values of r and s after Algorithm S terminates, is it possible
to restore P to its original condition?
12. [M24 ] How many times is step S3 performed, if Algorithm S is used repeatedly
to delete all elements of a tableau P whose shape is (n1, n2, . . . , nm)? What is the
minimum of this quantity, taken over all shapes with n1 + n2 + · · ·+ nm = n?
13. [M28 ] Prove Theorem C.
14. [M43 ] Find a more direct proof of Theorem D, part (c).
15. [M20 ] How many permutations of the multiset {l ·a, m ·b, n ·c} have the property
that, as we read the permutation from left to right, the number of c’s never exceeds the
number of b’s, and the number of b’s never exceeds the number of a’s? (For example,
a a b c a b b c a c a is such a permutation.)
16. [M08 ] In how many ways can the partial ordering represented by (39) be sorted
topologically?
17. [HM25 ] Let

g(x1, x2, . . . , xn; y) = x1 ∆(x1+y, x2, . . . , xn) + x2 ∆(x1, x2+y, . . . , xn)
+ · · ·+ xn ∆(x1, x2, . . . , xn+y).

Prove that

g(x1, x2, . . . , xn; y) =

x1 + x2 + · · ·+ xn +


n
2

y

∆(x1, x2, . . . , xn).

[Hint: The polynomial g is homogeneous (all terms have the same total degree); and
it is antisymmetric in the x’s (interchanging xi and xj changes the sign of g).]
18. [HM30 ] Generalizing exercise 17, evaluate the sum

xm
1 ∆(x1+y, x2, . . . , xn) + xm

2 ∆(x1, x2+y, . . . , xn) + · · ·+ xm
n ∆(x1, x2, . . . , xn+y),

when m ≥ 0.
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19. [M40 ] Find a formula for the number of ways to fill an array that is like a tableau
but with two boxes removed at the left of row 1; for example,

n1−2 boxes
n2 boxes
n3 boxes

...

is such a shape. (The rows and columns are to be in increasing order, as in ordinary
tableaux.)

In other words, how many tableaux of shape (n1, n2, . . . , nm) on the elements
{1, 2, . . . , n1+ · · ·+nm} have both of the elements 1 and 2 in the first row?

x 20. [M24 ] Prove that the number of ways to label the nodes of a given tree with
the elements {1, 2, . . . , n}, such that the label of each node is less than that of its
descendants, is n! divided by the product of the subtree sizes (the number of nodes in
each subtree). For example, the number of ways to label the nodes of

11

4

1 2

1

5

3

1 1

1

1

is 11!/(11 · 4 · 1 · 5 · 1 · 2 · 3 · 1 · 1 · 1 · 1) = 10 · 9 · 8 · 7 · 6. (Compare with Theorem H.)

21. [HM31 ] (R. M. Thrall.) Let n1 > n2 > · · · > nm specify the shape of a “shifted
tableau” where row i+1 starts one position to the right of row i; for example, a shifted
tableau of shape (7, 5, 4, 1) has the form of the diagram

12 11 8 7 5 4 1

9 6 5 3 2

5 4 2 1

1

.

Prove that the number of ways to put the integers 1, 2, . . . , n = n1+n2+ · · ·+nm into
shifted tableaux of shape (n1, n2, . . . , nm), so that rows and columns are in increasing
order, is n! divided by the product of the “generalized hook lengths”; a generalized
hook of length 11, corresponding to the cell in row 1 column 2, has been shaded in
the diagram above. (Hooks in the “inverted staircase” portion of the array, at the left,
have a U-shape, tilted 90◦, instead of an L-shape.) Thus there are

17!/(12 · 11 · 8 · 7 · 5 · 4 · 1 · 9 · 6 · 5 · 3 · 2 · 5 · 4 · 2 · 1 · 1)

ways to fill the shape with rows and columns in increasing order.

22. [M39 ] In how many ways can an array of shape (n1, n2, . . . , nm) be filled with
elements from the set {1, 2, . . . , N} with repetitions allowed, so that the rows are
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nondecreasing and the columns are strictly increasing? For example, the simple m-
rowed shape (1, 1, . . . , 1) can be filled in


N
m


ways; the 1-rowed shape (m) can be filled

in


m+N−1
m


ways; the small square shape (2, 2) in 1

3


N+1
2


N
2


ways.
x 23. [HM30 ] (D. André.) In how many ways, En, can the numbers {1, 2, . . . , n} be

placed into the array of n cells

. . .

in such a way that the rows and columns are in increasing order? Find the generating
function g(z) =


Enz

n/n!.
24. [M28 ] Prove that

q1+···+qn=t
0≤q1,...,qn≤m


m

q1


. . .


m

qn


∆(q1, . . . , qn)2

= n!

nm− (n2 − n)
t− 1

2 (n2 − n)


m

n− 1


m

n− 2


. . .


m

0


∆(n−1, . . . , 0)2.

[Hints: Prove that ∆(k1+n−1, . . . , kn) = ∆(m−kn+n−1, . . . ,m−k1); decompose an
n× (m− n+ 1) tableau in a fashion analogous to (38); and manipulate the sum as in
the derivation of (36).]
25. [M20 ] Why is (42) the generating function for involutions?
26. [HM21 ] Evaluate

∞
−∞ xt exp(−2x2/

√
n ) dx when t is a nonnegative integer.

27. [M24 ] Let Q be a Young tableau on {1, 2, . . . , n}; let the element i be in row ri

and column ci. We say that i is “above” j when ri < rj .
a) Prove that, for 1 ≤ i < n, i is above i+ 1 if and only if ci ≥ ci+1.
b) Given that Q is such that (P,Q) corresponds to the permutation

1 2 . . . n
a1 a2 . . . an


,

prove that i is above i + 1 if and only if ai > ai+1. (Therefore we can determine
the number of runs in the permutation, knowing only Q. This result is due to
M. P. Schützenberger.)

c) Prove that, for 1 ≤ i < n, i is above i+ 1 in Q if and only if i+ 1 is above i in QS .
28. [M43 ] Prove that the average length of the longest increasing subsequence of a
random permutation of {1, 2, . . . , n} is asymptotically 2

√
n. (This is the average length

of row 1 in the correspondence of Theorem A.)
29. [HM25 ] Prove that a random permutation of n elements has an increasing sub-
sequence of length ≥ l with probability ≤


n
l


/l!. This probability is O(1/

√
n ) when

l = e
√
n+O(1), and O(exp(−c

√
n )) when l = 3

√
n, c = 6 ln 3− 6.

30. [M41 ] (M. P. Schützenberger.) Show that the operation of going from P to PS is
a special case of an operation applicable in connection with any finite partially ordered
set, not merely a tableau: Label the elements of a partially ordered set with the integers
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{1, 2, . . . , n} in such a way that the partial order is consistent with the labeling. Find
a dual labeling analogous to (26), by successively deleting the labels 1, 2, . . . while
moving the other labels in a fashion analogous to Algorithm S and placing 1, 2, . . .
in the vacated places. Show that this operation, when repeated on the dual labeling
in reverse numerical order, yields the original labeling; and explore other properties of
the operation.
31. [HM30 ] Let xn be the number of ways to place n mutually nonattacking rooks on
an n × n chessboard, where each arrangement is unchanged by reflection about both
diagonals. Thus, x4 = 6. (Involutions are required to be symmetrical about only one
diagonal. Exercise 5.1.3–19 considers a related problem.) Find the asymptotic behavior
of xn.
32. [HM21 ] Prove that the involution number tn is the expected value of Xn, when
X is a normal deviate with mean 1 and variance 1.
33. [M25 ] (O. H. Mitchell, 1881.) True or false: ∆(a1, a2, . . . , am)/∆(1, 2, . . . ,m) is
an integer when a1, a2, . . . , am are integers.
34. [25 ] (T. Nakayama, 1940.) Prove that if a tableau shape contains a hook of length
ab, it contains a hook of length a.

x 35. [30 ] (A. P. Hillman and R. M. Grassl, 1976.) An arrangement of nonnegative
integers pij in a tableau shape is called a plane partition of m if


pij = m and

pi1 ≥ · · · ≥ pini , p1j ≥ · · · ≥ pn′
j

j , for 1 ≤ i ≤ n′
1, 1 ≤ j ≤ n1,

when there are ni cells in row i and n′
j cells in column j. It is called a reverse plane

partition if instead

pi1 ≤ · · · ≤ pini , p1j ≤ · · · ≤ pn′
j

j , for 1 ≤ i ≤ n′
1, 1 ≤ j ≤ n1.

Consider the following algorithm, which operates on reverse plane partitions of a given
shape and constructs another array of numbers qij having the same shape:

G1. [Initialize.] Set qij ← 0 for 1 ≤ j ≤ ni and 1 ≤ i ≤ n′
1. Then set j ← 1.

G2. [Find nonzero cell.] If pn′
j

j > 0, set i ← n′
j , k ← j, and go on to step G3.

Otherwise if j < n1, increase j by 1 and repeat this step. Otherwise stop (the
p array is now zero).

G3. [Decrease p.] Decrease pik by 1.
G4. [Move up or right.] If i > 1 and p(i−1)k > pik, decrease i by 1 and return

to G3. Otherwise if k < ni, increase k by 1 and return to G3.
G5. [Increase q.] Increase qij by 1 and return to G2.

Prove that this construction defines a one-to-one correspondence between reverse plane
partitions of m and solutions of the equation

m =


hijqij ,

where the numbers hij are the hook lengths of the shape, by designing an algorithm
that recomputes the p’s from the q’s.
36. [HM27 ] (R. P. Stanley, 1971.) (a) Prove that the number of reverse plane par-
titions of m in a given shape is [zm] 1/(1 − zhij ), where the numbers hij are the
hook lengths of the shape. (b) Derive Theorem H from this result. [Hint: What is the
asymptotic number of partitions as m→∞?]
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37. [M20 ] (P. A. MacMahon, 1912.) What is the generating function for all plane
partitions? (The coefficient of zm should be the total number of plane partitions of m
when the tableau shape is unbounded.)

x 38. [M30 ] (Greene, Nijenhuis, and Wilf, 1979.) We can construct a directed acyclic
graph on the cells T of any given tableau shape by letting arcs run from each cell to
the other cells in its hook; the out-degree of cell (i, j) will then be dij = hij − 1, where
hij is the hook length. Suppose we generate a random path in this digraph by choosing
a random starting cell (i, j) and choosing further arcs at random, until coming to a
corner cell from which there is no exit. Each random choice is made uniformly.

a) Let (a, b) be a corner cell of T , and let I = {i0, . . . , ik} and J = {j0, . . . , jl} be
sets of rows and columns with i0 < · · · < ik = a and j0 < · · · < jl = b. The
digraph contains


k+l

k


paths whose row and column sets are respectively I and J ;

let P (I, J) be the probability that the random path is one of these. Prove that
P (I, J) = 1/(ndi0b . . . dik−1b daj0 . . . dajl−1 ), where n = |T |.

b) Let f(T ) = n!/

hij . Prove that the random path ends at corner (a, b) with

probability f(T \ {(a, b)})/f(T ).
c) Show that the result of (b) proves Theorem H and also gives us a way to generate

a random tableau of shape T , with all f(T ) tableaux equally likely.

39. [M38 ] (I. M. Pak and A. V. Stoyanovskii, 1992.) Let P be an array of shape
(n1, . . . , nm) that has been filled with any permutation of the integers {1, . . . , n}, where
n = n1+· · ·+nm. The following procedure, which is analogous to the “siftup” algorithm
in Section 5.2.3, can be used to convert P to a tableau. It also defines an array Q of
the same shape, which can be used to provide a combinatorial proof of Theorem H.

P1. [Loop on (i, j).] Perform steps P2 and P3 for all cells (i, j) of the array, in
reverse lexicographic order (that is, from bottom to top, and from right to
left in each row); then stop.

P2. [Fix P at (i, j).] Set K ← Pij and perform Algorithm S′ (see below).

P3. [Adjust Q.] Set Qik ← Qi(k+1) + 1 for j ≤ k < s, and set Qis ← i− r.

Here Algorithm S′ is the same as Schützenberger’s Algorithm S, except that steps S1
and S2 are generalized slightly:

S1′. [Initialize.] Set r ← i, s← j.

S2′. [Done?] If K <∼ P(r+1)s and K <∼ Pr(s+1), set Prs ← K and terminate.

(Algorithm S is essentially the special case i = 1, j = 1, K =∞.)
For example, Algorithm P straightens out one particular array of shape (3, 3, 2)

in the following way, if we view the contents of arrays P and Q at the beginning of
step P2, with Pij in boldface type:

P =
7 8 5
1 6 4
3 2

7 8 5
1 6 4
3 2

7 8 5
1 6 4
2 3

7 8 5
1 6 4
2 3

7 8 5
1 3 4
2 6

7 8 5
1 3 4
2 6

7 8 4
1 3 5
2 6

7 3 4
1 5 8
2 6

Q =
0 1 0

0
1 0

−1 0
1 0

0 −1 0
1 0

−1
0 −1 0
1 0

0 −1
0 −1 0
1 0
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The final result is

P =
1 3 4
2 5 8
6 7

, Q =
1 −2 −1
0 −1 0
1 0

.

a) If P is simply a 1× n array, Algorithm P sorts it into 1 . . . n . Explain what
the Q array will contain in that case.

b) Answer the same question if P is n× 1 instead of 1× n.
c) Prove that, in general, we will have

−bij ≤ Qij ≤ rij ,

where bij is the number of cells below (i, j) and rij is the number of cells to the
right. Thus, the number of possible values for Qij is exactly hij , the size of the
(i, j)th hook.

d) Theorem H will be proved constructively if we can show that Algorithm P defines
a one-to-one correspondence between the n! ways to fill the original shape and the
pairs of output arrays (P,Q), where P is a tableau and the elements of Q satisfy
the condition of part (c). Therefore we want to find an inverse of Algorithm P. For
what initial permutations does Algorithm P produce the 2× 2 array Q = ( 0

0
−1
0 )?

e) What initial permutation does Algorithm P convert into the arrays

P =

1 3 5 7 11 15
2 6 8 14
4 9 13
10 12
16

, Q =

−2−3 −1 −1 1 0
3 −2 −1 0
0 −1 0
−1 0
0

?

f) Design an algorithm that inverts Algorithm P, given any pair of arrays (P,Q)
such that P is a tableau and Q satisfies the condition of part (c). [Hint: Construct
an oriented tree whose vertices are the cells (i, j), with arcs

(i, j)→ (i, j − 1) if Pi(j−1) > P(i−1)j ;
(i, j)→ (i− 1, j) if Pi(j−1) < P(i−1)j .

In the example of part (e) we have the tree

The paths of this tree hold the key to inverting Algorithm P.]
40. [HM43 ] Suppose a random Young tableau has been constructed by successively
placing the numbers 1, 2, . . . , n in such a way that each possibility is equally likely
when a new number is placed. For example, the tableau (1) would be obtained with
probability 1

1 ·
1
2 ·

1
2 ·

1
3 ·

1
3 ·

1
3 ·

1
4 ·

1
3 ·

1
3 ·

1
4 ·

1
4 ·

1
5 ·

1
4 ·

1
5 ·

1
4 using this procedure.

Prove that, with high probability, the resulting shape (n1, n2, . . . , nm) will have
m ≈

√
6n and


k +


nk+1 ≈


m for 0 ≤ k ≤ m.
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41. [25 ] (Disorder in a library.) Casual users of a library often put books back on the
shelves in the wrong place. One way to measure the amount of disorder present in a
library is to consider the minimum number of times we would have to take a book out
of one place and insert it in another, before all books are restored to the correct order.

Thus let π = a1 a2 . . . an be a permutation of {1, 2, . . . , n}. A “deletion-insertion
operation” changes π to

a1 . . . ai−1 ai+1 . . . aj ai aj+1 . . . an or a1 . . . aj ai aj+1 . . . ai−1 ai+1 . . . an,

for some i and j. Let dis(π) be the minimum number of deletion-insertion operations
that will sort π into order. Can dis(π) be expressed in terms of simpler characteristics
of π?

x 42. [30 ] (Disorder in a genome.) The DNA of Lobelia fervens has genes occur-
ring in the sequence gR

7 g1g2g4g5g3g
R
6 , where gR

7 stands for the left-right reflection
of g7; the same genes occur in tobacco plants, but in the order g1g2g3g4g5g6g7. Show
that five “flip” operations on substrings are needed to get from g1g2g3g4g5g6g7 to
gR

7 g1g2g4g5g3g
R
6 . (A flip takes αβγ to αβRγ, when α, β, and γ are strings.)

43. [35 ] Continuing the previous exercise, show that at most n + 1 flips are needed
to sort any rearrangement of g1g2 . . . gn. Construct examples that require n + 1 flips,
for all n > 3.
44. [M37 ] Show that the average number of flips required to sort a random arrange-
ment of n genes is greater than n−Hn, if all 2n n! genome rearrangements are equally
likely.
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5.2. INTERNAL SORTING
Let’s begin our discussion of good “sortsmanship” by conducting a little ex-
periment. How would you solve the following programming problem?

“Memory locations R+1, R+2, R+3, R+4, and R+5 contain five numbers.
Write a computer program that rearranges these numbers, if necessary,
so that they are in ascending order.”

(If you already are familiar with some sorting methods, please do your best to
forget about them momentarily; imagine that you are attacking this problem for
the first time, without any prior knowledge of how to proceed.)

Before reading any further, you are requested to construct a solution to this
problem.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The time you spent working on the challenge problem will pay dividends
as you continue to read this chapter. Chances are your solution is one of the
following types:

A. An insertion sort. The items are considered one at a time, and each new
item is inserted into the appropriate position relative to the previously-sorted
items. (This is the way many bridge players sort their hands, picking up one
card at a time.)

B. An exchange sort. If two items are found to be out of order, they are
interchanged. This process is repeated until no more exchanges are necessary.

C. A selection sort. First the smallest (or perhaps the largest) item is lo-
cated, and it is somehow separated from the rest; then the next smallest (or next
largest) is selected, and so on.

D. An enumeration sort. Each item is compared with each of the others; an
item’s final position is determined by the number of keys that it exceeds.

E. A special-purpose sort, which works nicely for sorting five elements as
stated in the problem, but does not readily generalize to larger numbers of items.

F. A lazy attitude, with which you ignored the suggestion above and decided
not to solve the problem at all. Sorry, by now you have read too far and you
have lost your chance.

G. A new, super sorting technique that is a definite improvement over known
methods. (Please communicate this to the author at once.)

If the problem had been posed for, say, 1000 items, not merely 5, you might
also have discovered some of the more subtle techniques that will be mentioned
later. At any rate, when attacking a new problem it is often wise to find some
fairly obvious procedure that works, and then try to improve upon it. Cases A, B,
and C above lead to important classes of sorting techniques that are refinements
of the simple ideas stated.

Many different sorting algorithms have been invented, and we will be dis-
cussing about 25 of them in this book. This rather alarming number of methods
is actually only a fraction of the algorithms that have been devised so far;
many techniques that are now obsolete will be omitted from our discussion, or
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mentioned only briefly. Why are there so many sorting methods? For computer
programming, this is a special case of the question, “Why are there so many x
methods?”, where x ranges over the set of problems; and the answer is that each
method has its own advantages and disadvantages, so that it outperforms the
others on some configurations of data and hardware. Unfortunately, there is no
known “best” way to sort; there are many best methods, depending on what
is to be sorted on what machine for what purpose. In the words of Rudyard
Kipling, “There are nine and sixty ways of constructing tribal lays, and every
single one of them is right.”

It is a good idea to learn the characteristics of each sorting method, so that
an intelligent choice can be made for particular applications. Fortunately, it is
not a formidable task to learn these algorithms, since they are interrelated in
interesting ways.

At the beginning of this chapter we defined the basic terminology and
notation to be used in our study of sorting: The records

R1, R2, . . . , RN (1)

are supposed to be sorted into nondecreasing order of their keys K1, K2, . . . , KN,
essentially by discovering a permutation p(1) p(2) . . . p(N) such that

Kp(1) ≤ Kp(2) ≤ · · · ≤ Kp(N). (2)

In the present section we are concerned with internal sorting, when the number
of records to be sorted is small enough that the entire process can be performed
in a computer’s high-speed memory.

In some cases we will want the records to be physically rearranged in memory
so that their keys are in order, while in other cases it may be sufficient merely
to have an auxiliary table of some sort that specifies the permutation. If the
records and/or the keys each take up quite a few words of computer memory,
it is often better to make up a new table of link addresses that point to the
records, and to manipulate these link addresses instead of moving the bulky
records around. This method is called address table sorting (see Fig. 6). If the
key is short but the satellite information of the records is long, the key may be
placed with the link addresses for greater speed; this is called keysorting. Other
sorting schemes utilize an auxiliary link field that is included in each record;
these links are manipulated in such a way that, in the final result, the records
are linked together to form a straight linear list, with each link pointing to the
following record. This is called list sorting (see Fig. 7).

After sorting with an address table or list method, the records can be re-
arranged into increasing order as desired. Exercises 10 and 12 discuss interesting
ways to do this, requiring only enough additional memory space to hold one
record; alternatively, we can simply move the records into a new area capable
of holding all records. The latter method is usually about twice as fast as the
former, but it demands nearly twice as much storage space. Many applications
can get by without moving the records at all, since the link fields are often
adequate for all of the subsequent processing.
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37

S

T
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E

Before sorting

After sorting

Auxiliary table

Records

Key}
Satellite information

R1 R2 R3

Fig. 6. Address table sorting.
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Key}
Satellite information

Link field (after sorting)

Head of list

R1 R2 R3

Fig. 7. List sorting.

All of the sorting methods that we shall examine in depth will be illustrated
in four ways, by means of
a) an English-language description of the algorithm,
b) a flow diagram,
c) a MIX program, and
d) an example of the sorting method applied to a certain set of 16 numbers.

For convenience, the MIX programs will usually assume that the key is numeric
and that it fits in a single word; sometimes we will even restrict the key to part
of a word. The order relation < will be ordinary arithmetic order; and the record
will consist of the key alone, with no satellite information. These assumptions
make the programs shorter and easier to understand, and a reader should find
it fairly easy to adapt any of the programs to the general case by using address
table sorting or list sorting. An analysis of the running time of each sorting
algorithm will be given with the MIX programs.

Sorting by counting. As a simple example of the way in which we shall study
internal sorting methods, let us consider the “counting” idea mentioned near
the beginning of this section. This simple method is based on the idea that the
jth key in the final sorted sequence is greater than exactly j−1 of the other
keys. Putting this another way, if we know that a certain key exceeds exactly
27 others, and if no two keys are equal, the corresponding record should go into
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position 28 after sorting. So the idea is to compare every pair of keys, counting
how many are less than each particular one.

The obvious way to do the comparisons is to
(compare Kj with Ki) for 1 ≤ j ≤ N


for 1 ≤ i ≤ N ;

but it is easy to see that more than half of these comparisons are redundant,
since it is unnecessary to compare a key with itself, and it is unnecessary to
compare Ka with Kb and later to compare Kb with Ka. We need merely to

(compare Kj with Ki) for 1 ≤ j < i


for 1 < i ≤ N.

Hence we are led to the following algorithm.
Algorithm C (Comparison counting). This algorithm sorts R1, . . . , RN on the
keys K1, . . . , KN by maintaining an auxiliary table COUNT[1], . . . , COUNT[N] to
count the number of keys less than a given key. After the conclusion of the
algorithm, COUNT[j] + 1 will specify the final position of record Rj .
C1. [Clear COUNTs.] Set COUNT[1] through COUNT[N] to zero.
C2. [Loop on i.] Perform step C3, for i = N , N−1, . . . , 2; then terminate the

algorithm.
C3. [Loop on j.] Perform step C4, for j = i−1, i−2, . . . , 1.
C4. [Compare Ki : Kj .] If Ki < Kj , increase COUNT[j] by 1; otherwise increase

COUNT[i] by 1.
Note that this algorithm involves no movement of records. It is similar to

an address table sort, since the COUNT table specifies the final arrangement of
records; but it is somewhat different because COUNT[j] tells us where to move
Rj , instead of indicating which record should be moved into the place of Rj .
(Thus the COUNT table specifies the inverse of the permutation p(1) . . . p(N); see
Section 5.1.1.)

Table 1 illustrates the typical behavior of comparison counting, by applying
it to 16 numbers that were chosen at random by the author on March 19, 1963.
The same 16 numbers will be used to illustrate almost all of the other methods
that we shall discuss later.

In our discussion preceding this algorithm we blithely assumed that no two
keys were equal. This was a potentially dangerous assumption, for if equal
keys corresponded to equal COUNTs the final rearrangement of records would be
quite complicated. Fortunately, however, Algorithm C gives the correct result
no matter how many equal keys are present; see exercise 2.
Program C (Comparison counting). The following MIX implementation of
Algorithm C assumes that Rj is stored in location INPUT + j, and COUNT[j]
in location COUNT + j, for 1 ≤ j ≤ N ; rI1 ≡ i; rI2 ≡ j; rA ≡ Ki ≡ Ri;
rX ≡ COUNT[i].
01 START ENT1 N 1 C1. Clear COUNTs.
02 STZ COUNT,1 N COUNT[i]← 0.
03 DEC1 1 N
04 J1P *-2 N N ≥ i > 0.
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Table 1
SORTING BY COUNTING (ALGORITHM C)

KEYS: 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
COUNT (initially): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
COUNT (i = N): 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 12
COUNT (i = N−1): 0 0 0 0 2 0 2 0 0 0 0 0 0 0 13 12
COUNT (i = N−2): 0 0 0 0 3 0 3 0 0 0 0 0 0 11 13 12
COUNT (i = N−3): 0 0 0 0 4 0 4 0 1 0 0 0 9 11 13 12
COUNT (i = N−4): 0 0 1 0 5 0 5 0 2 0 0 7 9 11 13 12
COUNT (i = N−5): 1 0 2 0 6 1 6 1 3 1 2 7 9 11 13 12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
COUNT (i = 2): 6 1 8 0 15 3 14 4 10 5 2 7 9 11 13 12

C1. Clear COUNTs C2. Loop on i C3. Loop on j
C4. Compare

Ki :Kj

N≥ i>1 i>j≥1

j=0i=1

Fig. 8. Algorithm C: Comparison counting.

05 ENT1 N 1 C2. Loop on i.
06 JMP 1F 1
07 2H LDA INPUT,1 N − 1
08 LDX COUNT,1 N − 1
09 3H CMPA INPUT,2 A C4. Compare Ki : Kj .
10 JGE 4F A Jump if Ki ≥ Kj .
11 LD3 COUNT,2 B COUNT[j]
12 INC3 1 B +1
13 ST3 COUNT,2 B → COUNT[j].
14 JMP 5F B
15 4H INCX 1 A−B COUNT[i]← COUNT[i] + 1.
16 5H DEC2 1 A C3. Loop on j.
17 J2P 3B A
18 STX COUNT,1 N − 1
19 DEC1 1 N − 1
20 1H ENT2 -1,1 N N ≥ i > j > 0.
21 J2P 2B N

The running time of this program is 13N + 6A + 5B − 4 units, where N is
the number of records; A is the number of choices of two things from a set of
N objects, namely


N
2


= (N2 −N)/2; and B is the number of pairs of indices
for which j < i and Kj > Ki. Thus, B is the number of inversions of the
permutation K1 . . . KN ; this is the quantity that was analyzed extensively in
Section 5.1.1, where we found in Eqs. 5.1.1–(12) and 5.1.1–(13) that, for unequal
keys in random order, we have
B =


min 0, ave (N2−N)/4, max (N2−N)/2, dev


N(N − 1)(N + 2.5)/6


.
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Hence Program C requires between 3N2 + 10N − 4 and 5.5N2 + 7.5N − 4 units
of time, and the average running time lies halfway between these two extremes.
For example, the data in Table 1 has N = 16, A = 120, B = 41, so Program C
will sort it in 1129u. See exercise 5 for a modification of Program C that has
slightly different timing characteristics.

The factor N2 that dominates this running time shows that Algorithm C
is not an efficient way to sort when N is large; doubling the number of records
increases the running time fourfold. Since the method requires a comparison of
all distinct pairs of keys (Ki, Kj), there is no apparent way to get rid of the
dependence on N2, although we will see later in this chapter that the worst-case
running time for sorting can be reduced to order N log N using other techniques.
Our main interest in Algorithm C is its simplicity, not its speed. Algorithm C
serves as an example of the style in which we will be describing more complex
(and more efficient) methods.

There is another way to sort by counting that is quite important from the
standpoint of efficiency; it is primarily applicable in the case that many equal
keys are present, and when all keys fall into the range u ≤ Kj ≤ v, where (v−u)
is small. These assumptions appear to be quite restrictive, but in fact we shall
see quite a few applications of the idea. For example, if we apply this method
to the leading digits of keys instead of applying it to entire keys, the file will be
partially sorted and it will be comparatively simple to complete the job.

In order to understand the principles involved, suppose that all keys lie
between 1 and 100. In one pass through the file we can count how many 1s, 2s,
. . . , 100s are present; and in a second pass we can move the records into the
appropriate place in an output area. The following algorithm spells things out
in complete detail:

Algorithm D (Distribution counting). Assuming that all keys are integers in
the range u ≤ Kj ≤ v for 1 ≤ j ≤ N, this algorithm sorts the records R1, . . . , RN

by making use of an auxiliary table COUNT[u], . . . , COUNT[v]. At the conclusion
of the algorithm the records are moved to an output area S1, . . . , SN in the
desired order.
D1. [Clear COUNTs.] Set COUNT[u] through COUNT[v] all to zero.
D2. [Loop on j.] Perform step D3 for 1 ≤ j ≤ N ; then go to step D4.
D3. [Increase COUNT[Kj].] Increase the value of COUNT[Kj] by 1.
D4. [Accumulate.] (At this point COUNT[i] is the number of keys that are equal

to i.) Set COUNT[i]← COUNT[i]+ COUNT[i− 1], for i = u + 1, u + 2, . . . , v.
D5. [Loop on j.] (At this point COUNT[i] is the number of keys that are less than

or equal to i; in particular, COUNT[v] = N.) Perform step D6 for j = N ,
N − 1, . . . , 1; then terminate the algorithm.

D6. [Output Rj .] Set i← COUNT[Kj], Si ← Rj , and COUNT[Kj]← i− 1.
An example of this algorithm is worked out in exercise 6; a MIX program appears
in exercise 9. When the range v − u is small, this sorting procedure is very fast.
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D1. Clear COUNTs D2. Loop on j D3. Increase COUNT[Kj]

D4. Accumulate D5. Loop on j D6. Output Rj

N≥j≥1

N≥j≥1

j=0

j=0

Fig. 9. Algorithm D: Distribution counting.

Sorting by comparison counting as in Algorithm C was first mentioned in
print by E. H. Friend [JACM 3 (1956), 152], although he didn’t claim it as his
own invention. Distribution sorting as in Algorithm D was first developed by
H. Seward in 1954 for use with radix sorting techniques that we will discuss
later (see Section 5.2.5); it was also published under the name “Mathsort” by
W. Feurzeig, CACM 3 (1960), 601.

EXERCISES
1. [15 ] Would Algorithm C still work if i varies from 2 up to N in step C2, instead

of from N down to 2? What if j varies from 1 up to i− 1 in step C3?
2. [21 ] Show that Algorithm C works properly when equal keys are present. If
Kj = Ki and j < i, does Rj come before or after Ri in the final ordering?

x 3. [21 ] Would Algorithm C still work properly if the test in step C4 were changed
from “Ki < Kj” to “Ki ≤ Kj”?

4. [16 ] Write a MIX program that “finishes” the sorting begun by Program C; your
program should transfer the keys to locations OUTPUT+1 through OUTPUT+N, in ascending
order. How much time does your program require?

5. [22 ] Does the following set of changes improve Program C?
New line 08a: INCX 0,2

Change line 10: JGE 5F
Change line 14: DECX 1

Delete line 15.
6. [18 ] Simulate Algorithm D by hand, showing intermediate results when the 16

records 5T, 0C, 5U, 0O, 9., 1N, 8S, 2R, 6A, 4A, 1G, 5L, 6T, 6I, 7O, 7N are being sorted.
Here the numeric digit is the key, and the alphabetic information is just carried along
with the records.

7. [13 ] Is Algorithm D a stable sorting method?
8. [15 ] Would Algorithm D still work properly if j were to vary from 1 up to N in

step D5, instead of from N down to 1?
9. [23 ] Write a MIX program for Algorithm D, analogous to Program C and exercise 4.

What is the execution time of your program, as a function of N and (v − u)?
10. [25 ] Design an efficient algorithm that replaces the N quantities (R1, . . . , RN ) by
(Rp(1), . . . , Rp(N)), respectively, given the values of R1, . . . , RN and the permutation
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p(1) . . . p(N) of {1, . . . , N}. Try to avoid using excess memory space. (This problem
arises if we wish to rearrange records in memory after an address table sort, without
having enough room to store 2N records.)
11. [M27 ] Write a MIX program for the algorithm of exercise 10, and analyze its
efficiency.

x 12. [25 ] Design an efficient algorithm suitable for rearranging the records R1, . . . , RN

into sorted order, after a list sort (Fig. 7) has been completed. Try to avoid using
excess memory space.

x 13. [27 ] Algorithm D requires space for 2N records R1, . . . , RN and S1, . . . , SN. Show
that it is possible to get by with only N records R1, . . . , RN, if a new unshuffling
procedure is substituted for steps D5 and D6. (Thus the problem is to design an
algorithm that rearranges R1, . . . , RN in place, based on the values of COUNT[u], . . . ,
COUNT[v] after step D4, without using additional memory space; this is essentially a
generalization of the problem considered in exercise 10.)

5.2.1. Sorting by Insertion
One of the important families of sorting techniques is based on the “bridge
player” method mentioned near the beginning of Section 5.2: Before examining
record Rj , we assume that the preceding records R1, . . . , Rj−1 have already
been sorted; then we insert Rj into its proper place among the previously sorted
records. Several interesting variations on this basic theme are possible.

Straight insertion. The simplest insertion sort is the most obvious one.
Assume that 1 < j ≤ N and that records R1, . . . , Rj−1 have been rearranged so
that

K1 ≤ K2 ≤ · · · ≤ Kj−1.

(Remember that, throughout this chapter, Kj denotes the key portion of Rj .)
We compare the new key Kj with Kj−1, Kj−2, . . . , in turn, until discovering
that Rj should be inserted between records Ri and Ri+1; then we move records
Ri+1, . . . , Rj−1 up one space and put the new record into position i + 1. It is
convenient to combine the comparison and moving operations, interleaving them
as shown in the following algorithm; since Rj “settles to its proper level” this
method of sorting has often been called the sifting or sinking technique.

S1. Loop on j

S2. Set up i, K, R S3. Compare K :Ki

S4. Move Ri, decrease iS5. R into Ri+1

j>N

2≤j≤N

≥ <

i>0

i=0

Fig. 10. Algorithm S: Straight insertion.

Algorithm S (Straight insertion sort). Records R1, . . . , RN are rearranged in
place; after sorting is complete, their keys will be in order, K1 ≤ · · · ≤ KN.
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S1. [Loop on j.] Perform steps S2 through S5 for j = 2, 3, . . . , N ; then terminate
the algorithm.

S2. [Set up i, K, R.] Set i ← j − 1, K ← Kj , R ← Rj . (In the following steps
we will attempt to insert R into the correct position, by comparing K with
Ki for decreasing values of i.)

S3. [Compare K : Ki.] If K ≥ Ki, go to step S5. (We have found the desired
position for record R.)

S4. [Move Ri, decrease i.] Set Ri+1 ← Ri, then i ← i − 1. If i > 0, go back to
step S3. (If i = 0, K is the smallest key found so far, so record R belongs in
position 1.)

S5. [R into Ri+1.] Set Ri+1 ← R.
Table 1 shows how our sixteen example numbers are sorted by Algorithm S. This
method is extremely easy to implement on a computer; in fact the following MIX
program is the shortest decent sorting routine in this book.

Table 1
EXAMPLE OF STRAIGHT INSERTION

∧
503 : 087
087 503

∧
: 512

∧
087 503 512 : 061
061 087 503 512

∧
: 908

061 087
∧

503 512 908 : 170
061 087 170 503 512

∧
908 : 897

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
061 087 154 170 275 426 503 509 512 612 653 677

∧
765 897 908 : 703

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

Program S (Straight insertion sort). The records to be sorted are in locations
INPUT+1 through INPUT+N; they are sorted in place in the same area, on a full-
word key. rI1 ≡ j −N ; rI2 ≡ i; rA ≡ R ≡ K; assume that N ≥ 2.
01 START ENT1 2-N 1 S1. Loop on j. j ← 2.
02 2H LDA INPUT+N,1 N − 1 S2. Set up i, K, R.
03 ENT2 N-1,1 N − 1 i← j − 1.
04 3H CMPA INPUT,2 B +N − 1−A S3. Compare K : Ki.
05 JGE 5F B +N − 1−A To S5 if K ≥ Ki.
06 4H LDX INPUT,2 B S4. Move Ri, decrease i.
07 STX INPUT+1,2 B Ri+1 ← Ri.
08 DEC2 1 B i← i− 1.
09 J2P 3B B To S3 if i > 0.
10 5H STA INPUT+1,2 N − 1 S5. R into Ri+1.
11 INC1 1 N − 1
12 J1NP 2B N − 1 2 ≤ j ≤ N.



82 SORTING 5.2.1

The running time of this program is 9B + 10N − 3A − 9 units, where N is
the number of records sorted, A is the number of times i decreases to zero in
step S4, and B is the number of moves. Clearly A is the number of times
Kj < min(K1, . . . , Kj−1) for 1 < j ≤ N ; this is one less than the number of left-
to-right minima, so A is equivalent to the quantity that was analyzed carefully
in Section 1.2.10. Some reflection shows us that B is also a familiar quantity:
The number of moves for fixed j is the number of inversions of Kj , so B is
the total number of inversions of the permutation K1 K2 . . . KN. Hence by Eqs.
1.2.10–(16), 5.1.1–(12), and 5.1.1–(13), we have

A =

min 0, ave HN − 1, max N − 1, dev


HN −H

(2)
N


;

B =

min 0, ave (N2 −N)/4, max (N2 −N)/2, dev


N(N − 1)(N + 2.5)/6


;

and the average running time of Program S, assuming that the input keys are
distinct and randomly ordered, is (2.25N2 + 7.75N − 3HN − 6)u. Exercise 33
explains how to improve this slightly.

The example data in Table 1 involves 16 items; there are two changes to the
left-to-right minimum, namely 087 and 061; and there are 41 inversions, as we
have seen in the previous section. Hence N = 16, A = 2, B = 41, and the total
sorting time is 514u.

Binary insertion and two-way insertion. While the jth record is being
processed during a straight insertion sort, we compare its key with about j/2
of the previously sorted keys, on the average; therefore the total number of
comparisons performed comes to roughly (1 + 2 + · · · + N)/2 ≈ N2/4, and this
gets very large when N is only moderately large. In Section 6.2.1 we shall
study “binary search” techniques, which show where to insert the jth item
after only about lg j well-chosen comparisons have been made. For example,
when inserting the 64th record we can start by comparing K64 with K32; if it
is less, we compare it with K16, but if it is greater we compare it with K48,
etc., so that the proper place to insert R64 will be known after making only six
comparisons. The total number of comparisons for inserting all N items comes
to about N lg N, a substantial improvement over 1

4 N2; and Section 6.2.1 shows
that the corresponding program need not be much more complicated than a
program for straight insertion. This method is called binary insertion; it was
mentioned by John Mauchly as early as 1946, in the first published discussion
of computer sorting.

The unfortunate difficulty with binary insertion is that it solves only half
of the problem; after we have found where record Rj is to be inserted, we still
need to move about 1

2 j of the previously sorted records in order to make room
for Rj , so the total running time is still essentially proportional to N2. Some
early computers such as the IBM 705 had a built-in “tumble” instruction that did
such move operations at high speed, and modern machines can do the moves even
faster with special hardware attachments; but as N increases, the dependence
on N2 eventually takes over. For example, an analysis by H. Nagler [CACM 3
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(1960), 618–620] indicated that binary insertion could not be recommended for
sorting more than about N = 128 records on the IBM 705, when each record
was 80 characters long, and similar analyses apply to other machines.

Of course, a clever programmer can think of various ways to reduce the
amount of moving that is necessary; the first such trick, proposed early in the
1950s, is illustrated in Table 2. Here the first item is placed in the center of an
output area, and space is made for subsequent items by moving to the right or
to the left, whichever is most convenient. This saves about half the running time
of ordinary binary insertion, at the expense of a somewhat more complicated
program. It is possible to use this method without using up more space than
required for N records (see exercise 6); but we shall not dwell any longer on this
“two-way” method of insertion, since considerably more interesting techniques
have been developed.

Table 2
TWO-WAY INSERTION

∧
503

087 503
∧

∧
087 503 512

061 087 503 512
∧

061 087
∧

503 512 908
061 087 170 503 512

∧
908

061 087 170
∧

503 512 897 908
061 087 170 275 503 512 897 908

Shell’s method. If we have a sorting algorithm that moves items only one
position at a time, its average time will be, at best, proportional to N2, since
each record must travel an average of about 1

3 N positions during the sorting
process (see exercise 7). Therefore, if we want to make substantial improvements
over straight insertion, we need some mechanism by which the records can take
long leaps instead of short steps.

Such a method was proposed in 1959 by Donald L. Shell [CACM 2, 7
(July 1959), 30–32], and it became known as shellsort. Table 3 illustrates the
general idea behind the method: First we divide the 16 records into 8 groups
of two each, namely (R1, R9), (R2, R10), . . . , (R8, R16). Sorting each group of
records separately takes us to the second line of Table 3; this is called the “first
pass.” Notice that 154 has changed places with 512; 908 and 897 have both
jumped to the right. Now we divide the records into 4 groups of four each,
namely (R1, R5, R9, R13), . . . , (R4, R8, R12, R16), and again each group is sorted
separately; this “second pass” takes us to line 3. A third pass sorts two groups
of eight records, then a fourth pass completes the job by sorting all 16 records.
Each of the intermediate sorting processes involves either a comparatively short
file or a file that is comparatively well ordered, so straight insertion can be used
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Table 3
SHELLSORT WITH INCREMENTS 8, 4, 2, 1

8-sort:

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

4-sort:
503 087 154 061 612 170 765 275 653 426 512 509 908 677 897 703

2-sort:
503 087 154 061 612 170 512 275 653 426 765 509 908 677 897 703

1-sort:
154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

for each sorting operation. In this way the records tend to converge quickly to
their final destinations.

Shellsort is also known as the “diminishing increment sort,” since each pass
is defined by an increment h such that we sort the records that are h units apart.
The sequence of increments 8, 4, 2, 1 is not sacred; indeed, any sequence ht−1,
ht−2, . . . , h0 can be used, so long as the last increment h0 equals 1. For example,
Table 4 shows the same data sorted with increments 7, 5, 3, 1. Some sequences
are much better than others; we will discuss the choice of increments later.
Algorithm D (Shellsort). Records R1, . . . , RN are rearranged in place; after
sorting is complete, their keys will be in order, K1 ≤ · · · ≤ KN . An auxiliary
sequence of increments ht−1, ht−2, . . . , h0 is used to control the sorting process,
where h0 = 1; proper choice of these increments can significantly decrease the
sorting time. This algorithm reduces to Algorithm S when t = 1.
D1. [Loop on s.] Perform step D2 for s = t− 1, t− 2, . . . , 0; then terminate the

algorithm.
D2. [Loop on j.] Set h← hs, and perform steps D3 through D6 for h < j ≤ N .

(We will use a straight insertion method to sort elements that are h positions
apart, so that Ki ≤ Ki+h for 1 ≤ i ≤ N − h. Steps D3 through D6 are
essentially the same as steps S2 through S5, respectively, in Algorithm S.)

D3. [Set up i, K, R.] Set i← j − h, K ← Kj , R← Rj .
D4. [Compare K : Ki.] If K ≥ Ki, go to step D6.
D5. [Move Ri, decrease i.] Set Ri+h ← Ri, then i← i− h. If i > 0, go back to

step D4.
D6. [R into Ri+h.] Set Ri+h ← R.

The corresponding MIX program is not much longer than our program for
straight insertion. Lines 08–19 of the following code are a direct translation of
Program S into the more general framework of Algorithm D.
Program D (Shellsort). We assume that the increments are stored in an
auxiliary table, with hs in location H+s; all increments are less than N. Register
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Table 4
SHELLSORT WITH INCREMENTS 7, 5, 3, 1

7-sort:

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

5-sort:
275 087 426 061 509 170 677 503 653 512 154 908 612 897 765 703

3-sort:
154 087 426 061 509 170 677 503 653 512 275 908 612 897 765 703

1-sort:
061 087 170 154 275 426 512 503 653 612 509 765 677 897 908 703

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

assignments: rI1 ≡ j−N ; rI2 ≡ i; rA ≡ R ≡ K; rI3 ≡ s; rI4 ≡ h. Note that this
program modifies itself, in order to obtain efficient execution of the inner loop.
01 START ENT3 T-1 1 D1. Loop on s. s← t− 1.
02 1H LD4 H,3 T D2. Loop on j. h← hs.
03 ENT1 INPUT,4 T Modify the addresses of three
04 ST1 5F(0:2) T instructions in the main loop.
05 ST1 6F(0:2) T
06 ENN1 -N,4 T rI1← N − h.
07 ST1 3F(0:2) T
08 ENT1 1-N,4 T j ← h+ 1.
09 2H LDA INPUT+N,1 NT − S D3. Set up i, K, R.
10 3H ENT2 N-H,1 NT − S i← j − h. [Instruction modified]
11 4H CMPA INPUT,2 B+NT−S−A D4. Compare K : Ki.
12 JGE 6F B+NT−S−A To D6 if K ≥ Ki.
13 LDX INPUT,2 B D5. Move Ri, decrease i.
14 5H STX INPUT+H,2 B Ri+h ← Ri. [Instruction modified]
15 DEC2 0,4 B i← i− h.
16 J2P 4B B To D4 if i > 0.
17 6H STA INPUT+H,2 NT − S D6.R intoRi+h. [Instruction modified]
18 7H INC1 1 NT − S j ← j + 1.
19 J1NP 2B NT − S To D3 if j ≤ N.
20 DEC3 1 T
21 J3NN 1B T t > s ≥ 0.

*Analysis of shellsort. In order to choose a good sequence of increments
ht−1, . . . , h0 for use in Algorithm D, we need to analyze the running time as
a function of those increments. This leads to some fascinating mathematical
problems, not yet completely resolved; nobody has been able to determine
the best possible sequence of increments for large values of N. Yet a good
many interesting facts are known about the behavior of shellsort, and we will
summarize them here; details appear in the exercises below. [Readers who are
not mathematically inclined should skim over the next few pages, continuing
with the discussion of list insertion following (12).]
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The frequency counts shown with Program D indicate that five factors
determine the execution time: the size of the file, N ; the number of passes
(that is, the number of increments), T = t; the sum of the increments,

S = h0 + · · ·+ ht−1;

the number of comparisons, B + NT − S −A; and the number of moves, B. As
in the analysis of Program S, A is essentially the number of left-to-right minima
encountered in the intermediate sorting operations, and B is the number of
inversions in the subfiles. The factor that governs the running time is B, so we
shall devote most of our attention to it. For purposes of analysis we shall assume
that the keys are distinct and initially in random order.

Let us call the operation of step D2 “h-sorting,” so that shellsort consists
of ht−1-sorting, followed by ht−2 sorting, . . . , followed by h0-sorting. A file in
which Ki ≤ Ki+h for 1 ≤ i ≤ N − h will be called “h-ordered.”

Consider first the simplest generalization of straight insertion, when there
are just two increments, h1 = 2 and h0 = 1. In this case the second pass begins
with a 2-ordered sequence of keys, K1 K2 . . . KN. It is easy to see that the number
of permutations a1 a2 . . . an of {1, 2, . . . , n} having ai ≤ ai+2 for 1 ≤ i ≤ n− 2 is

n

⌊n/2⌋


,

since we obtain exactly one 2-ordered permutation for each choice of ⌊n/2⌋
elements to put in the even-numbered positions a2 a4 . . . , while the remaining
⌈n/2⌉ elements occupy the odd-numbered positions. Each 2-ordered permutation
is equally likely after a random file has been 2-sorted. What is the average
number of inversions among all such permutations?

Let An be the total number of inversions among all 2-ordered permutations
of {1, 2, . . . , n}. Clearly A1 = 0, A2 = 1, A3 = 2; and by considering the six
cases

1 3 2 4 1 2 3 4 1 2 4 3 2 1 3 4 2 1 4 3 3 1 4 2
we find that A4 = 1 + 0 + 1 + 1 + 2 + 3 = 8. One way to investigate An in
general is to consider the “lattice diagram” illustrated in Fig. 11 for n = 15.
A 2-ordered permutation of {1, 2, . . . , n} can be represented as a path from the
upper left corner point (0,0) to the lower right corner point (⌈n/2⌉, ⌊n/2⌋), if
we make the kth step of the path go downwards or to the right, respectively,
according as k appears in an odd or an even position in the permutation. This
rule defines a one-to-one correspondence between 2-ordered permutations and
n-step paths from corner to corner of the lattice diagram; for example, the path
shown by the heavy line in Fig. 11 corresponds to the permutation

2 1 3 4 6 5 7 10 8 11 9 12 14 13 15. (1)

Furthermore, we can attach “weights” to the vertical lines of the path, as Fig. 11
shows; a line from (i, j) to (i+1, j) gets weight |i− j|. A little study will convince
the reader that the sum of these weights along each path is equal to the number
of inversions of the corresponding permutation; this sum also equals the number
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00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37
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70 71 72 73 74 75 76 77

80 81 82 83 84 85 86 87
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Fig. 11. Correspondence between 2-ordering and paths in a lattice. Italicized numbers
are weights that yield the number of inversions in the 2-ordered permutation.

of shaded squares between the given path and the staircase path indicated by
heavy dots in the figure. (See exercise 12.) Thus, for example, (1) has 1 + 0 +
1 + 0 + 1 + 2 + 1 + 0 = 6 inversions.

When a ≤ a′ and b ≤ b′, the number of relevant paths from (a, b) to (a′, b′)
is the number of ways to mix a′ − a vertical lines with b′ − b horizontal lines,
namely 

a′ − a + b′ − b

a′ − a


;

hence the number of permutations whose corresponding path traverses the ver-
tical line segment from (i, j) to (i+1, j) is

i + j

i


n− i− j − 1
⌊n/2⌋ − j


.

Multiplying by the associated weight and summing over all segments gives

A2n =


0≤i≤n
0≤j≤n

|i− j|


i + j

i


2n− i− j − 1

n− j


;

A2n+1 =


0≤i≤n
0≤j≤n

|i− j|


i + j

i


2n− i− j

n− j


. (2)

The absolute value signs in these sums make the calculations somewhat tricky,
but exercise 14 shows that An has the surprisingly simple form ⌊n/2⌋2n−2. Hence
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the average number of inversions in a random 2-ordered permutation is

⌊n/2⌋2n−2


n

⌊n/2⌋


;

by Stirling’s approximation this is asymptotically


π/128 n3/2 ≈ 0.15n3/2. The
maximum number of inversions is easily seen to be

⌊n/2⌋+ 1
2


≈ 1

8n2.

It is instructive to study the distribution of inversions more carefully, by
examining the generating functions

h1(z) = 1,

h2(z) = 1 + z,

h3(z) = 1 + 2z,

h4(z) = 1 + 3z + z2 + z3, . . . ,

(3)

as in exercise 15. In this way we find that the standard deviation is also
proportional to n3/2, so the distribution is not extremely stable about the mean.

Now let us consider the general two-pass case of Algorithm D, when the
increments are h and 1:

Theorem H. The average number of inversions in an h-ordered permutation
of {1, 2, . . . , n} is

f(n, h) = 22q−1q! q!
(2q + 1)!


h

2


q(q + 1) +


r

2


(q + 1)− 1

2


h− r

2


q


, (4)

where q = ⌊n/h⌋ and r = n mod h.
This theorem is due to Douglas H. Hunt [Bachelor’s thesis, Princeton University
(April 1967)]. Note that when h ≥ n the formula correctly gives f(n, h) = 1

2

n
2

.

Proof. An h-ordered permutation contains r sorted subsequences of length q +1,
and h−r of length q. Each inversion comes from a pair of distinct subsequences,
and a given pair of distinct subsequences in a random h-ordered permutation
defines a random 2-ordered permutation. The average number of inversions
is therefore the sum of the average number of inversions between each pair of
distinct subsequences, namely

r

2


A2q+2
2q + 2
q + 1

 + r(h− r) A2q+1
2q + 1

q

 +


h− r

2


A2q
2q

q

 = f(n, h).

Corollary H. If the sequence of increments ht−1, . . . , h1, h0 satisfies the
condition

hs+1 mod hs = 0, for t− 1 > s ≥ 0, (5)
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Fig. 12. The average number, f(n, h), of inversions in an h-ordered file of n elements,
shown for n = 64.

then the average number of move operations in Algorithm D is
t>s≥0


rsf(qs+1, hs+1/hs) + (hs − rs)f(qs, hs+1/hs)


, (6)

where rs = N mod hs, qs = ⌊N/hs⌋, ht = Nht−1, and f is defined in (4).

Proof. The process of hs-sorting consists of a straight insertion sort on rs
(hs+1/hs)-ordered subfiles of length qs + 1, and on (hs − rs) such subfiles of
length qs. The divisibility condition implies that each of these subfiles is a ran-
dom (hs+1/hs)-ordered permutation, in the sense that each (hs+1/hs)-ordered
permutation is equally likely, since we are assuming that the original input was
a random permutation of distinct elements.

Condition (5) in this corollary is always satisfied for two-pass shellsorts,
when the increments are h and 1. If q = ⌊N/h⌋ and r = N mod h, the quantity
B in Program D will have an average value of

rf(q+1, N) + (h− r)f(q, N) + f(N, h) = r

2


q + 1

2


+ h− r

2


q

2


+ f(N, h).

To a first approximation, the function f(n, h) equals (
√

π/8)n3/2h1/2; we can,
for example, compare it to the smooth curve in Fig. 12 when n = 64. Hence the
running time for a two-pass Program D is approximately proportional to

2N2/h +
√

πN3h.

The best choice of h is therefore approximately 3


16N/π ≈ 1.72 3√
N ; and with

this choice of h we get an average running time proportional to N 5/3.
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Thus we can make a substantial improvement over straight insertion, from
O(N2) to O(N1.667), just by using shellsort with two increments. Clearly we
can do even better when more increments are used. Exercise 18 discusses the
optimum choice of ht−1, . . . , h0 when t is fixed and when the h’s are constrained
by the divisibility condition; the running time decreases to O(N1.5+ϵ/2), where
ϵ = 1/(2t − 1), for large N. We cannot break the N1.5 barrier by using the
formulas above, since the last pass always contributes

f(N, h1) ≈ (
√

π/8)N3/2h
1/2
1

inversions to the sum.
But our intuition tells us that we can do even better when the increments

ht−1, . . . , h0 do not satisfy the divisibility condition (5). For example, 8-sorting
followed by 4-sorting followed by 2-sorting does not allow any interaction between
keys in even and odd positions; therefore the final 1-sorting pass is inevitably
faced with Θ(N3/2) inversions, on the average. By contrast, 7-sorting followed
by 5-sorting followed by 3-sorting jumbles things up in such a way that the final
1-sorting pass cannot encounter more than 2N inversions! (See exercise 26.)
Indeed, an astonishing phenomenon occurs:

Theorem K. If a k-ordered file is h-sorted, it remains k-ordered.
Thus a file that is first 7-sorted, then 5-sorted, becomes both 7-ordered and

5-ordered. And if we 3-sort it, the result is ordered by 7s, 5s, and 3s. Examples
of this remarkable property can be seen in Table 4 on page 85.

Proof. Exercise 20 shows that Theorem K is a consequence of the following fact:

Lemma L. Let m, n, r be nonnegative integers, and let (x1, . . . , xm+r) and
(y1, . . . , yn+r) be any sequences of numbers such that

y1 ≤ xm+1, y2 ≤ xm+2, . . . , yr ≤ xm+r. (7)

If the x’s and y’s are sorted independently, so that x1 ≤ · · · ≤ xm+r and y1 ≤
· · · ≤ yn+r, the relations (7) will still be valid.

Proof. All but m of the x’s are known to dominate (that is, to be greater than
or equal to) some y, where distinct x’s dominate distinct y’s. Let 1 ≤ j ≤ r.
Since xm+j after sorting dominates m + j of the x’s, it dominates at least j of
the y’s; therefore it dominates the smallest j of the y’s; hence xm+j ≥ yj after
sorting.

Theorem K suggests that it is desirable to sort with relatively prime incre-
ments, but it does not lead directly to exact estimates of the number of moves
made in Algorithm D. Moreover, the number of permutations of {1, 2, . . . , n}
that are both h-ordered and k-ordered is not always a divisor of n!, so we can see
that Theorem K does not tell the whole story; some k- and h-ordered files are
obtained more often than others after k- and h-sorting. Therefore the average-
case analysis of Algorithm D for general increments ht−1, . . . , h0 has baffled
everyone so far when t > 3. There is not even an obvious way to find the worst
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case, when N and (ht−1, . . . , h0) are given. We can, however, derive several
facts about the approximate maximum running time when the increments have
certain forms:
Theorem P. The running time of Algorithm D is O(N3/2), when hs = 2s+1−1
for 0 ≤ s < t = ⌊lg N⌋.
Proof. It suffices to bound Bs, the number of moves in pass s, in such a way
that Bt−1 + · · · + B0 = O(N3/2). During the first t/2 passes, for t > s ≥ t/2,
we may use the obvious bound Bs = O


hs(N/hs)2; and for subsequent passes

we may use the result of exercise 23, Bs = O(Nhs+2hs+1/hs). Consequently
Bt−1 + · · ·+ B0 = O


N(2 + 22 + · · ·+ 2t/2 + 2t/2 + · · ·+ 2)


= O(N3/2).

This theorem is due to A. A. Papernov and G. V. Stasevich, Problemy
Peredachi Informatsii 1, 3 (1965), 81–98. It gives an upper bound on the worst-
case running time of the algorithm, not merely a bound on the average running
time. The result is not trivial since the maximum running time when the h’s
satisfy the divisibility constraint (5) is of order N2; and exercise 24 shows that
the exponent 3/2 cannot be lowered.

An interesting improvement of Theorem P was discovered by Vaughan Pratt
in 1969: If the increments are chosen to be the set of all numbers of the form 2p3q
that are less than N, the running time of Algorithm D is of order N(log N)2. In
this case we can also make several important simplifications to the algorithm; see
exercises 30 and 31. However, even with these simplifications, Pratt’s method
requires a substantial overhead because it makes quite a few passes over the data.
Therefore his increments don’t actually sort faster than those of Theorem P in
practice, unless N is astronomically large. The best sequences for real-world N
appear to satisfy hs ≈ ρs, where the ratio ρ ≈ hs+1/hs is roughly independent
of s but may depend on N .

We have observed that it is unwise to choose increments in such a way that
each is a divisor of all its predecessors; but we should not conclude that the best
increments are relatively prime to all of their predecessors. Indeed, every element
of a file that is gh-sorted and gk-sorted with h ⊥ k has at most 1

2 (h− 1)(k − 1)
inversions when we are g-sorting. (See exercise 21.) Pratt’s sequence {2p3q}
wins as N →∞ by exploiting this fact, but it grows too slowly for practical use.

Janet Incerpi and Robert Sedgewick [J. Comp. Syst. Sci. 31 (1985), 210–224;
see also Lecture Notes in Comp. Sci. 1136 (1996), 1–11] have found a way to have
the best of both worlds, by showing how to construct a sequence of increments
for which hs ≈ ρs yet each increment is the gcd of two of its predecessors. Given
any number ρ > 1, they start by defining a base sequence a1, a2, . . . , where ak is
the least integer ≥ ρk such that aj ⊥ ak for 1 ≤ j < k. If ρ = 2.5, for example,
the base sequence is

a1, a2, a3, . . . = 3, 7, 16, 41, 101, 247, 613, 1529, 3821, 9539, . . . .

Now they define the increments by setting h0 = 1 and

hs = hs−rar for


r

2


< s ≤


r + 1

2


. (8)
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Thus the sequence of increments starts

1; a1; a2, a1a2; a1a3, a2a3, a1a2a3; . . . .

For example, when ρ = 2.5 we get

1, 3, 7, 21, 48, 112, 336, 861, 1968, 4592, 13776, 33936, 86961, 198768, . . . .

The crucial point is that we can turn recurrence (8) around:

hs = hr+s/ar = h(r
2)/a(r

2)−s for


r − 1
2


≤ s <


r

2


. (9)

Therefore, by the argument in the previous paragraph, the number of inversions
per element when we are h0-sorting, h1-sorting, . . . is at most

b(a2, a1); b(a3, a2), b(a3, a1); b(a4, a3), b(a4, a2), b(a4, a1); . . . (10)

where b(h, k) = 1
2 (h− 1)(k− 1). If ρt−1 ≤ N < ρt, the total number B of moves

is at most N times the sum of the first t elements of this sequence. Therefore
(see exercise 41) we can prove that the worst-case running time is much better
than order N1.5:

Theorem I. The running time for Algorithm D is O(Nec
√

ln N ) when the
increments hs are defined by (8). Here c =

√
8 ln ρ and the constant implied

by O depends on ρ.

This asymptotic upper bound is not especially important as N → ∞,
because Pratt’s sequence does better. The main point of Theorem I is that
a sequence of increments with the practical growth rate hs ≈ ρs can have a
running time that is guaranteed to be O(N1+ϵ) for arbitrarily small ϵ > 0, when
any value ρ > 1 is given.

Let’s consider practical sizes of N more carefully by looking at the total
running time of Program D, namely (9B+10NT +13T−10S−3A+1)u. Table 5
shows the average running time for various sequences of increments when N = 8.
For this small value of N, bookkeeping operations are the most significant part
of the cost, and the best results are obtained when t = 1; hence for N = 8
we are better off using simple straight insertion. (The average running time of
Program S when N = 8 is only 191.85u.) Curiously, the best two-pass algorithm
occurs when h1 = 6, since a large value of S is more important here than a
small value of B. Similarly, the three increments 3 2 1 minimize the average
number of moves, but they do not lead to the best three-pass sequence. It may
be of interest to record here some “worst-case” permutations that maximize the
number of moves, since the general construction of such permutations is still
unknown:

h2 = 5, h1 = 3, h0 = 1: 8 5 2 6 3 7 4 1 (19 moves)
h2 = 3, h1 = 2, h0 = 1: 8 3 5 7 2 4 6 1 (17 moves)
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Table 5
ANALYSIS OF ALGORITHM D WHEN N = 8

Increments Aave Bave S T MIX time
1 1.718 14.000 1 1 204.85u

2 1 2.667 9.657 3 2 235.91u
3 1 2.917 9.100 4 2 220.15u
4 1 3.083 10.000 5 2 217.75u
5 1 2.601 10.000 6 2 209.20u
6 1 2.135 10.667 7 2 206.60u
7 1 1.718 12.000 8 2 209.85u

4 2 1 3.500 8.324 7 3 274.42u
5 3 1 3.301 8.167 9 3 253.60u
3 2 1 3.320 7.829 6 3 280.50u

As N grows larger we have a slightly different picture. Table 6 shows
the approximate number of moves for various sequences of increments when
N = 1000. The first few entries satisfy the divisibility constraints (5), so
that formula (6) and exercise 19 can be used; empirical tests were used to
get approximate average values for the other cases. Ten thousand random files
of 1000 elements were generated, and they each were sorted with each of the
sequences of increments. The standard deviation of the number of left-to-right
minima A was usually about 15; the standard deviation of the number of moves
B was usually about 300.

Some patterns are evident in this data, but the behavior of Algorithm D still
remains very obscure. Shell originally suggested using the increments ⌊N/2⌋,
⌊N/4⌋, ⌊N/8⌋, . . . , but this is undesirable when the binary representation of N
contains a long string of zeros. Lazarus and Frank [CACM 3 (1960), 20–22]
suggested using essentially the same sequence, but adding 1 when necessary,
to make all increments odd. Hibbard [CACM 6 (1963), 206–213] suggested
using increments of the form 2k− 1; Papernov and Stasevich suggested the form
2k + 1. Other natural sequences investigated in Table 6 involve the numbers
2k − (−1)k


/3 and (3k − 1)/2, as well as Fibonacci numbers and the Incerpi–

Sedgewick sequences (8) for ρ = 2.5 and ρ = 2. Pratt-like sequences {5p11q}
and {7p13q} are also shown, because they retain the asymptotic O


N(log N)2

behavior but have lower overhead costs for small N . The final examples in
Table 6 come from another sequence devised by Sedgewick, based on slightly
different heuristics [J. Algorithms 7 (1986), 159–173]:

hs =


9 · 2s − 9 · 2s/2 + 1, if s is even;
8 · 2s − 6 · 2(s+1)/2 + 1, if s is odd.

(11)

When these increments (h0, h1, h2, . . . ) = (1, 5, 19, 41, 109, 209, . . . ) are used,
Sedgewick proved that the worst-case running time is O(N4/3).

The minimum number of moves, about 6750, was observed for increments
of the form 2k + 1, and also in the Incerpi–Sedgewick sequence for ρ = 2. But it
is important to realize that the number of moves is not the only consideration,
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Table 6
APPROXIMATE BEHAVIOR OF ALGORITHM D WHEN N = 1000

Increments Aave Bave T

1 6 249750 1
17 1 65 41667 2

60 6 1 158 26361 3
140 20 4 1 262 21913 4

256 64 16 4 1 362 20459 5
576 192 48 16 4 1 419 20088 6

729 243 81 27 9 3 1 378 18533 7
512 256 128 64 32 16 8 4 2 1 493 16435 10

500 250 125 62 31 15 7 3 1 516 7655 9
501 251 125 63 31 15 7 3 1 558 7370 9
511 255 127 63 31 15 7 3 1 559 7200 9

255 127 63 31 15 7 3 1 436 7445 8
127 63 31 15 7 3 1 299 8170 7

63 31 15 7 3 1 190 9860 6
31 15 7 3 1 114 13615 5

513 257 129 65 33 17 9 5 3 1 561 6745 10
257 129 65 33 17 9 5 3 1 440 6995 9

129 65 33 17 9 5 3 1 304 7700 8
65 33 17 9 5 3 1 197 9300 7

33 17 9 5 3 1 122 12695 6
683 341 171 85 43 21 11 5 3 1 511 7365 10

341 171 85 43 21 11 5 3 1 490 7490 9
255 63 15 7 3 1 373 8620 6
257 65 17 5 3 1 375 8990 6
341 85 21 5 3 1 410 9345 6

377 233 144 89 55 34 21 13 8 5 3 2 1 518 7400 13
233 144 89 55 34 21 13 8 5 3 2 1 432 7610 12

377 144 55 21 8 3 1 456 8795 7
365 122 41 14 5 2 1 440 8085 7

364 121 40 13 4 1 437 8900 6
121 40 13 4 1 268 9790 5

336 112 48 21 7 3 1 432 7840 7
306 170 90 45 18 10 5 2 1 465 6755 9

169 91 49 13 7 1 349 8698 6
275 125 121 55 25 11 5 1 446 6788 8

190 84 37 16 7 3 1 359 7201 7
929 505 209 109 41 19 5 1 512 7725 8

505 209 109 41 19 5 1 519 7790 7
209 109 41 19 5 1 382 8165 6

even though it dominates the asymptotic running time. Since Program D takes
9B + 10(NT − S) + · · · units of time, we see that saving one pass is about as
desirable as saving 10

9 N moves; when N = 1000 we are willing to add 1111 moves
if we can save one pass. (The first pass is very quick, however, if ht−1 is near N ,
because NT − S = (N − ht−1) + · · ·+ (N − h0).)
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Empirical tests conducted by M. A. Weiss [Comp. J. 34 (1991), 88–91]
suggest strongly that the average number of moves performed by Algorithm D
with increments 2k − 1, . . . , 15, 7, 3, 1 is approximately proportional to N5/4.
More precisely, Weiss found that Bave ≈ 1.55N5/4 − 4.48N + O(N3/4) for
100 ≤ N ≤ 12000000 when these increments are used; the empirical standard
deviation was approximately .065N5/4. On the other hand, subsequent tests by
Marcin Ciura show that Sedgewick’s sequence (11) apparently makes Bave =
O

N(log N)2 or better. The standard deviation for sequence (11) is amazingly

small for N ≤ 106, but it mysteriously begins to “explode” when N passes 107.
Table 7 shows typical breakdowns of moves per pass obtained in three

random experiments, using increments of the forms 2k − 1, 2k + 1, and (11).
The same file of numbers was used in each case. The total number of moves,

s Bs, comes to 346152, 329532, 248788 in the three cases, so sequence (11) is
clearly superior in this example.

Table 7
MOVES PER PASS: EXPERIMENTS WITH N = 20000

hs Bs hs Bs hs Bs

4095 19458 4097 19459 3905 20714
2047 15201 2049 14852 2161 13428
1023 16363 1025 15966 929 18206
511 18867 513 18434 505 16444
255 23232 257 22746 209 21405
127 28034 129 27595 109 19605
63 33606 65 34528 41 26604
31 40350 33 45497 19 23441
15 66037 17 48717 5 38941
7 43915 9 38560 1 50000
3 24191 5 20271
1 16898 3 9448

1 13459

Although Algorithm D is gradually becoming better understood, more than
three decades of research have failed to turn up any grounds for making strong
assertions about what sequences of increments make it work best. If N is less
than 1000, a simple rule such as

Let h0 = 1, hs+1 = 3hs + 1, and stop with ht−1 when ht+1 > N (12)

seems to be about as good as any other. For larger values of N , Sedgewick’s
sequence (11) can be recommended. Still better results, possibly even of order
N log N , have been reported by N. Tokuda using the quantity ⌊2.25hs⌋ in place
of 3hs in (12); see Information Processing 92 1 (1992), 449–457.

List insertion. Let us now leave shellsort and consider other types of im-
provements over straight insertion. One of the most important general ways to
improve on a given algorithm is to examine its data structures carefully, since
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a reorganization of data structures to avoid unnecessary operations often leads
to substantial savings. Further discussion of this general idea appears in Section
2.4, where a rather complex algorithm is studied; let us consider how it applies
to a very simple algorithm like straight insertion. What is the most appropriate
data structure for Algorithm S?

Straight insertion involves two basic operations:
i) scanning an ordered file to find the largest key less than or equal to a given

key; and
ii) inserting a new record into a specified part of the ordered file.

The file is obviously a linear list, and Algorithm S handles this list by using
sequential allocation (Section 2.2.2); therefore it is necessary to move roughly
half of the records in order to accomplish each insertion operation. On the
other hand, we know that linked allocation (Section 2.2.3) is ideally suited to
insertion, since only a few links need to be changed; and the other operation,
sequential scanning, is about as easy with linked allocation as with sequential
allocation. Only one-way linkage is needed, since we always scan the list in the
same direction. Therefore we conclude that the right data structure for straight
insertion is a one-way, linked linear list. It also becomes convenient to revise
Algorithm S so that the list is scanned in increasing order:

Algorithm L (List insertion). Records R1, . . . , RN are assumed to contain keys
K1, . . . , KN, together with link fields L1, . . . , LN capable of holding the numbers
0 through N ; there is also an additional link field L0, in an artificial record
R0 at the beginning of the file. This algorithm sets the link fields so that the
records are linked together in ascending order. Thus, if p(1) . . . p(N) is the stable
permutation that makes Kp(1) ≤ · · · ≤ Kp(N), this algorithm will yield

L0 = p(1); Lp(i) = p(i + 1), for 1 ≤ i < N ; Lp(N) = 0. (13)

L1. [Loop on j.] Set L0 ← N, LN ← 0. (Link L0 acts as the “head” of the list,
and 0 acts as a null link; hence the list is essentially circular.) Perform steps
L2 through L5 for j = N−1, N−2, . . . , 1; then terminate the algorithm.

L2. [Set up p, q, K.] Set p ← L0, q ← 0, K ← Kj . (In the following steps we
will insert Rj into its proper place in the linked list, by comparing K with
the previous keys in ascending order. The variables p and q act as pointers
to the current place in the list, with p = Lq so that q is one step behind p.)

L3. [Compare K : Kp.] If K ≤ Kp, go to step L5. (We have found the desired
position for record R, between Rq and Rp in the list.)

L4. [Bump p, q.] Set q ← p, p ← Lq. If p > 0, go back to step L3. (If p = 0,
K is the largest key found so far; hence record R belongs at the end of the
list, between Rq and R0.)

L5. [Insert into list.] Set Lq ← j, Lj ← p.
This algorithm is important not only because it is a simple sorting method,

but also because it occurs frequently as part of other list-processing algorithms.
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Table 8 shows the first few steps that occur when our sixteen example numbers
are sorted; exercise 32 gives the final link setting.

Table 8
EXAMPLE OF LIST INSERTION

j: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Kj : − 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
Lj : 16 − − − − − − − − − − − − − − − 0
Lj : 16 − − − − − − − − − − − − − − 0 15
Lj : 14 − − − − − − − − − − − − − 16 0 15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Program L (List insertion). We assume that Kj is stored in INPUT+j (0 :3),
and Lj is stored in INPUT+j (4 :5). rI1 ≡ j; rI2 ≡ p; rI3 ≡ q; rA(0:3) ≡ K.
01 KEY EQU 0:3
02 LINK EQU 4:5
03 START ENT1 N 1 L1. Loop on j. j ← N.
04 ST1 INPUT(LINK) 1 L0 ← N.
05 STZ INPUT+N(LINK) 1 LN ← 0.
06 JMP 6F 1 Go to decrease j.
07 2H LD2 INPUT(LINK) N − 1 L2. Set up p, q, K. p← L0.
08 ENT3 0 N − 1 q ← 0.
09 LDA INPUT,1 N − 1 K ← Kj .
10 3H CMPA INPUT,2(KEY) B +N − 1−A L3. Compare K : Kp.
11 JLE 5F B +N − 1−A To L5 if K ≤ Kp.
12 4H ENT3 0,2 B L4. Bump p, q. q ← p.
13 LD2 INPUT,3(LINK) B p← Lq.
14 J2P 3B B To L3 if p > 0.
15 5H ST1 INPUT,3(LINK) N − 1 L5. Insert into list. Lq ← j.
16 ST2 INPUT,1(LINK) N − 1 Lj ← p.
17 6H DEC1 1 N
18 J1P 2B N N > j ≥ 1.

The running time of this program is 7B + 14N − 3A− 6 units, where N is
the length of the file, A + 1 is the number of right-to-left maxima, and B is the
number of inversions in the original permutation. (See the analysis of Program S.
Note that Program L does not rearrange the records in memory; this can be done
as in exercise 5.2–12, at a cost of about 20N additional units of time.) Program S
requires (9B + 10N − 3A− 9)u, and since B is about 1

4 N2, we can see that the
extra memory space used for the link fields has saved about 22 percent of the
execution time. Another 22 percent can be saved by careful programming (see
exercise 33), but the running time remains proportional to N2.

To summarize what we have done so far: We started with Algorithm S,
a simple and natural sorting algorithm that does about 1

4 N2 comparisons and
1
4 N2 moves. We improved it in one direction by considering binary insertion,
which does about N lg N comparisons and 1

4 N2 moves. Changing the data
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061 087 503 512 908

154 170 275 426 509 612 653 897

677 765

703

Fig. 13. Example of Wheeler’s tree insertion scheme.

structure slightly with “two-way insertion” cuts the number of moves down
to about 1

8 N2. Shellsort cuts the number of comparisons and moves to about
N7/6, for N in a practical range; as N → ∞ this number can be lowered to
order N(log N)2. Another way to improve on Algorithm S, using a linked data
structure, gave us the list insertion method, which does about 1

4 N2 comparisons,
0 moves, and 2N changes of links.

Is it possible to marry the best features of these methods, reducing the
number of comparisons to order N log N as in binary insertion, yet reducing
the number of moves as in list insertion? The answer is yes, by going to a
tree-structured arrangement. This possibility was first explored about 1957 by
D. J. Wheeler, who suggested using two-way insertion until it becomes necessary
to move some data; then instead of moving the data, a pointer to another area
of memory is inserted, and the same technique is applied recursively to all items
that are to be inserted into this new area of memory. Wheeler’s original method
[see A. S. Douglas, Comp. J. 2 (1959), 5] was a complicated combination of
sequential and linked memory, with nodes of varying size; for our 16 example
numbers the tree of Fig. 13 would be formed. A similar but simpler tree-insertion
scheme, using binary trees, was devised by C. M. Berners-Lee about 1958 [see
Comp. J. 3 (1960), 174, 184]. Since the binary tree method and its refinements
are quite important for searching as well as sorting, they are discussed at length
in Section 6.2.2.

Still another way to improve on straight insertion is to consider inserting
several things at a time. For example, if we have a file of 1000 items, and
if 998 of them have already been sorted, Algorithm S makes two more passes
through the file (first inserting R999, then R1000). We can obviously save time
if we compare K999 with K1000, to see which is larger, then insert them both
with one look at the file. A combined operation of this kind involves about 2

3 N
comparisons and moves (see exercise 3.4.2–5), instead of two passes each with
about 1

2 N comparisons and moves.
In other words, it is generally a good idea to “batch” operations that require

long searches, so that multiple operations can be done together. If we carry this
idea to its natural conclusion, we rediscover the method of sorting by merging,
which is so important it is discussed in Section 5.2.4.
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Address calculation sorting. Surely by now we have exhausted all possible
ways to improve on the simple method of straight insertion; but let’s look again!
Suppose you want to arrange several dozen books on your bookshelves, in order
by authors’ names, when the books are given to you in random order. You’ll
naturally try to estimate the final position of each book as you put it in place,
thereby reducing the number of comparisons and moves that you’ll have to make.
And the whole process will be somewhat more efficient if you start with a little
more shelf space than is absolutely necessary. This method was first suggested
for computer sorting by Isaac and Singleton, JACM 3 (1956), 169–174, and it
was developed further by Tarter and Kronmal, Proc. ACM National Conference
21 (1966), 331–337.

Address calculation sorting usually requires additional storage space propor-
tional to N, either to leave enough room so that excessive moving is not required,
or to maintain auxiliary tables that account for irregularities in the distribution
of keys. (See the “distribution counting” sort, Algorithm 5.2D, which is a form
of address calculation.) We can probably make the best use of this additional
memory space if we devote it to link fields, as in the list insertion method. In this
way we can also avoid having separate areas for input and output; everything
can be done in the same area of memory.

These considerations suggest that we generalize list insertion so that several
lists are kept, not just one. Each list is used for certain ranges of keys. We
make the important assumption that the keys are pretty evenly distributed, not
“bunched up” irregularly: The set of all possible values of the keys is partitioned
into M parts, and we assume a probability of 1/M that a given key falls into a
given part. Then we provide additional storage for M list heads, and each list
is maintained as in simple list insertion.

It is not necessary to give the algorithm in great detail here; the method
simply begins with all list heads set to Λ. As each new item enters, we first decide
which of the M parts its key falls into, then we insert it into the corresponding
list as in Algorithm L.

To illustrate this approach, suppose that the 16 keys used in our examples
are divided into the M = 4 ranges 0–249, 250–499, 500–749, 750–999. We
obtain the following configurations as the keys K1, K2, . . . , K16 are successively
inserted:

After After After Final
4 items: 8 items: 12 items: state:

List 1: 061, 087 061, 087, 170 061, 087, 154, 170 061, 087, 154, 170
List 2: 275 275, 426 275, 426
List 3: 503, 512 503, 512 503, 509, 512, 653 503, 509, 512, 612, 653, 677, 703
List 4: 897, 908 897, 908 765, 897, 908

(Program M below actually inserts the keys in reverse order, K16, . . . , K2, K1,
but the final result is the same.) Because linked memory is used, the varying-
length lists cause no storage allocation problem. All lists can be combined into
a single list at the end, if desired (see exercise 35).
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Program M (Multiple list insertion). In this program we make the same
assumptions as in Program L, except that the keys must be nonnegative, thus

0 ≤ Kj < (BYTESIZE)3.

The program divides this range into M equal parts by multiplying each key by a
suitable constant. The list heads are in locations HEAD+1 through HEAD+M.
01 KEY EQU 1:3
02 LINK EQU 4:5
03 START ENT2 M 1
04 STZ HEAD,2 M HEAD[p]← Λ.
05 DEC2 1 M
06 J2P *-2 M M ≥ p ≥ 1.
07 ENT1 N 1 j ← N.
08 2H LDA INPUT,1(KEY) N
09 MUL =M(1:3)= N rA← ⌊M ·Kj/ BYTESIZE3⌋.
10 STA *+1(1:2) N
11 ENT4 0 N rI4← rA.
12 ENT3 HEAD+1-INPUT,4 N q ← LOC(HEAD[rA]).
13 LDA INPUT,1 N K ← Kj .
14 JMP 4F N Jump to set p.
15 3H CMPA INPUT,2(KEY) B +N −A
16 JLE 5F B +N −A Jump to insert, if K ≤ Kp.
17 ENT3 0,2 B q ← p.
18 4H LD2 INPUT,3(LINK) B +N p← LINK(q).
19 J2P 3B B +N Jump if not end of list.
20 5H ST1 INPUT,3(LINK) N LINK(q)← LOC(Rj).
21 ST2 INPUT,1(LINK) N LINK(LOC(Rj))← p.
22 6H DEC1 1 N
23 J1P 2B N N ≥ j ≥ 1.

This program is written for general M, but it would be better to fix M
at some convenient value; for example, we might choose M = BYTESIZE, so
that the list heads could be cleared with a single MOVE instruction and the
multiplication sequence of lines 08–11 could be replaced by the single instruc-
tion LD4 INPUT,1(1:1). The most notable contrast between Program L and
Program M is the fact that Program M must consider the case of an empty list,
when no comparisons are to be made.

How much time do we save by having M lists? The total running time of
Program M is 7B + 31N − 3A + 4M + 2 units, where M is the number of lists
and N is the number of records sorted; A and B respectively count the right-to-
left maxima and the inversions present among the keys belonging to each list.
(In contrast to other time analyses of this section, the rightmost element of a
nonempty permutation is included in the count A.) We have already studied
A and B for M = 1, when their average values are respectively HN and 1

2

N
2

.

By our assumption about the distribution of keys, the probability that a given
list contains precisely n items at the conclusion of sorting is the “binomial”
probability 

N

n

 1
M

n
1− 1

M

N−n

. (14)
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Therefore the average values of A and B in the general case are

Aave = M

n


N

n

 1
M

n
1− 1

M

N−n

Hn; (15)

Bave = M

n


N

n

 1
M

n
1− 1

M

N−n 
n

2


2. (16)

Using the identity 
N

n


n

2


=


N

2


N − 2
n− 2


,

which is a special case of Eq. 1.2.6–(20), we can easily evaluate the sum in (16):

Bave = 1
2M


N

2


. (17)

And exercise 37 derives the standard deviation of B. But the sum in (15) is
more difficult. By Theorem 1.2.7A, we have

n


N

n


(M − 1)−nHn =


1− 1

M

−N

(HN − ln M) + ϵ,

0 < ϵ =

n>N

1
n


1− 1

M

n−N

<
M − 1
N + 1 ;

hence

Aave = M(HN − ln M) + δ, 0 < δ <
M2

N + 1


1− 1

M

N+1
. (18)

(This formula is practically useless when M ≈ N; exercise 40 gives a more
detailed analysis of the asymptotic behavior of Aave when M = N/α.)

By combining (17) and (18) we can deduce the total running time of Pro-
gram M, for fixed M as N →∞:

min 31N + M + 2,

ave 1.75N2/M + 31N − 3MHN + 3M ln M + 4M − 3δ − 1.75N/M + 2,

max 3.50N2 + 24.5N + 4M + 2. (19)

Notice that when M is not too large we are speeding up the average time by
a factor of M ; M = 10 will sort about ten times as fast as M = 1. However,
the maximum time is much larger than the average time; this reiterates the
assumption we have made about a fairly equal distribution of keys, since the
worst case occurs when all records pile onto the same list.

If we set M = N, the average running time of Program M is approximately
34.36N units; when M = 1

2 N it is slightly more, approximately 34.52N ; and
when M = 1

10 N it is approximately 48.04N. The additional cost of the sup-
plementary program in exercise 35, which links all M lists together in a single
list, raises these times respectively to 44.99N , 41.95N , and 52.74N . (Note that



102 SORTING 5.2.1

10N of these MIX time units are spent in the multiplication instruction alone!)
We have achieved a sorting method of order N, provided only that the keys are
reasonably well spread out over their range.

Improvements to multiple list insertion are discussed in Section 5.2.5.

EXERCISES
1. [10 ] Is Algorithm S a stable sorting algorithm?
2. [11 ] Would Algorithm S still sort numbers correctly if the relation “K ≥ Ki” in

step S3 were replaced by “K > Ki”?
x 3. [30 ] Is Program S the shortest possible sorting program that can be written for
MIX, or is there a shorter program that achieves the same effect?

x 4. [M20 ] Find the minimum and maximum running times for Program S, as a
function of N.

x 5. [M27 ] Find the generating function gN (z) =


k≥0 pNkz
k for the total running

time of Program S, where pNk is the probability that Program S takes exactly k units
of time, given a random permutation of {1, 2, . . . , N} as input. Also calculate the
standard deviation of the running time, given N.

6. [23 ] The two-way insertion method illustrated in Table 2 seems to imply that
there is an output area capable of holding up to 2N + 1 records, in addition to the
input area containing N records. Show that two-way insertion can be done using only
enough space for N + 1 records, including both input and output.

7. [M20 ] If a1 a2 . . . an is a random permutation of {1, 2, . . . , n}, what is the average
value of |a1 − 1| + |a2 − 2| + · · · + |an − n|? (This is n times the average net distance
traveled by a record during a sorting process.)

8. [10 ] Is Algorithm D a stable sorting algorithm?
9. [20 ] What are the quantities A and B, and the total running time of Program D,

corresponding to Tables 3 and 4? Discuss the relative merits of shellsort versus straight
insertion in this case.

x 10. [22 ] If Kj ≥ Kj−h when we begin step D3, Algorithm D specifies a lot of actions
that accomplish nothing. Show how to modify Program D so that this redundant
computation can be avoided, and discuss the merits of such a modification.
11. [M10 ] What path in a lattice like that of Fig. 11 corresponds to the permutation
1 2 5 3 7 4 8 6 9 11 10 12?
12. [M20 ] Prove that the area between a lattice path and the staircase path (as shown
in Fig. 11) equals the number of inversions in the corresponding 2-ordered permutation.

x 13. [M16 ] Explain how to put weights on the horizontal line segments of a lattice,
instead of the vertical segments, so that the sum of the horizontal weights on a lattice
path is the number of inversions in the corresponding 2-ordered permutation.
14. [M28 ] (a) Show that, in the sums defined by Eq. (2), we have A2n+1 = 2A2n.
(b) The general identity of exercise 1.2.6–26 simplifies to

k

2k + s

k


zk = 1√

1− 4z


1−
√

1− 4z
2z

s

if we set r = s, t = −2. By considering the sum


n A2nz
n, show that

A2n = n · 4n−1.
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x 15. [HM33 ] Let gn(z), ĝn(z), hn(z), and ĥn(z) be

ztotal weight of path summed over

all lattice paths of length 2n from (0, 0) to (n, n), where the weight is defined as in
Fig. 11, subject to certain restrictions on the vertices on the paths: For hn(z), there is
no restriction, but for gn(z) the path must avoid all vertices (i, j) with i > j; ĥn(z) and
ĝn(z) are defined similarly, except that all vertices (i, i) are also excluded, for 0 < i < n.
Thus

g0(z) = 1, g1(z) = z, g2(z) = z3 + z2; ĝ1(z) = z, ĝ2(z) = z3;

h0(z) = 1, h1(z) = z + 1, h2(z) = z3 + z2 + 3z + 1;

ĥ1(z) = z + 1, ĥ2(z) = z3 + z.

Find recurrence relations defining these functions, and use these relations to prove that

h′′
n(1) + h′

n(1) = 7n3 + 4n2 + 4n
30

2n
n


.

(The exact formula for the variance of the number of inversions in a random 2-ordered
permutation of {1, 2, . . . , 2n} is therefore easily found; it is asymptotically ( 7

30−
π
16 )n3.)

16. [M24 ] Find a formula for the maximum number of inversions in an h-ordered
permutation of {1, 2, . . . , n}. What is the maximum possible number of moves in
Algorithm D when the increments satisfy the divisibility condition (5)?
17. [M21 ] Show that, when N = 2t and hs = 2s for t > s ≥ 0, there is a unique
permutation of {1, 2, . . . , N} that maximizes the number of move operations performed
by Algorithm D. Find a simple way to describe this permutation.
18. [HM24 ] For large N the sum (6) can be estimated as

1
4
N2

ht−1
+
√
π

8


N3/2h

1/2
t−1

ht−2
+ · · ·+ N3/2h

1/2
1

h0


.

What real values of ht−1, . . . , h0 minimize this expression when N and t are fixed and
h0 = 1?

x 19. [M25 ] What is the average value of the quantity A in the timing analysis of
Program D, when the increments satisfy the divisibility condition (5)?
20. [M22 ] Show that Theorem K follows from Lemma L.
21. [M25 ] Let h and k be relatively prime positive integers, and say that an integer
is generable if it equals xh + yk for some nonnegative integers x and y. Show that n
is generable if and only if hk − h − k − n is not generable. (Since 0 is the smallest
generable integer, the largest nongenerable integer must therefore be hk − h − k. It
follows that Ki ≤ Kj whenever j− i ≥ (h−1)(k−1), in any file that is both h-ordered
and k-ordered.)
22. [M30 ] Prove that all integers ≥ 2s(2s − 1) can be represented in the form

a0(2s − 1) + a1(2s+1 − 1) + a2(2s+2 − 1) + · · · ,

where the aj ’s are nonnegative integers; but 2s(2s − 1) − 1 cannot be so represented.
Furthermore, exactly 2s−1(2s +s−3) positive integers are unrepresentable in this form.

Find analogous formulas when the quantities 2k − 1 are replaced by 2k + 1 in the
representations.
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x 23. [M22 ] Prove that if hs+2 and hs+1 are relatively prime, the number of moves that
occur while Algorithm D is using the increment hs is O(Nhs+2hs+1/hs). Hint: See
exercise 21.
24. [M42 ] Prove that Theorem P is best possible, in the sense that the exponent 3/2
cannot be lowered.

x 25. [M22 ] How many permutations of {1, 2, . . . , N} are both 3-ordered and 2-ordered?
What is the maximum number of inversions in such a permutation? What is the total
number of inversions among all such permutations?
26. [M35 ] Can a file of N elements have more than N inversions if it is 3-, 5-, and
7-ordered? Estimate the maximum number of inversions when N is large.
27. [M41 ] (Bjorn Poonen.) (a) Prove that there is a constant c such that if m of the
increments hs in Algorithm D are less than N/2, the running time is Ω(N1+c/

√
m) in the

worst case. (b) Consequently the worst-case running time is Ω(N(logN/ log logN)2)
for all sequences of increments.
28. [15 ] Which sequence of increments shown in Table 6 is best from the standpoint
of Program D, considering the average total running time?
29. [40 ] For N = 1000 and various values of t, find empirical values of ht−1, . . . ,
h1, h0 for which the average number of moves, Bave, is as small as you can make it.
30. [M23 ] (V. Pratt.) If the set of increments in shellsort is {2p3q | 2p3q < N},
show that the number of passes is approximately 1

2 (log2N)(log3N), and the number
of moves per pass is at most N/2. In fact, if Kj−h > Kj on any pass, we will always
have Kj−3h,Kj−2h ≤ Kj < Kj−h ≤ Kj+h,Kj+2h; so we may simply interchange Kj−h

and Kj and increase j by 2h, saving two of the comparisons of Algorithm D. Hint: See
exercise 25.

x 31. [25 ] Write a MIX program for Pratt’s sorting algorithm (exercise 30). Express its
running time in terms of quantities A, B, S, T, N analogous to those in Program D.
32. [10 ] What would be the final contents of L0 L1 . . . L16 if the list insertion sort in
Table 8 were carried through to completion?

x 33. [25 ] Find a way to improve on Program L so that its running time is dominated
by 5B instead of 7B, where B is the number of inversions. Discuss corresponding
improvements to Program S.
34. [M10 ] Verify formula (14).
35. [21 ] Write a MIX program to follow Program M, so that all lists are combined into
a single list. Your program should set the LINK fields exactly as they would have been
set by Program L.
36. [18 ] Assume that the byte size of MIX is 100, and that the sixteen example keys
in Table 8 are actually 503000, 087000, 512000, . . . , 703000. Determine the running
time of Programs L and M on this data, when M = 4.
37. [M25 ] Let gn(z) be the probability generating function for inversions in a random
permutation of n objects, Eq. 5.1.1–(11). Let gNM (z) be the corresponding generating
function for the quantity B in Program M. Show that

N≥0

gNM (z)M
NwN

N ! =


n≥0

gn(z)w
n

n!

M

,

and use this formula to derive the variance of B.
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38. [HM23 ] (R. M. Karp.) Let F (x) be a distribution function for a probability
distribution, with F (0) = 0 and F (1) = 1. Given that the keys K1,K2, . . . ,KN are
independently chosen at random from this distribution, and that M = cN, where c
is constant and N → ∞, prove that the average running time of Program M is O(N)
when F is sufficiently smooth. (A key K is inserted into list j when ⌊MK⌋ = j−1; this
occurs with probability F (j/M)− F ((j − 1)/M). Only the case F (x) = x, 0 ≤ x ≤ 1,
is treated in the text.)
39. [HM16 ] If a program runs in approximately A/M + B units of time and uses
C +M locations in memory, what choice of M gives the minimum time× space?

x 40. [HM24 ] Find the asymptotic value of the average number of right-to-left maxima
that occur in multiple list insertion, Eq. (15), when M = N/α for fixed α as N →∞.
Carry out the expansion to an absolute error of O(N−1), expressing your answer in
terms of the exponential integral function E1(z) =

∞
z
e−t dt/t.

41. [HM26 ] (a) Prove that the sum of the first


k
2


elements of (10) is O(ρ2k). (b) Now
prove Theorem I.
42. [HM43 ] Analyze the average behavior of shellsort when there are t = 3 increments
h, g, and 1, assuming that h ⊥ g. The first pass, h-sorting, obviously does a total of
1
4N

2/h+O(N) moves.
a) Prove that the second pass, g-sorting, does

√
π

8 (
√
h− 1/

√
h )N3/2/g + O(hN)

moves.
b) Prove that the third pass, 1-sorting, does ψ(h, g)N +O(g3h2) moves, where

ψ(h, g) = 1
2

g−1
d=1


j


h− 1
j


d

g

j
1− d

g

h−1−j
j − 

hd

g

 .
x 43. [25 ] Exercise 33 uses a sentinel to speed up Algorithm S, by making the test

“i > 0” unnecessary in step S4. This trick does not apply to Algorithm D. Nevertheless,
show that there is an easy way to avoid testing “i > 0” in step D5, thereby speeding
up the inner loop of shellsort.
44. [M25 ] If π = a1 . . . an and π′ = a′1 . . . a

′
n are permutations of {1, . . . , n}, say that

π ≤ π′ if the ith-largest element of {a1, . . . , aj} is less than or equal to the ith-largest
element of {a′1, . . . , a′j}, for 1 ≤ i ≤ j ≤ n. (In other words, π ≤ π′ if straight insertion
sorting of π is componentwise less than or equal to straight insertion sorting of π′ after
the first j elements have been inserted, for all j.)

a) If π is above π′ in the sense of exercise 5.1.1–12, does it follow that π ≤ π′?
b) If π ≤ π′, does it follow that πR ≥ π′R?
c) If π ≤ π′, does it follow that π is above π′?

5.2.2. Sorting by Exchanging
We come now to the second family of sorting algorithms mentioned near the
beginning of Section 5.2: “exchange” or “transposition” methods that system-
atically interchange pairs of elements that are out of order until no more such
pairs exist.

The process of straight insertion, Algorithm 5.2.1S, can be viewed as an
exchange method: We take each new record Rj and essentially exchange it with
its neighbors to the left until it has been inserted into the proper place. Thus
the classification of sorting methods into various families such as “insertion,”
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703 908 908 908 908 908 908 908 908 908
765 703 897 897 897 897 897 897 897 897
677 765 703 765 765 765 765 765 765 765
612 677 765 703 703 703 703 703 703 703
509 612 677 677 677 677 677 677 677 677
154 509 612 653 653 653 653 653 653 653
426 154 509 612 612 612 612 612 612 612
653 426 154 509 512 512 512 512 512 512
275 653 426 154 509 509 509 509 509 509
897 275 653 426 154 503 503 503 503 503
170 897 275 512 426 154 426 426 426 426
908 170 512 275 503 426 154 275 275 275
061 512 170 503 275 275 275 154 170 170
512 061 503 170 170 170 170 170 154 154
087 503 061 087 087 087 087 087 087 087
503 087 087 061 061 061 061 061 061 061

Fig. 14. The bubble sort in action.

“exchange,” “selection,” etc., is not always clear-cut. In this section, we shall
discuss four types of sorting methods for which exchanging is a dominant char-
acteristic: exchange selection (the “bubble sort”); merge exchange (Batcher’s
parallel sort); partition exchange (Hoare’s “quicksort”); and radix exchange.

The bubble sort. Perhaps the most obvious way to sort by exchanges is to
compare K1 with K2, interchanging R1 and R2 if the keys are out of order;
then do the same to records R2 and R3, R3 and R4, etc. During this sequence
of operations, records with large keys tend to move to the right, and in fact
the record with the largest key will move up to become RN. Repetitions of the
process will get the appropriate records into positions RN−1, RN−2, etc., so that
all records will ultimately be sorted.

Figure 14 shows this sorting method in action on the sixteen keys 503 087
512 . . . 703; it is convenient to represent the file of numbers vertically instead of
horizontally, with RN at the top and R1 at the bottom. The method is called
“bubble sorting” because large elements “bubble up” to their proper position,
by contrast with the “sinking sort” (that is, straight insertion) in which elements
sink down to an appropriate level. The bubble sort is also known by more prosaic
names such as “exchange selection” or “propagation.”

After each pass through the file, it is not hard to see that all records above
and including the last one to be exchanged must be in their final position, so
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they need not be examined on subsequent passes. Horizontal lines in Fig. 14
show the progress of the sorting from this standpoint; notice, for example, that
five more elements are known to be in final position as a result of Pass 4. On
the final pass, no exchanges are performed at all. With these observations we
are ready to formulate the algorithm.
Algorithm B (Bubble sort). Records R1, . . . , RN are rearranged in place; after
sorting is complete their keys will be in order, K1 ≤ · · · ≤ KN.
B1. [Initialize BOUND.] Set BOUND ← N. (BOUND is the highest index for which

the record is not known to be in its final position; thus we are indicating
that nothing is known at this point.)

B2. [Loop on j.] Set t ← 0. Perform step B3 for j = 1, 2, . . . , BOUND − 1, and
then go to step B4. (If BOUND = 1, this means go directly to B4.)

B3. [Compare/exchange Rj :Rj+1.] If Kj > Kj+1, interchange Rj ↔ Rj+1 and
set t← j.

B4. [Any exchanges?] If t = 0, terminate the algorithm. Otherwise set BOUND← t
and return to step B2.

B1. Initialize BOUND B2. Loop on j B3. Compare/exchange Rj :Rj+1

B4. Any exchanges?

1≤j<BOUND

j=BOUND
Yes

No

Fig. 15. Flow chart for bubble sorting.

Program B (Bubble sort). As in previous MIX programs of this chapter, we
assume that the items to be sorted are in locations INPUT+1 through INPUT+N.
rI1 ≡ t; rI2 ≡ j.
01 START ENT1 N 1 B1. Initialize BOUND. t← N.
02 1H ST1 BOUND(1:2) A BOUND← t.
03 ENT2 1 A B2. Loop on j. j ← 1.
04 ENT1 0 A t← 0.
05 JMP BOUND A Exit if j ≥ BOUND.
06 3H LDA INPUT,2 C B3. Compare/exchange Rj :Rj +1.
07 CMPA INPUT+1,2 C
08 JLE 2F C No exchange if Kj ≤ Kj+1.
09 LDX INPUT+1,2 B Rj+1
10 STX INPUT,2 B → Rj .
11 STA INPUT+1,2 B (old Rj)→ Rj+1.
12 ENT1 0,2 B t← j.
13 2H INC2 1 C j ← j + 1.
14 BOUND ENTX -*,2 A+ C rX← j − BOUND. [Instruction modified]
15 JXN 3B A+ C Do step B3 for 1 ≤ j < BOUND.
16 4H J1P 1B A B4. Any exchanges? To B2 if t > 0.
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Analysis of the bubble sort. It is quite instructive to analyze the running
time of Algorithm B. Three quantities are involved in the timing: the number
of passes, A; the number of exchanges, B; and the number of comparisons, C. If
the input keys are distinct and in random order, we may assume that they form
a random permutation of {1, 2, . . . , n}. The idea of inversion tables (Section
5.1.1) leads to an easy way to describe the effect of each pass in a bubble sort.

Theorem I. Let a1 a2 . . . an be a permutation of {1, 2, . . . , n}, and let b1 b2 . . . bn
be the corresponding inversion table. If one pass of the bubble sort, Algorithm B,
changes a1 a2 . . . an to the permutation a′

1 a′
2 . . . a′

n, the corresponding inversion
table b′1 b′2 . . . b′n is obtained from b1 b2 . . . bn by decreasing each nonzero entry
by 1.

Proof. If ai is preceded by a larger element, the largest preceding element is
exchanged with it, so bai decreases by 1. But if ai is not preceded by a larger
element, it is never exchanged with a larger element, so bai remains 0.

Thus we can see what happens during a bubble sort by studying the sequence
of inversion tables between passes. For example, the successive inversion tables
corresponding to Fig. 14 are

3 1 8 3 4 5 0 4 0 3 2 2 3 2 1 0
Pass 1

2 0 7 2 3 4 0 3 0 2 1 1 2 1 0 0
Pass 2

1 0 6 1 2 3 0 2 0 1 0 0 1 0 0 0
Pass 3

0 0 5 0 1 2 0 1 0 0 0 0 0 0 0 0

(1)

and so on. If b1 b2 . . . bn is the inversion table of the input permutation, we must
therefore have

A = 1 + max (b1, b2, . . . , bn), (2)
B = b1 + b2 + · · ·+ bn, (3)
C = c1 + c2 + · · ·+ cA, (4)

where cj is the value of BOUND − 1 at the beginning of pass j. In terms of the
inversion table,

cj = max {bi + i | bi ≥ j − 1} − j (5)
(see exercise 5). In example (1) we therefore have A = 9, B = 41, C = 15 + 14 +
13 + 12 + 7 + 5 + 4 + 3 + 2 = 75. The total MIX sorting time for Fig. 14 is 960u.

The distribution of B (the total number of inversions in a random permu-
tation) is very well-known to us by now; so we are left with A and C to be
analyzed.

The probability that A ≤ k is 1/n! times the number of inversion tables
having no components ≥ k, namely kn−kk!, when 1 ≤ k ≤ n. Hence the
probability that exactly k passes are required is

Ak = 1
n!


kn−kk!− (k − 1)n−k+1(k − 1)!


. (6)
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The mean value


kAk can now be calculated; summing by parts, it is

Aave = n + 1−
n

k=0

kn−kk!
n! = n + 1− P (n), (7)

where P (n) is the function whose asymptotic value was found to be


πn/2− 2
3 +

O

1/
√

n


in Eq. 1.2.11.3–(24). Formula (7) was stated without proof by E. H.
Friend in JACM 3 (1956), 150; a proof was given by Howard B. Demuth [Ph.D.
Thesis (Stanford University, October 1956), 64–68]. For the standard deviation
of A, see exercise 7.

The total number of comparisons, C, is somewhat harder to handle, and we
will consider only Cave. For fixed n, let fj(k) be the number of inversion tables
b1 . . . bn such that for 1 ≤ i ≤ n we have either bi < j − 1 or bi + i− j ≤ k; then

fj(k) = (j + k)! (j − 1)n−j−k, for 0 ≤ k ≤ n− j. (8)

(See exercise 8.) The average value of cj in (5) is


k

fj(k) − fj(k − 1)


/n!;

summing by parts and then summing on j leads to the formula

Cave =


n + 1
2


− 1

n!


1≤j≤n

0≤k≤n−j

fj(k) =


n + 1
2


− 1

n!


0≤r<s≤n

s! rn−s. (9)

Here the asymptotic value is not easy to determine, and we shall return to it at
the end of this section.

To summarize our analysis of the bubble sort, the formulas derived above
and below may be written as follows:

A =

min 1, ave N −


πN/2 + O(1), max N


; (10)

B =

min 0, ave 1

4 (N2 −N), max 1
2 (N2 −N)


; (11)

C =

min N − 1, ave 1

2

N2 −N ln N − (γ + ln 2− 1)N


+ O

√
N


,

max 1
2 (N2 −N)


. (12)

In each case the minimum occurs when the input is already in order, and the
maximum occurs when it is in reverse order; so the MIX running time is 8A +
7B + 8C + 1 =


min 8N + 1, ave 5.75N2 + O(N log N), max 7.5N2 + 0.5N + 1


.

Refinements of the bubble sort. It took a good deal of work to analyze the
bubble sort; and although the techniques used in the calculations are instructive,
the results are disappointing since they tell us that the bubble sort isn’t really
very good at all. Compared to straight insertion (Algorithm 5.2.1S), bubble
sorting requires a more complicated program and takes more than twice as long!

Some of the bubble sort’s deficiencies are easy to spot. For example, in
Fig. 14, the first comparison in Pass 4 is redundant, as are the first two in
Pass 5 and the first three in Passes 6 and 7. Notice also that elements can never
move to the left more than one step per pass; so if the smallest item happens
to be initially at the far right we are forced to make the maximum number of
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703 908 908 908 908 908 908 908
765 703 765 897 897 897 897 897
677 765 703 765 765 765 765 765
612 677 677 703 703 703 703 703
509 612 612 677 677 677 677 677
154 509 509 612 612 653 653 653
426 154 426 509 509 612 612 612
653 426 653 426 653 509 512 512
275 653 275 653 426 512 509 509
897 275 897 275 512 426 503 503
170 897 170 512 275 503 426 426
908 170 512 170 503 275 275 275
061 512 154 503 170 170 170 170
512 061 503 154 154 154 154 154
087 503 087 087 087 087 087 087
503 087 061 061 061 061 061 061

Fig. 16. The cocktail-shaker short [shic].

comparisons. This suggests the “cocktail-shaker sort,” in which alternate passes
go in opposite directions (see Fig. 16). The average number of comparisons is
slightly reduced by this approach. K. E. Iverson [A Programming Language
(Wiley, 1962), 218–219] made an interesting observation in this regard: If j is
an index such that Rj and Rj+1 are not exchanged with each other on two
consecutive passes in opposite directions, then Rj and Rj+1 must be in their
final position, and they need not enter into any subsequent comparisons. For
example, traversing 4 3 2 1 8 6 9 7 5 from left to right yields 3 2 1 4 6 8 7 5 9;
no interchange occurred between R4 and R5. When we traverse the latter
permutation from right to left, we find R4 still less than (the new) R5, so we
may immediately conclude that R4 and R5 need not participate in any further
comparisons.

But none of these refinements lead to an algorithm better than straight
insertion; and we already know that straight insertion isn’t suitable for large N .
Another idea is to eliminate most of the exchanges; since most elements simply
shift left one step during an exchange, we could achieve the same effect by viewing
the array differently, shifting the origin of indexing! But the resulting algorithm
is no better than straight selection, Algorithm 5.2.3S, which we shall study later.

In short, the bubble sort seems to have nothing to recommend it, except a
catchy name and the fact that it leads to some interesting theoretical problems.

Batcher’s parallel method. If we are going to have an exchange algorithm
whose running time is faster than order N2, we need to select some nonadjacent
pairs of keys (Ki, Kj) for comparisons; otherwise we will need as many exchanges
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as the original permutation has inversions, and the average number of inversions
is 1

4 (N2−N). An ingenious way to program a sequence of comparisons, looking
for potential exchanges, was discovered in 1964 by K. E. Batcher [see Proc.
AFIPS Spring Joint Computer Conference 32 (1968), 307–314]. His method is
not at all obvious; in fact, a fairly intricate proof is needed just to show that it
is valid, since comparatively few comparisons are made. We shall discuss two
proofs, one in this section and another in Section 5.3.4.

M1. Initialize p

M2. Initialize q, r, d M3. Loop on i

M4. Compare/exchange Ri+1 :Ri+d+1

M5. Loop on q M6. Loop on p
q=pi≥N−d

0≤ i<N−d
i& p= r

q>p p≥1

p=0

Fig. 17. Algorithm M.

Batcher’s sorting scheme is similar to shellsort, but the comparisons are
done in a novel way so that no propagation of exchanges is necessary. We can,
for instance, compare Table 1 (on the next page) to Table 5.2.1–3; Batcher’s
method achieves the effect of 8-sorting, 4-sorting, 2-sorting, and 1-sorting, but
the comparisons do not overlap. Since Batcher’s algorithm essentially merges
pairs of sorted subsequences, it may be called the “merge exchange sort.”
Algorithm M (Merge exchange). Records R1, . . . , RN are rearranged in place;
after sorting is complete their keys will be in order, K1 ≤ · · · ≤ KN. We assume
that N ≥ 2.
M1. [Initialize p.] Set p← 2t−1, where t = ⌈lg N ⌉ is the least integer such that

2t ≥ N. (Steps M2 through M5 will be performed for p = 2t−1, 2t−2, . . . , 1.)
M2. [Initialize q, r, d.] Set q ← 2t−1, r ← 0, d← p.
M3. [Loop on i.] For all i such that 0 ≤ i < N − d and i & p = r, do step M4.

Then go to step M5. (Here i & p means the “bitwise and” of the binary
representations of i and p; each bit of the result is zero except where both
i and p have 1-bits in corresponding positions. Thus 13 & 21 = (1101)2 &
(10101)2 = (00101)2 = 5. At this point, d is an odd multiple of p, and p is a
power of 2, so that i & p ̸= (i + d) & p; it follows that the actions of step M4
can be done for all relevant i in any order, even simultaneously.)

M4. [Compare/exchange Ri+1 :Ri+d+1.] If Ki+1 > Ki+d+1, interchange the
records Ri+1 ↔ Ri+d+1.

M5. [Loop on q.] If q ̸= p, set d← q − p, q ← q/2, r ← p, and return to M3.
M6. [Loop on p.] (At this point the permutation K1 K2 . . . KN is p-ordered.)

Set p← ⌊p/2⌋. If p > 0, go back to M2.
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Table 1
MERGE-EXCHANGE SORTING (BATCHER’S METHOD)

p q r d

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
8 8 0 8

503 087 154 061 612 170 765 275 653 426 512 509 908 677 897 703
4 8 0 4

503 087 154 061 612 170 765 275 653 426 512 509 908 677 897 703
4 4 4 4

503 087 154 061 612 170 512 275 653 426 765 509 908 677 897 703
2 8 0 2

154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703
2 4 2 6

154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703
2 2 2 2

154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703
1 8 0 1

061 154 087 503 170 512 275 612 426 653 509 765 677 897 703 908
1 4 1 7

061 154 087 503 170 512 275 612 426 653 509 765 677 897 703 908
1 2 1 3

061 154 087 275 170 426 503 509 512 653 612 703 677 897 765 908
1 1 1 1

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

Table 1 illustrates the method for N = 16. Notice that the algorithm sorts N
elements essentially by sorting R1, R3, R5, . . . and R2, R4, R6, . . . independently;
then we perform steps M2 through M5 for p = 1, in order to merge the two
sorted sequences together.

In order to prove that the magic sequence of comparison/exchanges specified
in Algorithm M actually will sort all possible input files R1 R2 . . . RN, we must
show only that steps M2 through M5 will merge all 2-ordered files R1 R2 . . . RN

when p = 1. For this purpose we can use the lattice-path method of Section
5.2.1 (see Fig. 11 on page 87); each 2-ordered permutation of {1, 2, . . . , N}
corresponds uniquely to a path from (0, 0) to (⌈N/2⌉, ⌊N/2⌋) in a lattice di-
agram. Figure 18(a) shows an example for N = 16, corresponding to the
permutation 1 3 2 4 10 5 11 6 13 7 14 8 15 9 16 12. When we perform step M3 with
p = 1, q = 2t−1, r = 0, d = 1, the effect is to compare (and possibly exchange)
R1 :R2, R3 :R4, etc. This operation corresponds to a simple transformation of
the lattice path, “folding” it about the diagonal if necessary so that it never
goes above the diagonal. (See Fig. 18(b) and the proof in exercise 10.) The
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next iterations of step M3 have p = r = 1, and d = 2t−1 − 1, 2t−2 − 1, . . . , 1;
their effect is to compare/exchange R2 :R2+d, R4 :R4+d, etc., and again there
is a simple lattice interpretation: The path is “folded” about a line 1

2 (d + 1)
units below the diagonal. See Fig. 18(c) and (d); eventually we get to the
path in Fig. 18(e), which corresponds to a completely sorted permutation. This
completes a “geometric proof” that Batcher’s algorithm is valid; we might call
it sorting by folding!

(a) (b) (c) (d) (e)

Fig. 18. A geometric interpretation of Batcher’s method, N = 16.

A MIX program for Algorithm M appears in exercise 12. Unfortunately the
amount of bookkeeping needed to control the sequence of comparisons is rather
large, so the program is less efficient than other methods we have seen. But it has
one important redeeming feature: All comparison/exchanges specified by a given
iteration of step M3 can be done simultaneously, on computers or networks that
allow parallel computations. With such parallel operations, sorting is completed
in 1

2⌈lg N ⌉

⌈lg N ⌉ + 1


steps, and this is about as fast as any general method

known. For example, 1024 elements can be sorted in only 55 parallel steps by
Batcher’s method. The nearest competitor is Pratt’s method (see exercise 5.2.1–
30), which uses either 40 or 73 steps, depending on how we count; if we are
willing to allow overlapping comparisons as long as no overlapping exchanges
are necessary, Pratt’s method requires only 40 comparison/exchange cycles to
sort 1024 elements. For further comments, see Section 5.3.4.

Quicksort. The sequence of comparisons in Batcher’s method is predetermined;
we compare the same pairs of keys each time, regardless of what we may have
learned about the file from previous comparisons. The same is largely true of the
bubble sort, although Algorithm B does make limited use of previous knowledge
in order to reduce its work at the right end of the file. Let us now turn to a
quite different strategy, which uses the result of each comparison to determine
what keys are to be compared next. Such a strategy is inappropriate for parallel
computations, but on computers that work serially it can be quite fruitful.

The basic idea of the following method is to take one record, say R1, and to
move it to the final position that it should occupy in the sorted file, say position s.
While determining this final position, we will also rearrange the other records so
that there will be none with greater keys to the left of position s, and none with
smaller keys to the right. Thus the file will have been partitioned in such a way



114 SORTING 5.2.2

that the original sorting problem is reduced to two simpler problems, namely
to sort R1 . . . Rs−1 and (independently) to sort Rs+1 . . . RN. We can apply the
same technique to each of these subfiles, until the job is done.

There are several ways to achieve such a partitioning into left and right
subfiles; the following scheme due to R. Sedgewick seems to be best, for reasons
that will become clearer when we analyze the algorithm: Keep two pointers,
i and j, with i = 2 and j = N initially. If Ri is eventually supposed to be
part of the left-hand subfile after partitioning (we can tell this by comparing
Ki with K1), increase i by 1, and continue until encountering a record Ri that
belongs to the right-hand subfile. Similarly, decrease j by 1 until encountering
a record Rj belonging to the left-hand subfile. If i < j, exchange Ri with Rj ;
then move on to process the next records in the same way, “burning the candle
at both ends” until i ≥ j. The partitioning is finally completed by exchanging
Rj with R1. For example, consider what happens to our file of sixteen numbers:

i j
↓ ↓

Initial file: [503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703]
1st exchange: 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
2nd exchange: 503 087 154 061 908 170 897 275 653 426 512 509 612 677 765 703
3rd exchange: 503 087 154 061 426 170 897 275 653 908 512 509 612 677 765 703
Pointers cross: 503 087 154 061 426 170 275 897 653 908 512 509 612 677 765 703
Partitioned file: [275 087 154 061 426 170]503 [897 653 908 512 509 612 677 765 703]

↑ ↑
j i

(In order to indicate the positions of i and j, keys Ki and Kj are shown here in
boldface type.)

Table 2 shows how our example file gets completely sorted by this approach,
in 11 stages. Brackets indicate subfiles that still need to be sorted; double
brackets identify the subfile of current interest. Inside a computer, the current
subfile can be represented by boundary values (l, r), and the other subfiles by
a stack of additional pairs (lk, rk). Whenever a file is subdivided, we put the
longer subfile on the stack and commence work on the shorter one, until we reach
trivially short files; this strategy guarantees that the stack will never contain
more than lg N entries (see exercise 20).

The sorting procedure just described may be called partition-exchange sort-
ing ; it is due to C. A. R. Hoare, whose interesting paper [Comp. J. 5 (1962),
10–15] contains one of the most comprehensive accounts of a sorting method that
has ever been published. Hoare dubbed his method “quicksort,” and that name
is not inappropriate, since the inner loops of the computation are extremely fast
on most computers. All comparisons during a given stage are made against the
same key, so this key may be kept in a register. Only a single index needs to
be changed between comparisons. Furthermore, the amount of data movement
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Table 2
QUICKSORTING

(l, r) Stack

[[503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703]] (1,16) −
[[275 087 154 061 426 170]] 503 [897 653 908 512 509 612 677 765 703] (1,6) (8,16)
[[170 087 154 061]] 275 426 503 [897 653 908 512 509 612 677 765 703] (1,4) (8,16)
[[061 087 154]] 170 275 426 503 [897 653 908 512 509 612 677 765 703] (1,3) (8,16)
061 [[087 154]] 170 275 426 503 [897 653 908 512 509 612 677 765 703] (2,3) (8,16)
061 087 154 170 275 426 503 [[897 653 908 512 509 612 677 765 703]] (8,16) −
061 087 154 170 275 426 503 [[765 653 703 512 509 612 677]] 897 908 (8,14) −
061 087 154 170 275 426 503 [[677 653 703 512 509 612]] 765 897 908 (8,13) −
061 087 154 170 275 426 503 [[509 653 612 512]] 677 703 765 897 908 (8,11) −
061 087 154 170 275 426 503 509 [[653 612 512]] 677 703 765 897 908 (9,11) −
061 087 154 170 275 426 503 509 [[512 612]] 653 677 703 765 897 908 (9,10) −
061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908 − −

is quite reasonable; the computation in Table 2, for example, makes only 17
exchanges.

The bookkeeping required to control i, j, and the stack is not difficult, but
it makes the quicksort partitioning procedure most suitable for fairly large N .
Therefore the following algorithm uses another strategy after the subfiles have
become short.

Algorithm Q (Quicksort). Records R1, . . . , RN are rearranged in place; after
sorting is complete their keys will be in order, K1 ≤ · · · ≤ KN. An auxiliary
stack with at most ⌊lg N⌋ entries is needed for temporary storage. This algorithm
follows the quicksort partitioning procedure described in the text above, with
slight modifications for extra efficiency:
a) We assume the presence of artificial keys K0 = −∞ and KN+1 = +∞ such

that
K0 ≤ Ki ≤ KN+1 for 1 ≤ i ≤ N. (13)

(Equality is allowed.)
b) Subfiles of M or fewer elements are left unsorted until the very end of the

procedure; then a single pass of straight insertion is used to produce the final
ordering. Here M ≥ 1 is a parameter that should be chosen as described in
the text below. (This idea, due to R. Sedgewick, saves some of the overhead
that would be necessary if we applied straight insertion directly to each small
subfile, unless locality of reference is significant.)

c) Records with equal keys are exchanged, although it is not strictly necessary
to do so. (This idea, due to R. C. Singleton, keeps the inner loops fast and
helps to split subfiles nearly in half when equal elements are present; see
exercise 18.)

Q1. [Initialize.] If N ≤ M, go to step Q9. Otherwise set the stack empty, and
set l← 1, r ← N.
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Q1. Initialize
Q2. Begin
new stage

Q3. Compare Ki :K Q4. Compare K :Kj

Q5. Test i :jQ6. Exchange

Q7. Put on stackQ8. Take
off stack

Q9. Straight
insertion sort

N≤M

≥

< <

≥

<

≥

Both subfile
lengths ≤M

Stack
empty

Fig. 19. Partition-exchange sorting (quicksort).

Q2. [Begin new stage.] (We now wish to sort the subfile Rl . . . Rr; from the
nature of the algorithm, we have r ≥ l + M, and Kl−1 ≤ Ki ≤ Kr+1 for
l ≤ i ≤ r.) Set i← l, j ← r +1; and set K ← Kl. (The text below discusses
alternative choices for K that might be better.)

Q3. [Compare Ki :K.] (At this point the file has been rearranged so that

Kk ≤ K for l − 1 ≤ k ≤ i, K ≤ Kk for j ≤ k ≤ r + 1; (14)

and l ≤ i < j.) Increase i by 1; then if Ki < K, repeat this step. (Since
Kj ≥ K, the iteration must terminate with i ≤ j.)

Q4. [Compare K :Kj .] Decrease j by 1; then if K < Kj , repeat this step. (Since
K ≥ Ki−1, the iteration must terminate with j ≥ i− 1.)

Q5. [Test i :j.] (At this point, (14) holds except for k = i and k = j; also
Ki ≥ K ≥ Kj , and r ≥ j ≥ i − 1 ≥ l.) If j ≤ i, interchange Rl ↔ Rj and
go to step Q7.

Q6. [Exchange.] Interchange Ri ↔ Rj and go back to step Q3.
Q7. [Put on stack.] (Now the subfile Rl . . . Rj . . . Rr has been partitioned so

that Kk ≤ Kj for l − 1 ≤ k ≤ j and Kj ≤ Kk for j ≤ k ≤ r + 1.) If
r− j ≥ j − l > M, insert (j+1, r) on top of the stack, set r ← j − 1, and go
to Q2. If j− l > r− j > M, insert (l, j−1) on top of the stack, set l← j +1,
and go to Q2. (Each entry (a, b) on the stack is a request to sort the subfile
Ra . . . Rb at some future time.) Otherwise if r−j > M ≥ j− l, set l← j +1
and go to Q2; or if j − l > M ≥ r − j, set r ← j − 1 and go to Q2.

Q8. [Take off stack.] If the stack is nonempty, remove its top entry (l′, r′), set
l← l′, r ← r′, and return to step Q2.

Q9. [Straight insertion sort.] For j = 2, 3, . . . , N, if Kj−1 > Kj do the following
operations: Set K ← Kj , R ← Rj , i ← j − 1; then set Ri+1 ← Ri and
i ← i − 1 one or more times until Ki ≤ K; then set Ri+1 ← R. (This
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is Algorithm 5.2.1S, modified as suggested in exercise 5.2.1–10 and answer
5.2.1–33. Step Q9 may be omitted if M = 1. Caution: The final straight
insertion might conceal bugs in steps Q1–Q8; don’t trust an implementation
just because it gives the correct answers!)
The corresponding MIX program is rather long, but not complicated; in fact,

a large part of the coding is devoted to step Q7, which just fools around with
the variables in a very straightforward way.

Program Q (Quicksort). Records to be sorted appear in locations INPUT+1
through INPUT+N; assume that locations INPUT and INPUT+N+1 contain, respec-
tively, the smallest and largest values possible in MIX. The stack is kept in
locations STACK+1, STACK+2, . . . ; see exercise 20 for the exact number of locations
to set aside for the stack. rI2 ≡ l, rI3 ≡ r, rI4 ≡ i, rI5 ≡ j, rI6 ≡ size of stack,
rA ≡ K ≡ R. We assume that N > M.

A EQU 2:3 First component of stack entry.
B EQU 4:5 Second component of stack entry.

01 START ENT6 0 1 Q1. Initialize. Set stack empty.
02 ENT2 1 1 l← 1.
03 ENT3 N 1 r ← N.
04 2H ENT5 1,3 A Q2. Begin new stage. j ← r + 1.
05 LDA INPUT,2 A K ← Kl.
06 ENT4 1,2 A i← l + 1.
07 JMP 0F A To Q3 omitting “i← i+ 1”.
08 6H LDX INPUT,4 B Q6. Exchange.
09 ENT1 INPUT,4 B
10 MOVE INPUT,5 B
11 STX INPUT,5 B Ri ↔ Rj .
12 3H INC4 1 C′ −A Q3. Compare Ki :K. i← i+ 1.
13 0H CMPA INPUT,4 C′

14 JG 3B C′ Repeat if K > Ki.
15 4H DEC5 1 C − C′ Q4. Compare K :Kj . j ← j − 1.
16 CMPA INPUT,5 C − C′

17 JL 4B C − C′ Repeat if K < Kj .
18 5H ENTX 0,5 B +A Q5. Test i : j.
19 DECX 0,4 B +A
20 JXP 6B B +A To Q6 if j > i.
21 LDX INPUT,5 A
22 STX INPUT,2 A Rl ← Rj .
23 STA INPUT,5 A Rj ← R.
24 7H ENT4 0,3 A Q7. Put on stack.
25 DEC4 M,5 A rI4← r − j −M.
26 ENT1 0,5 A
27 DEC1 M,2 A rI1← j − l −M.
28 ENTA 0,4 A
29 DECA 0,1 A
30 JANN 1F A Jump if r − j ≥ j − l.
31 J1NP 8F A′ To Q8 if M ≥ j − l > r − j.
32 J4NP 3F S′ +A′′ Jump if j − l > M ≥ r − j.
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33 INC6 1 S′ (Now j − l > r − j > M.)
34 ST2 STACK,6(A) S′

35 ENTA -1,5 S′

36 STA STACK,6(B) S′ (l, j−1)⇒ stack.
37 4H ENT2 1,5 S′ +A′′′ l← j + 1.
38 JMP 2B S′ +A′′′ To Q2.
39 1H J4NP 8F A−A′ To Q8 if M ≥ r − j ≥ j − l.
40 J1NP 4B S − S′ +A′′′ Jump if r − j > M ≥ j − l.
41 INC6 1 S − S′ (Now r − j ≥ j − l > M.)
42 ST3 STACK,6(B) S − S′

43 ENTA 1,5 S − S′

44 STA STACK,6(A) S − S′ (j+1, r)⇒ stack.
45 3H ENT3 -1,5 S − S′ +A′′ r ← j − 1.
46 JMP 2B S − S′ +A′′ To Q2.
47 8H LD2 STACK,6(A) S + 1 Q8. Take off stack.
48 LD3 STACK,6(B) S + 1
49 DEC6 1 S + 1 (l, r)⇐ stack.
50 J6NN 2B S + 1 To Q2 if stack wasn’t empty.
51 9H ENT5 2-N 1 Q9. Straight insertion sort. j ← 2.
52 2H LDA INPUT+N,5 N − 1 K ← Kj , R← Rj .
53 CMPA INPUT+N-1,5 N − 1 (In this loop, rI5 ≡ j −N.)
54 JGE 6F N − 1 Jump if K ≥ Kj−1.
55 3H ENT4 N-1,5 D i← j − 1.
56 4H LDX INPUT,4 E
57 STX INPUT+1,4 E Ri+1 ← Ri.
58 DEC4 1 E i← i− 1.
59 CMPA INPUT,4 E
60 JL 4B E Repeat if K < Ki.
61 5H STA INPUT+1,4 D Ri+1 ← R.
62 6H INC5 1 N − 1
63 J5NP 2B N − 1 2 ≤ j ≤ N.

Analysis of quicksort. The timing information shown with Program Q is not
hard to derive using Kirchhoff’s conservation law (Section 1.3.3) and the fact
that everything put onto the stack is eventually removed again. Kirchhoff’s law
applied at Q2 also shows that

A = 1 + (S′ + A′′′) + (S − S′ + A′′) + S = 2S + 1 + A′′ + A′′′, (15)

hence the total running time comes to

24A + 11B + 4C + 3D + 8E + 7N + 9S units,

where

A = number of partitioning stages;
B = number of exchanges in step Q6;
C = number of comparisons made while partitioning;
D = number of times Kj−1 > Kj during straight insertion (step Q9);
E = number of inversions removed by straight insertion;
S = number of times an entry is put on the stack. (16)
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By analyzing these six quantities, we will be able to make an intelligent choice of
the parameter M that specifies the “threshold” between straight insertion and
partitioning. The analysis is particularly instructive because the algorithm is
rather complex; the unraveling of this complexity makes a particularly good
illustration of important techniques. However, nonmathematical readers are
advised to skip to Eq. (25).

As in most other analyses of this chapter, we shall assume that the keys to
be sorted are distinct; exercise 18 indicates that equalities between keys do not
seriously harm the efficiency of Algorithm Q, and in fact they seem to help it.
Since the method depends only on the relative order of the keys, we may as well
assume that they are simply {1, 2, . . . , N} in some order.

We can attack this problem by considering the behavior of the very first
partitioning stage, which takes us to Q7 for the first time. Once this partitioning
has been achieved, both of the subfiles R1 . . . Rj−1 and Rj+1 . . . RN will be in
random order if the original file was in random order, since the relative order of
elements in these subfiles has no effect on the partitioning algorithm. Therefore
the contribution of subsequent partitionings can be determined by induction
on N.


This is an important observation, since some alternative algorithms that

violate this property have turned out to be significantly slower; see Computing
Surveys 6 (1974), 287–289.


Let s be the value of the first key, K1, and assume that exactly t of the first s

keys {K1, . . . , Ks} are greater than s. (Remember that the keys being sorted are
the integers {1, 2, . . . , N}.) If s = 1, it is easy to see what happens during the
first stage of partitioning: Step Q3 is performed once, step Q4 is performed N
times, and then step Q5 takes us to Q7. So the contributions of the first stage in
this case are A = 1, B = 0, C = N + 1. A similar but slightly more complicated
argument when s > 1 (see exercise 21) shows that the contributions of the first
stage to the total running time are, in general,

A = 1, B = t, C = N + 1, for 1 ≤ s ≤ N. (17)

To this we must add the contributions of the later stages, which sort subfiles of
s− 1 and N − s elements, respectively.

If we assume that the original file is in random order, it is now possible
to write down formulas that define the generating functions for the probability
distributions of A, B, . . . , S (see exercise 22). But for simplicity we shall consider
here only the average values of these quantities, AN , BN , . . . , SN, as functions
of N. Consider, for example, the average number of comparisons, CN, that occur
during the partitioning process. When N ≤ M, CN = 0. Otherwise, since any
given value of s occurs with probability 1/N, we have

CN = 1
N

N
s=1

(N + 1 + Cs−1 + CN−s)

= N + 1 + 2
N


0≤k<N

Ck, for N > M. (18)
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Similar formulas hold for other quantities AN, BN, DN, EN, SN (see exercise 23).
There is a simple way to solve recurrence relations of the form

xn = fn + 2
n


0≤k<n

xk, for n ≥ m. (19)

The first step is to get rid of the summation sign: Since

(n + 1)xn+1 = (n + 1)fn+1 + 2


0≤k≤n

xk,

nxn = nfn + 2


0≤k<n

xk,

we may subtract, obtaining

(n + 1)xn+1 − nxn = gn + 2xn, where gn = (n + 1)fn+1 − nfn.

Now the recurrence takes the much simpler form

(n + 1)xn+1 = (n + 2)xn + gn, for n ≥ m. (20)

Any recurrence relation that has the general form

anxn+1 = bnxn + gn (21)

can be reduced to a summation if we multiply both sides by the “summation
factor” a0 a1 . . . an−1/b0 b1 . . . bn; we obtain

yn+1 = yn + cn, where yn = a0 . . . an−1

b0 . . . bn−1
xn, cn = a0 . . . an−1

b0 b1 . . . bn
gn. (22)

In our case (20), the summation factor is simply n!/(n + 2)! = 1/(n + 1)(n + 2),
so we find that the simple relation

xn+1

n + 2 = xn

n + 1 + (n + 1)fn+1 − nfn
(n + 1)(n + 2) , for n ≥ m, (23)

is a consequence of (19).
For example, if we set fn = 1/n, we get the unexpected result xn/(n + 1) =

xm/(m + 1) for all n ≥ m. If we set fn = n + 1, we get

xn/(n + 1) = 2/(n + 1) + 2/n + · · ·+ 2/(m + 2) + xm/(m + 1)
= 2 (Hn+1 −Hm+1) + xm/(m + 1),

for all n ≥ m. Thus we obtain the solution to (18) by setting m = M + 1 and
xn = 0 for n ≤M ; the required formula is

CN = (N + 1) (2HN+1 − 2HM+2 + 1)

≈ 2 (N + 1) ln


N + 1
M + 2


, for N > M. (24)

Exercise 6.2.2–8 proves that, when M = 1, the standard deviation of CN is
asymptotically


(21− 2π2)/3 N ; this is reasonably small compared to (24).
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The other quantities can be found in a similar way (see exercise 23); when
N > M we have

AN = 2 (N + 1)/(M + 2)− 1,

BN = 1
6 (N + 1)


2HN+1 − 2HM+2 + 1− 6/(M + 2)


+ 1

2 ,

DN = (N + 1)

1− 2HM+1/(M + 2)


,

EN = 1
6 (N + 1)M(M − 1)/(M + 2);

SN = (N + 1)/(2M + 3)− 1, for N > 2M + 1. (25)

The discussion above shows that it is possible to carry out an exact analysis
of the average running time of a fairly complex program, by using techniques
that we have previously applied only to simpler cases.

Formulas (24) and (25) can be used to determine the best value of M on a
particular computer. In MIX’s case, Program Q requires (35/3)(N + 1)HN+1 +
1
6 (N + 1)f(M)− 34.5 units of time on the average, for N > 2M + 1, where

f(M) = 8M − 70HM+2 + 71− 36 HM+1

M + 2 + 270
M + 2 + 54

2M + 3 . (26)

We want to choose M so that f(M) is a minimum, and a simple computer
calculation shows that M = 9 is best. The average running time of Program Q
is approximately 11.667(N + 1) ln N − 1.74N − 18.74 units when M = 9, for
large N.

So Program Q is quite fast, on the average, considering that it requires very
little memory space. Its speed is primarily due to the fact that the inner loops,
in steps Q3 and Q4, are extremely short — only three MIX instructions each (see
lines 12–14 and 15–17). The number of exchanges, in step Q6, is only about
1/6 of the number of comparisons in steps Q3 and Q4; hence we have saved a
significant amount of time by not comparing i to j in the inner loops.

But what is the worst case of Algorithm Q? Are there some inputs that it
does not handle efficiently? The answer to this question is quite embarrassing:
If the original file is already in order, with K1 < K2 < · · · < KN, each
“partitioning” operation is almost useless, since it reduces the size of the subfile
by only one element! So this situation (which ought to be easiest of all to sort)
makes quicksort anything but quick; the sorting time becomes proportional to
N2 instead of N lg N. (See exercise 25.) Unlike the other sorting methods we
have seen, Algorithm Q likes a disordered file.

Hoare suggested two ways to remedy the situation, in his original paper, by
choosing a better value of the test key K that governs the partitioning. One of
his recommendations was to choose a random integer q between l and r in the
last part of step Q2; we can change the instruction “K ← Kl” to

K ← Kq, R← Rq, Rq ← Rl, Rl ← R (27)

in that step. (The last assignment “Rl ← R” is necessary; otherwise step Q4
would stop with j = l − 1 when K is the smallest key of the subfile being
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partitioned.) According to Eqs. (25), such random integers need to be calculated
only 2 (N + 1)/(M + 2)− 1 times on the average, so the additional running time
is not substantial; and the random choice gives good protection against the
occurrence of the worst case. Even a mildly random choice of q should be safe.
Exercise 42 proves that, with truly random q, the probability of more than, say,
20N ln N comparisons will surely be less than 10−8.

Hoare’s second suggestion was to look at a small sample of the file and to
choose a median value of the sample. This approach was adopted by R. C.
Singleton [CACM 12 (1969), 185–187], who suggested letting Kq be the median
of the three values

Kl, K⌊(l+r)/2⌋, Kr. (28)

Singleton’s procedure cuts the number of comparisons down from 2N ln N to
about 12

7 N ln N (see exercise 29). It can be shown that BN is asymptotically
CN/5 instead of CN/6 in this case, so the median method slightly increases the
amount of time spent in transferring the data; the total running time therefore
decreases by roughly 8 percent. (See exercise 56 for a detailed analysis.) The
worst case is still of order N2, but such slow behavior will hardly ever occur.

W. D. Frazer and A. C. McKellar [JACM 17 (1970), 496–507] have suggested
taking a much larger sample consisting of 2k − 1 records, where k is chosen so
that 2k ≈ N/ ln N. The sample can be sorted by the usual quicksort method,
then inserted among the remaining records by taking k passes over the file
(partitioning it into 2k subfiles, bounded by the elements of the sample). Finally
the subfiles are sorted. The average number of comparisons required by such
a “samplesort” procedure is about the same as in Singleton’s median method,
when N is in a practical range, but it decreases to the asymptotic value N lg N
as N →∞.

An absolute guarantee of O(N log N) sorting time in the worst case, together
with fast running time on the average, can be obtained by combining quicksort
with other schemes. For example, D. R. Musser [Software Practice & Exper. 27
(1997), 983–993] has suggested adding a “depth of partitioning” component to
each entry on quicksort’s stack. If any subfile is found to have been subdivided
more than, say, 2 lg N times, we can abandon Algorithm Q and switch to Al-
gorithm 5.2.3H. The inner loop time remains unchanged, so the average total
running time remains almost the same as before.

Robert Sedgewick has analyzed a number of optimized variants of quicksort
in Acta Informatica 7 (1977), 327–356, and in CACM 21 (1978), 847–857,
22 (1979), 368. See also J. L. Bentley and M. D. McIlroy, Software Practice
& Exper. 23 (1993), 1249–1265, for a version of quicksort that has been tuned
up to fit the UNIX R⃝software library, based on 15 further years of experience.

Radix exchange. We come now to a method that is quite different from
any of the sorting schemes we have seen before; it makes use of the binary
representation of the keys, so it is intended only for binary computers. Instead
of comparing two keys with each other, this method inspects individual bits of
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the keys, to see if they are 0 or 1. In other respects it has the characteristics of
exchange sorting, and, in fact, it is rather similar to quicksort. Since it depends
on radix 2 representations, we call it “radix exchange sorting.” The algorithm
can be described roughly as follows:

i) Sort the sequence on its most significant binary bit, so that all keys that
have a leading 0 come before all keys that have a leading 1. This sorting is done
by finding the leftmost key Ki that has a leading 1, and the rightmost key Kj

with a leading 0. Then Ri and Rj are exchanged and the process is repeated
until i > j.
ii) Let F0 be the elements with leading bit 0, and let F1 be the others. Apply

the radix exchange sorting method to F0 (starting now at the second bit from
the left instead of the most significant bit), until F0 is completely sorted; then
do the same for F1.

For example, Table 3 shows how the radix exchange sort acts on our 16
random numbers, which have been converted to octal notation. Stage 1 in the
table shows the initial input, and after exchanging on the first bit we get to
stage 2. Stage 2 sorts the first group on bit 2, and stage 3 works on bit 3. (The
reader should mentally convert the octal notation to 10-bit binary numbers. For
example, 0232 stands for (0 010 011 010)2.) When we reach stage 5, after sorting
on bit 4, we find that each group remaining has but a single element, so this part
of the file need not be further examined. The notation “4[0232 0252 ]” means
that the subfile 0232 0252 is waiting to be sorted on bit 4 from the left. In this
particular case, no progress occurs when sorting on bit 4; we need to go to bit 5
before the items are separated.

The complete sorting process shown in Table 3 takes 22 stages, somewhat
more than the comparable number for quicksort (Table 2). Similarly, the number
of bit inspections, 82, is rather high; but we shall see that the number of bit
inspections for large N is actually less than the number of comparisons made
by quicksort, assuming a uniform distribution of keys. The total number of
exchanges in Table 3 is 17, which is quite reasonable. Note that bit inspections
never have to go past bit 7 here, although 10-bit numbers are being sorted.

As in quicksort, we can use a stack to keep track of the “boundary line
information” for waiting subfiles. Instead of sorting the smallest subfile first, it
is convenient simply to go from left to right, since the stack size in this case
can never exceed the number of bits in the keys being sorted. In the following
algorithm the stack entry (r, b) is used to indicate the right boundary r of a
subfile waiting to be sorted on bit b; the left boundary need not actually be
recorded in the stack — it is implicit because of the left-to-right nature of the
procedure.

Algorithm R (Radix exchange sort). Records R1, . . . , RN are rearranged in
place; after sorting is complete, their keys will be in order, K1 ≤ · · · ≤ KN. Each
key is assumed to be a nonnegative m-bit binary number, (a1 a2 . . . am)2; the ith
most significant bit, ai, is called “bit i” of the key. An auxiliary stack with
room for at most m− 1 entries is needed for temporary storage. This algorithm
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RADIX EXCHANGE SORTING

Stage l r b Stack

1 1[[0767 0127 1000 0075 1614 0252 1601 0423 1215 0652 0232 0775 1144 1245 1375 1277 ]] 1 16 1 −−
2 2[[0767 0127 0775 0075 0232 0252 0652 0423 ]]2[1215 1601 1614 1000 1144 1245 1375 1277 ] 1 8 2 (16,2)
3 3[[0252 0127 0232 0075 ]]3[0775 0767 0652 0423 ] 2[1215 1601 1614 1000 1144 1245 1375 1277 ] 1 4 3 (8,3)(16,2)
4 4[[0075 0127 ]]4[0232 0252 ] 3[0775 0767 0652 0423 ] 2[1215 1601 1614 1000 1144 1245 1375 1277 ] 1 2 4 (4,4)(8,3)(16,2)
5 0075 0127 4[[0232 0252 ]]3[0775 0767 0652 0423 ] 2[1215 1601 1614 1000 1144 1245 1375 1277 ] 3 4 4 (8,3)(16,2)
6 0075 0127 5[[0232 0252 ]]3[0775 0767 0652 0423 ] 2[1215 1601 1614 1000 1144 1245 1375 1277 ] 3 4 5 (8,3)(16,2)
7 0075 0127 0232 0252 3[[0775 0767 0652 0423 ]]2[1215 1601 1614 1000 1144 1245 1375 1277 ] 5 8 3 (16,2)
8 0075 0127 0232 0252 0423 4[[0767 0652 0775 ]]2[1215 1601 1614 1000 1144 1245 1375 1277 ] 6 8 4 (16,2)
9 0075 0127 0232 0252 0423 0652 5[[0767 0775 ]]2[1215 1601 1614 1000 1144 1245 1375 1277 ] 7 8 5 (16,2)

10 0075 0127 0232 0252 0423 0652 6[[0767 0775 ]]2[1215 1601 1614 1000 1144 1245 1375 1277 ] 7 8 6 (16,2)
11 0075 0127 0232 0252 0423 0652 7[[0767 0775 ]]2[1215 1601 1614 1000 1144 1245 1375 1277 ] 7 8 7 (16,2)
12 0075 0127 0232 0252 0423 0652 0767 0775 2[[1215 1601 1614 1000 1144 1245 1375 1277 ]] 9 16 2 −−
13 0075 0127 0232 0252 0423 0652 0767 0775 3[[1215 1277 1375 1000 1144 1245 ]]3[1614 1601 ] 9 14 3 (16,3)
14 0075 0127 0232 0252 0423 0652 0767 0775 4[[1144 1000 ]]4[1375 1277 1215 1245 ] 3[1614 1601 ] 9 10 4 (14,4)(16,3)
15 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 4[[1375 1277 1215 1245 ]]3[1614 1601 ] 11 14 4 (16,3)
16 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 5[[1245 1277 1215 ]]5[1375 ] 3[1614 1601 ] 11 13 5 (14,5)(16,3)
17 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 6[[1277 1245 ]]5[1375 ] 3[1614 1601 ] 12 13 6 (14,5)(16,3)
18 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1375 3[[1614 1601 ]] 15 16 3 −−
19 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1375 4[[1614 1601 ]] 15 16 4 −−
20 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1375 5[[1614 1601 ]] 15 16 5 −−
21 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1375 6[[1614 1601 ]] 15 16 6 −−
22 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1375 7[[1614 1601 ]] 15 16 7 −−
23 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1375 1601 1614 17 − − −−

The radix exchange method looks precisely once at every bit that is needed to determine the final order of the keys.
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essentially follows the radix exchange partitioning procedure described in the
text above; certain improvements in its efficiency are possible, as described in
the text and exercises below.

R1. [Initialize.] Set the stack empty, and set l← 1, r ← N, b← 1.
R2. [Begin new stage.] (We now wish to sort the subfile Rl . . . Rr on bit b;

from the nature of the algorithm, we have l ≤ r.) If l = r, go to step R10
(since a one-word file is already sorted). Otherwise set i← l, j ← r.

R3. [Inspect Ki for 1.] Examine bit b of Ki. If it is a 1, go to step R6.
R4. [Increase i.] Increase i by 1. If i ≤ j, return to step R3; otherwise go to

step R8.
R5. [Inspect Kj+1 for 0.] Examine bit b of Kj+1. If it is a 0, go to step R7.
R6. [Decrease j.] Decrease j by 1. If i ≤ j, go to step R5; otherwise go to

step R8.
R7. [Exchange Ri, Rj+1.] Interchange records Ri ↔ Rj+1; then go to step R4.
R8. [Test special cases.] (At this point a partitioning stage has been completed;

i = j + 1, bit b of keys Kl, . . . , Kj is 0, and bit b of keys Ki, . . . , Kr is 1.)
Increase b by 1. If b > m, where m is the total number of bits in the keys,
go to step R10. (In such a case, the subfile Rl . . . Rr has been sorted. This
test need not be made if there is no chance of having equal keys present in
the file.) Otherwise if j < l or j = r, go back to step R2 (all bits examined
were 1 or 0, respectively). Otherwise if j = l, increase l by 1 and go to
step R2 (there was only one 0 bit).

R9. [Put on stack.] Insert the entry (r, b) on top of the stack; then set r ← j
and go to step R2.

R10. [Take off stack.] If the stack is empty, we are done sorting; otherwise set
l← r + 1, remove the top entry (r′, b′) of the stack, set r ← r′, b← b′, and
return to step R2.

Program R (Radix exchange sort). The following MIX code uses essentially the
same conventions as Program Q. We have rI1 ≡ l − r, rI2 ≡ r, rI3 ≡ i, rI4 ≡ j,
rI5 ≡ m − b, rI6 ≡ size of stack, except that it proves convenient for certain
instructions (designated below) to leave rI3 = i − j or rI4 = j − i. Because of
the binary nature of radix exchange, this program uses the operations SRB (shift
right AX binary), JAE (jump A even), and JAO (jump A odd), defined in Section
4.5.2. We assume that N ≥ 2.
01 START ENT6 0 1 R1. Initialize. Set stack empty.
02 ENT1 1-N 1 l← 1.
03 ENT2 N 1 r ← N.
04 ENT5 M-1 1 b← 1.
05 JMP 1F 1 To R2 (omit testing l = r).
06 9H INC6 1 S R9. Put on stack. [rI4 = j−l]
07 ST2 STACK,6(A) S
08 ST5 STACK,6(B) S (r, b)⇒ stack.
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09 ENN1 0,4 S rI1← l − j.
10 ENT2 -1,3 S r ← j.
11 1H ENT3 0,1 A R2. Begin new stage. [rI3 = i−j]
12 ENT4 0,2 A i← l, j ← r. [rI3 = i−j]
13 3H INC3 0,4 C′ R3. Inspect Ki for 1.
14 LDA INPUT,3 C′

15 SRB 0,5 C′ units bit of rA← bit b of Ki.
16 JAE 4F C′ To R4 if it is 0.
17 6H DEC4 1,3 C′′ +X R6. Decrease j. j ← j − 1. [rI4 = j−i]
18 J4N 8F C′′ +X To R8 if j < i. [rI4 = j−i]
19 5H INC4 0,3 C′′ R5. Inspect Kj +1 for 0.
20 LDA INPUT+1,4 C′′

21 SRB 0,5 C′′ units bit of rA← bit b of Kj+1.
22 JAO 6B C′′ To R6 if it is 1.
23 7H LDA INPUT+1,4 B R7. Exchange Ri, Rj +1.
24 LDX INPUT,3 B
25 STX INPUT+1,4 B
26 STA INPUT,3 B
27 4H DEC3 -1,4 C′ −X R4. Increase i. i← i+ 1. [rI3 = i−j]
28 J3NP 3B C′ −X To R3 if i ≤ j. [rI3 = i−j]
29 INC3 0,4 A−X rI3← i.
30 8H J5Z 0F A R8. Test special cases. [rI4 unknown]
31 DEC5 1 A−G To R10 if b = m, else b← b+ 1.
32 ENT4 -1,3 A−G rI4← j.
33 DEC4 0,2 A−G rI4← j − r.
34 J4Z 1B A−G To R2 if j = r.
35 DEC4 0,1 A−G−R rI4← j − l.
36 J4N 1B A−G−R To R2 if j < l.
37 J4NZ 9B A−G−L−R To R9 if j ̸= l.
38 INC1 1 K l← l + 1.
39 2H J1NZ 1B K + S Jump if l ̸= r.
40 0H ENT1 1,2 S + 1 R10. Take off stack.
41 LD2 STACK,6(A) S + 1
42 DEC1 0,2 S + 1
43 LD5 STACK,6(B) S + 1 stack⇒ (r, b).
44 DEC6 1 S + 1
45 J6NN 2B S + 1 To R2 if stack was nonempty.

The running time of this radix exchange program depends on

A = number of stages encountered with l < r;
B = number of exchanges;
C = C ′ + C ′′ = number of bit inspections;
G = number of times b > m in step R8;
K = number of times b ≤ m, j = l in step R8; (29)
L = number of times b ≤ m, j < l in step R8;
R = number of times b ≤ m, j = r in step R8;
S = number of times things are entered onto the stack;
X = number of times j < i in step R6.
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By Kirchhoff’s law, S = A−G−K −L−R; so the total running time comes to
27A + 8B + 8C − 23G − 14K − 17L − 19R −X + 13 units. The bit-inspection
loops can be made somewhat faster, as shown in exercise 34, at the expense of
a more complicated program. It is also possible to increase the speed of radix
exchange by using straight insertion whenever r − l is sufficiently small, as we
did in Algorithm Q; but we shall not dwell on these refinements.

In order to analyze the running time of radix exchange, two kinds of input
data suggest themselves. We can

i) assume that N = 2m and that the keys to be sorted are simply the integers
0, 1, 2, . . . , 2m − 1 in random order; or

ii) assume that m = ∞ (unlimited precision) and that the keys to be sorted
are independent uniformly distributed real numbers in [0 . . 1).

The analysis of case (i) is relatively easy, so it has been left as an exercise for the
reader (see exercise 35). Case (ii) is comparatively difficult, so it has also been left
as an exercise (see exercise 38). The following table shows crude approximations
to the results of these analyses:

Quantity Case (i) Case (ii)
A N αN

B 1
4 N lg N 1

4 N lg N

C N lg N N lg N

G 1
2 N 0

K 0 1
2 N

L 0 1
2 (α− 1)N

R 0 1
2 (α− 1)N

S 1
2 N 1

2 N

X 1
2 N 1

2 N (30)

Here α = 1/ ln 2 ≈ 1.4427. Notice that the average number of exchanges, bit
inspections, and stack accesses is essentially the same for both kinds of data,
even though case (ii) takes about 44 percent more stages. Our MIX program
takes approximately 14.4 N ln N units of time, on the average, to sort N items
in case (ii), and this could be cut to about 11.5 N ln N using the suggestion of
exercise 34; the corresponding figure for Program Q is 11.7 N ln N, which can be
decreased to about 10.6 N ln N using Singleton’s median-of-three suggestion.

Thus radix exchange sorting takes about as long as quicksort, on the average,
when sorting uniformly distributed data; on some machines it is actually a little
quicker than quicksort. Exercise 53 indicates to what extent the process slows
down for a nonuniform distribution. It is important to note that our entire
analysis is predicated on the assumption that keys are distinct; radix exchange
as defined above is not especially efficient when equal keys are present, since it
goes through several time-consuming stages trying to separate sets of identical
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keys before b becomes > m. One plausible way to remedy this defect is suggested
in the answer to exercise 40.

Both radix exchange and quicksort are essentially based on the idea of
partitioning. Records are exchanged until the file is split into two parts: a left-
hand subfile, in which all keys are ≤ K, for some K, and a right-hand subfile
in which all keys are ≥ K. Quicksort chooses K to be an actual key in the
file, while radix exchange essentially chooses an artificial key K based on binary
representations. From a historical standpoint, radix exchange was discovered by
P. Hildebrandt, H. Isbitz, H. Rising, and J. Schwartz [JACM 6 (1959), 156–163],
about a year earlier than quicksort. Other partitioning schemes are also possible;
for example, John McCarthy has suggested setting K ≈ 1

2 (u + v), if all keys are
known to lie between u and v. Yihsiao Wang has suggested that the mean of
three key values such as (28) be used as the threshold for partitioning; he has
proved that the number of comparisons required to sort uniformly distributed
random data will then be asymptotic to 1.082N lg N .

Still another partitioning strategy has been proposed by M. H. van Emden
[CACM 13 (1970), 563–567]: Instead of choosing K in advance, we “learn”
what a good K might be, by keeping track of K ′ = max(Kl, . . . , Ki) and K ′′ =
min(Kj , . . . , Kr) as partitioning proceeds. We may increase i until encountering
a key greater than K ′, then decrease j until encountering a key less than K ′′, then
exchange and/or adjust K ′ and K ′′. Empirical tests on this “interval-exchange
sort” method indicate that it is slightly slower than quicksort; its running time
appears to be so difficult to analyze that an adequate theoretical explanation
will never be found, especially since the subfiles after partitioning are no longer
in random order.

A generalization of radix exchange to radices higher than 2 is discussed in
Section 5.2.5.

*Asymptotic methods. The analysis of exchange sorting algorithms leads to
some particularly instructive mathematical problems that enable us to learn
more about how to find the asymptotic behavior of functions. For example, we
came across the function

Wn = 1
n!


0≤r<s≤n

s! rn−s (31)

in (9), during our analysis of the bubble sort; what is its asymptotic value?
We can proceed as in our study of the number of involutions, Eq. 5.1.4–(41);

the reader will find it helpful to review the discussion at the end of Section 5.1.4
before reading further.

Inspection of (31) shows that the contribution for s = n is larger than that
for s = n− 1, etc.; this suggests replacing s by n− s. In fact, we soon discover
that it is most convenient to use the substitutions t = n− s + 1, m = n + 1, so
that (31) becomes

1
m

Wm−1 = 1
m!


1≤t<m

(m− t)!


0≤r<m−t

rt−1. (32)
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The inner sum has a well-known asymptotic series obtained from Euler’s sum-
mation formula, namely

0≤r<N

rt−1 = N t

t
− 1

2 (N t−1 − δt1) + B2

2! (t− 1)(N t−2 − δt2) + · · ·

= 1
t

k
j=0


t

j


Bj(N t−j − δtj) + O(N t−k) (33)

(see exercise 1.2.11.2–4); hence our problem reduces to studying sums of the
form

1
m!


1≤t<m

(m− t)! (m− t)ttk, k ≥ −1. (34)

As in Section 5.1.4 we can show that the value of this summand is negligi-
ble, O


exp(−nδ)


, whenever t is greater than m1/2+ϵ; hence we may put t =

O(m1/2+ϵ) and replace the factorials by Stirling’s approximation:

(m− t)! (m− t)t
m!

=


1− t

m
exp


t

12m2 −


t2

2m
+ t3

3m2 + t4

4m3 + t5

5m4


+ O(m−2+6ϵ)


.

We are therefore interested in the asymptotic value of

rk(m) =


1≤t<m

e−t2/2mtk, k ≥ −1. (35)

The sum could also be extended to the full range 1 ≤ t < ∞ without changing
its asymptotic value, since the values for t > m1/2+ϵ are negligible.

Let gk(x) = xke−x2 and fk(x) = gk

x/
√

2m

. When k ≥ 0, Euler’s

summation formula tells us that
0≤t<m

fk(t) =
 m

0
fk(x) dx +

p
j=1

Bj

j!

f

(j−1)
k (m)− f

(j−1)
k (0)


+ Rp,

Rp = (−1)p+1

p!

 m

0
Bp({x})f (p)

k (x) dx

=


1√
2m

p

O

 ∞

0

g(p)
k (y)

 dy


= O(m−p/2); (36)

hence we can get an asymptotic series for rk(m) whenever k ≥ 0 by using
essentially the same ideas we have used at the end of Section 5.1.4. But when
k = −1 the method breaks down, since f−1(0) is undefined; we can’t merely
sum from 1 to m either, because the remainders don’t give smaller and smaller
powers of m when the lower limit is 1. (This is the crux of the matter, and the
reader should pause to appreciate the problem before proceeding further.)
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To resolve the dilemma we can define g−1(x) = (e−x2 − 1)/x and f−1(x) =
g−1


x/
√

2m

; then f−1(0) = 0, and r−1(m) can be obtained from


0≤t<m f−1(t)

in a simple way. Equation (36) is now valid for k = −1, and the remaining
integral is well known,

2√
2m

 m

0
f−1(x) dx = 2

 m

0

e−x2/2m − 1
x

dx =
 m/2

0

e−y − 1
y

dy

=
 1

0

e−y − 1
y

dy +
 m/2

1

e−y

y
dy − ln m

2

= −γ − ln m + ln 2 + O(e−m/2),

by exercise 43.
Now we have enough facts and formulas to grind out the answer,

Wn = 1
2 m ln m + 1

2 (γ + ln 2)m− 2
3

√
2πm + 49

36 + O(n−1/2), m = n + 1, (37)

as shown in exercise 44. This completes our analysis of the bubble sort.
For the analysis of radix exchange sorting, we need to know the asymptotic

value of the finite sum

Un =

k≥2


n

k


(−1)k 1

2k−1 − 1 (38)

as n→∞. This question turns out to be harder than any of the other asymptotic
problems we have met so far; the elementary methods of power series expansions,
Euler’s summation formula, etc., turn out to be inadequate. The following
derivation has been suggested by N. G. de Bruijn.

To get rid of the cancellation effects of the large factors

n
k


(−1)k in (38),

we start by rewriting the sum as an infinite series

Un =

k≥2


n

k


(−1)k


j≥1

 1
2k−1

j
=


j≥1


2j(1− 2−j)n − 2j + n


. (39)

If we set x = n/2j , the summand is

2j(1− 2−j)n − 2j + n = n

x


1− x

n

n
− 1 + x


.

When x ≤ nϵ, we have
1− x

n

n
= exp


n ln


1− x

n


= exp


−x + x2 O(n−1)


, (40)

and this suggests approximating (39) by

Tn =

j≥1

(2je−n/2j

− 2j + n). (41)
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To justify this approximation, we have Un − Tn = Xn + Yn, where

Xn =

j≥1

2j<n1−ϵ


2j(1− 2−j)n − 2je−n/2j

[the terms for x > nϵ]

=

j≥1

2j<n1−ϵ

O(ne−n/2j

) [since 0 < 1−2−j < e−2−j ]

= O(n log n e−nϵ

) [since there are O(log n) terms];

and

Yn =

j≥1

2j≥n1−ϵ


2j(1− 2−j)n − 2je−n/2j

[the terms for x ≤ nϵ]

=

j≥1

2j≥n1−ϵ


e−n/2j n

2j
O(1)


[by (40)].

Our discussion below will demonstrate that the latter sum is O(1); consequently
Un − Tn = O(1). (See exercise 47.)

So far we haven’t applied any techniques that are really different from those
we have used before. But the study of Tn requires a new idea, based on simple
principles of complex variable theory: If x is any positive number, we have

e−x = 1
2πi

 1/2+i∞

1/2−i∞
Γ (z)x−z dz = 1

2π

 ∞

−∞
Γ ( 1

2 + it)x−(1/2+it) dt. (42)

To prove this identity, consider the path of integration shown in Fig. 20(a), where
N, N ′, and M are large. The value of the integral along this contour is the sum
of the residues inside, namely

0≤k<M

x−(−k) lim
z→−k

(z + k)Γ (z) =


0≤k<M

xk (−1)k
k! .

The integral on the top line is O
 1/2

−∞ |Γ (t + iN)|x−t dt

, and we have the well-

known bound

Γ (t + iN) = O

|t + iN |t−1/2e−t−πN/2 as N →∞.

[For properties of the gamma function see, for example, Erdélyi, Magnus, Ober-
hettinger, and Tricomi, Higher Transcendental Functions 1 (New York: McGraw–
Hill, 1953), Chapter 1.] Therefore the top line integral is quite negligible,
O

e−πN/2  1/2

−∞(N/xe)t dt

. The bottom line integral has a similar innocuous

behavior. For the integral along the left line we use the fact that
Γ
 1

2 + it−M


= Γ
 1

2 + it

/

−M + 1

2 + it


. . .

−1 + 1

2 + it


= Γ
 1

2 + it

O

1/(M − 1)!


;



132 SORTING 5.2.2

1
2
−iN ′−M 1

2
−iN ′

1
2
+iN1

2
+iN−M

0

(a)

− 3
2
−iN ′ M−iN ′

M+iN− 3
2
+iN

0

(b)

Fig. 20. Contours of integration for gamma-function identities.

hence the left-hand integral is O

xM−1/2/(M − 1)!

 ∞
−∞

Γ  1
2 + it

 dt. There-
fore as M, N, N ′ → ∞, only the right-hand integral survives, and this proves
(42). In fact, (42) remains valid if we replace 1

2 by any positive number.
The same argument can be used to derive many other useful relations

involving the gamma function. We can replace x−z by other functions of z;
or we can replace the constant 1

2 by other quantities. For example,

1
2πi

 −3/2+i∞

−3/2−i∞
Γ (z)x−z dz = e−x − 1 + x, (43)

and this is the critical quantity in our formula (41) for Tn:

Tn = n

j≥1

1
2πi

 −3/2+i∞

−3/2−i∞
Γ (z)(n/2j)−1−z dz. (44)

The sum may be placed inside the integrals, since its convergence is absolutely
well-behaved; we have

j≥1
(n/2j)w = nw


j≥1

(1/2w)j = nw/(2w − 1), when ℜ(w) > 0,

because |2w| = 2ℜ(w) > 1. Therefore

Tn = n

2πi

 −3/2+i∞

−3/2−i∞

Γ (z)n−1−z

2−1−z − 1 dz, (45)

and it remains to evaluate the latter integral.
This time we integrate along a path that extends far to the right, as in

Fig. 20(b). The top line integral is O(n1/2e−πN/2 M

−3/2 |M + iN |t dt), if 2iN ̸= 1,
and the bottom line integral is equally negligible, when N and N ′ are much
larger than M. The right-hand line integral is O(n−1−M

∞
−∞ |Γ (M + it)| dt).

Fixing M and letting N, N ′ →∞ shows that −Tn/n is O(n−1−M ) plus the sum
of the residues in the region −3/2 < ℜ(z) < M. The factor Γ (z) has simple
poles at z = −1 and z = 0, while n−1−z has no poles, and 1/(2−1−z − 1) has
simple poles when z = −1 + 2πik/ ln 2.
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The double pole at z = −1 is the hardest to handle. We can use the well-
known relation

Γ (z + 1) = exp(−γz + ζ(2)z2/2− ζ(3)z3/3 + ζ(4)z4/4− · · · ),

where ζ(s) = 1−s + 2−s + 3−s + · · · = H
(s)
∞ , to deduce the following expansions

when w = z + 1 is small:

Γ (z) = Γ (w + 1)
w(w − 1) = −w−1 + (γ − 1) + O(w),

n−1−z = 1− w ln n + O(w2),

1/(2−1−z − 1) = −w−1/ ln 2− 1
2 + O(w).

The residue at z = −1 is the coefficient of w−1 in the product of these three
formulas, namely 1

2 − (ln n + γ − 1)/ ln 2. Adding the other residues gives the
formula

Tn

n
= ln n + γ − 1

ln 2 − 1
2 + δ(n) + 2

n
+ O(n−M ), (46)

for arbitrarily large M, where δ(n) is a rather strange function,

δ(n) = 2
ln 2


k≥1
ℜ

Γ (−1− 2πik/ ln 2) exp(2πik lg n)


. (47)

Notice that δ(n) = δ(2n). The average value of δ(n) is zero, since the average
value of each term is zero. (We may assume that (lg n) mod 1 is uniformly
distributed, in view of the results about floating point numbers in Section 4.2.4.)
Furthermore, since |Γ (−1 + it)| =

π/(t(1 + t2) sinh πt)
1/2, it is not difficult to

show that δ(n)
 < 0.000000173; (48)

thus we may safely ignore the “wobbles” of δ(n) for practical purposes. For
theoretical purposes, however, we can’t obtain a valid asymptotic expansion of
Un without it; that is why Un is a comparatively difficult function to analyze.

From the definition of Tn in (41) we can see immediately that

T2n

2n
= Tn

n
+ 1− 1

n
+ e−n

n
. (49)

Therefore the error term O(n−M ) in (46) is essential; it cannot be replaced by
zero. However, exercise 54 presents another approach to the analysis, which
avoids such error terms by deriving a rather peculiar convergent series.

In summary, we have deduced the behavior of the difficult sum (38):

Un = n lg n + n


γ − 1
ln 2 −

1
2 + δ(n)


+ O(1). (50)

The gamma-function method we have used to obtain this result is a special case
of the general technique of Mellin transforms, which are extremely useful in the
study of radix-oriented recurrence relations. Other examples of this approach
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can be found in exercises 51–53 and in Section 6.3. An excellent introduction
to Mellin transforms and their applications to algorithmic analysis has been
presented by P. Flajolet, X. Gourdon, and P. Dumas in Theoretical Computer
Science 144 (1995), 3–58.

EXERCISES
1. [M20 ] Let a1 . . . an be a permutation of {1, . . . , n}, and let i and j be indices such

that i < j and ai > aj . Let a′1 . . . a′n be the permutation obtained from a1 . . . an by
interchanging ai and aj . Can a′1 . . . a

′
n have more inversions than a1 . . . an?

x 2. [M25 ] (a) What is the minimum number of exchanges that will sort the permuta-
tion 3 7 6 9 8 1 4 5 2? (b) In general, given any permutation π = a1 . . . an of {1, . . . , n},
let xch(π) be the minimum number of exchanges that will sort π into increasing order.
Express xch(π) in terms of “simpler” characteristics of π. (See exercise 5.1.4–41 for
another way to measure the disorder of a permutation.)

3. [10 ] Is the bubble sort Algorithm B a stable sorting algorithm?
4. [M23 ] If t = 1 in step B4, we could actually terminate Algorithm B immediately,

because the subsequent step B2 will do nothing useful. What is the probability that
t = 1 will occur in step B4 when sorting a random permutation?

5. [M25 ] Let b1 b2 . . . bn be the inversion table for the permutation a1 a2 . . . an. Show
that the value of BOUND after r passes of the bubble sort is max {bi + i | bi ≥ r}− r, for
0 ≤ r ≤ max (b1, . . . , bn).

6. [M22 ] Let a1 . . . an be a permutation of {1, . . . , n} and let a′1 . . . a′n be its in-
verse. Show that the number of passes to bubble-sort a1 . . . an is 1 + max (a′1 − 1,
a′2 − 2, . . . , a′n − n).

7. [M28 ] Calculate the standard deviation of the number of passes for the bubble
sort, and express it in terms of n and the function P (n). [See Eqs. (6) and (7).]

8. [M24 ] Derive Eq. (8).
9. [M48 ] Analyze the number of passes and the number of comparisons in the cock-

tail-shaker sorting algorithm. Note: See exercise 5.4.8–9 for partial information.
10. [M26 ] Let a1 a2 . . . an be a 2-ordered permutation of {1, 2, . . . , n}.

a) What are the coordinates of the endpoints of the aith step of the corresponding
lattice path? (See Fig. 11 on page 87.)

b) Prove that the comparison/exchange of a1 :a2, a3 :a4, . . . corresponds to folding
the path about the diagonal, as in Fig. 18(b).

c) Prove that the comparison/exchange of a2 :a2+d, a4 :a4+d, . . . corresponds to
folding the path about a line m units below the diagonal, as in Figs. 18(c), (d),
and (e), when d = 2m− 1.

x 11. [M25 ] What permutation of {1, 2, . . . , 16} maximizes the number of exchanges
done by Batcher’s algorithm?
12. [24 ] Write a MIX program for Algorithm M, assuming that MIX is a binary com-
puter with the operations AND, SRB. How much time does your program take to sort
the sixteen records in Table 1?
13. [10 ] Is Batcher’s method a stable sorting algorithm?
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14. [M21 ] Let c(N) be the number of key comparisons used to sort N elements by
Batcher’s method; this is the number of times step M4 is performed.

a) Show that c(2t) = 2c(2t−1) + (t− 1)2t−1 + 1, for t ≥ 1.
b) Find a simple expression for c(2t) as a function of t. Hint: Consider the sequence

xt = c(2t)/2t.
15. [M38 ] The object of this exercise is to analyze the function c(N) of exercise 14,
and to find a formula for c(N) when N = 2e1 + 2e2 + · · ·+ 2er, e1 > e2 > · · · > er ≥ 0.

a) Let a(N) = c(N +1)−c(N). Prove that a(2n) = a(n)+⌊lg (2n)⌋, and a(2n+1) =
a(n) + 1; hence

a(N) =

e1 + 1

2


− r(e1 − 1) + (e1 + e2 + · · ·+ er).

b) Let x(n) = a(n)− a(⌊n/2⌋), so that a(n) = x(n) + x(⌊n/2⌋) + x(⌊n/4⌋) + · · · . Let
y(n) = x(1)+x(2)+ · · ·+x(n); and let z(2n) = y(2n)−a(n), z(2n+1) = y(2n+1).
Prove that c(N + 1) = z(N) + 2z(⌊N/2⌋) + 4z(⌊N/4⌋) + · · · .

c) Prove that y(N) = N + (⌊N/2⌋+ 1)(e1 − 1)− 2e1 + 2.
d) Now put everything together and find a formula for c(N) in terms of the exponents

ej , holding r fixed.
16. [HM42 ] Find the asymptotic value of the average number of exchanges occurring
when Batcher’s method is applied to a random permutation of N distinct elements,
assuming that N is a power of two.

x 17. [20 ] Where in Algorithm Q do we use the fact that K0 and KN+1 have the values
postulated in (13)?

x 18. [20 ] Explain how the computation proceeds in Algorithm Q when all of the input
keys are equal. What would happen if the “<” signs in steps Q3 and Q4 were changed
to “≤” instead?
19. [15 ] Would Algorithm Q still work properly if a queue (first-in-first-out) were
used instead of a stack (last-in-first-out)?
20. [M20 ] What is the largest possible number of elements that will ever be on the
stack at once in Algorithm Q, as a function of M and N?
21. [20 ] Explain why the first partitioning phase of Algorithm Q takes the number of
comparisons and exchanges specified in (17), when the keys are distinct.
22. [M25 ] Let pkN be the probability that the quantity A in (16) will equal k, when
Algorithm Q is applied to a random permutation of {1, 2, . . . , N}, and let AN (z) =

k pkNz
k be the corresponding generating function. Prove that AN (z) = 1 for N ≤M ,

and AN (z) = z(1≤s≤N As−1(z)AN−s(z))/N for N > M. Find similar recurrence
relations defining the other probability distributions BN (z), CN (z), DN (z), EN (z),
SN (z).
23. [M23 ] Let AN, BN, DN, EN, SN be the average values of the corresponding
quantities in (16), when sorting a random permutation of {1, 2, . . . , N}. Find recur-
rence relations for these quantities, analogous to (18); and solve these recurrences to
obtain (25).
24. [M21 ] Algorithm Q obviously does a few more comparisons than it needs to, since
we can have i = j in step Q3 and even i > j in step Q4. How many comparisons CN

would be done on the average if we avoided all comparisons when i ≥ j?
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25. [M20 ] When the input keys are the numbers 1 2 . . . N in order, what are the exact
values of the quantities A, B, C, D, E, and S in the timing of Program Q? (Assume
that N > M.)

x 26. [M24 ] Construct an input file that makes Program Q go even more slowly than
it does in exercise 25. (Try to find a really bad case.)
27. [M28 ] (R. Sedgewick.) Consider the best case of Algorithm Q: Find a permutation
of {1, 2, . . . , 23} that takes the least time to be sorted when N = 23 and M = 3.
28. [M26 ] Find the recurrence relation analogous to (20) that is satisfied by the
average number of comparisons in Singleton’s modification of Algorithm Q (choosing
s as the median of {K1,K⌊(N+1)/2⌋,KN} instead of s = K1). Ignore the comparisons
made when computing the median value s.
29. [HM40 ] Continuing exercise 28, find the asymptotic value of the number of com-
parisons in Singleton’s “median of three” method.

x 30. [25 ] (P. Shackleton.) When multiword keys are being sorted, many sorting meth-
ods become progressively slower as the file gets closer to its final order, since equal
and nearly-equal keys require an inspection of several words to determine the proper
lexicographic order. (See exercise 5–5.) Files that arise in practice often involve such
keys, so this phenomenon can have a significant impact on the sorting time.

Explain how Algorithm Q can be extended to avoid this difficulty; within a subfile
in which the leading k words are known to have constant values for all keys, only the
(k + 1)st words of the keys should be inspected.

x 31. [20 ] (C. A. R. Hoare.) Suppose that, instead of sorting an entire file, we only
want to determine the mth smallest of a given set of n elements. Show that quicksort
can be adapted to this purpose, avoiding many of the computations required to do a
complete sort.
32. [M40 ] Find a simple closed form expression for Cnm, the average number of key
comparisons required to select the mth smallest of n elements by the “quickfind”
method of exercise 31. (For simplicity, let M = 1; that is, don’t assume the use of
a special technique for short subfiles.) What is the asymptotic behavior of C(2m−1)m,
the average number of comparisons needed to find the median of 2m − 1 elements by
Hoare’s method?

x 33. [15 ] Design an algorithm that rearranges all the numbers in a given table so
that all negative values precede all nonnegative ones. (The items need not be sorted
completely, just separated between negative and nonnegative.) Your algorithm should
use the minimum possible number of exchanges.
34. [20 ] How can the bit-inspection loops of radix exchange (in steps R3 through R6)
be speeded up?
35. [M23 ] Analyze the values of the frequencies A, B, C, G, K, L, R, S, and X that
arise in radix exchange sorting using “case (i) input.”
36. [M27 ] Given a sequence of numbers ⟨an⟩ = a0, a1, a2, . . . , define its binomial
transform ⟨ân⟩ = â0, â1, â2, . . . by the rule

ân =


k


n

k


(−1)kak.

a) Prove that ⟨ˆ̂an⟩ = ⟨an⟩.
b) Find the binomial transforms of the sequences ⟨1⟩; ⟨n⟩; ⟨


n
m


⟩, for fixed m; ⟨an⟩,

for fixed a; ⟨


n
m


an⟩, for fixed a and m.
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c) Suppose that a sequence ⟨xn⟩ satisfies the relation

xn = an + 21−n

k≥2


n

k


xk, for n ≥ 2; x0 = x1 = a0 = a1 = 0.

Prove that the solution to this recurrence is

xn =

k≥2


n

k


(−1)k 2k−1 âk

2k−1 − 1 = an +

k≥2


n

k


(−1)k âk

2k−1 − 1 .

37. [M28 ] Determine all sequences ⟨an⟩ such that ⟨ân⟩ = ⟨an⟩, in the sense of exer-
cise 36.

x 38. [M30 ] Find AN, BN, CN, GN, KN, LN, RN, and XN, the average values of the
quantities in (29), when radix exchange is applied to “case (ii) input.” Express your
answers in terms of N and the quantities

Un =

k≥2


n

k

 (−1)k

2k−1 − 1 Vn =

k≥2


n

k

 (−1)kk

2k−1 − 1 = n(Un − Un−1).

[Hint: See exercise 36.]
39. [20 ] The results shown in (30) indicate that radix exchange sorting involves about
1.44N partitioning stages when it is applied to random input. Prove that quicksort
will never require more than N stages; and explain why radix exchange often does.
40. [21 ] Explain how to modify Algorithm R so that it works with reasonable effi-
ciency when sorting files containing numerous equal keys.

x 41. [30 ] Devise a good way to exchange records Rl . . . Rr so that they are partitioned
into three blocks, with (i) Kk < K for l ≤ k < i; (ii) Kk = K for i ≤ k ≤ j; (iii)
Kk > K for j < k ≤ r. Schematically, the final arrangement should be

< K = K > K

l i j r

.

42. [HM32 ] For any real number c > 0, prove that the probability is less than e−c

that Algorithm Q will make more than (c + 1)(N + 1)HN comparisons when sorting
random data. (This upper bound is especially interesting when c is, say, N ϵ.)
43. [HM21 ] Prove that

 1
0 y

−1(e−y − 1) dy +
∞

1 y−1e−y dy = −γ. [Hint: Consider
lima→0+ y

a−1.]
44. [HM24 ] Derive (37) as suggested in the text.
45. [HM20 ] Explain why (43) is true, when x > 0.
46. [HM20 ] What is the value of (1/2πi)

 a+i∞
a−i∞ Γ (z)ns−zdz/(2s−z − 1), given that

s is a positive integer and 0 < a < s?
47. [HM21 ] Prove that


j≥1(n/2j)e−n/2j

is a bounded function of n.
48. [HM24 ] Find the asymptotic value of the quantity Vn defined in exercise 38, using
a method analogous to the text’s study of Un, obtaining terms up to O(1).
49. [HM24 ] Extend the asymptotic formula (47) for Un to O(n−1).
50. [HM24 ] Find the asymptotic value of the function

Umn =

k≥2


n

k


(−1)k 1

mk−1 − 1 ,
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when m is any fixed number greater than 1. (When m is an integer greater than 2,
this quantity arises in the study of generalizations of radix exchange, as well as the
trie memory search algorithms of Section 6.3.)

x 51. [HM28 ] Show that the gamma-function approach to asymptotic problems can be
used instead of Euler’s summation formula to derive the asymptotic expansion of the
quantity rk(m) in (35). (This gives us a uniform method for studying rk(m) for all k,
without relying on tricks such as the text’s introduction of g−1(x) = (e−x2 − 1)/x.)
52. [HM35 ] (N. G. de Bruijn.) What is the asymptotic behavior of the sum

Sn =

t≥1

 2n
n+ t


d(t),

where d(t) is the number of divisors of t? (Thus, d(1) = 1, d(2) = d(3) = 2, d(4) = 3,
d(5) = 2, etc. This question arises in connection with the analysis of a tree traversal
algorithm, exercise 2.3.1–11.) Find the value of Sn/

2n
n


to terms of O(n−1).

53. [HM42 ] Analyze the average number of bit inspections and exchanges done by
radix exchange when the input data consists of infinite-precision binary numbers in
[0 . . 1), each of whose bits is independently equal to 1 with probability p. (Only the
case p = 1

2 is discussed in the text; the methods we have used can be generalized to
arbitrary p.) Consider in particular the case p = 1/ϕ = .61803 . . . .
54. [HM24 ] (S. O. Rice.) Show that Un can be written

Un = (−1)n n!
2πi


C

dz

z(z − 1) . . . (z − n)
1

2z−1 − 1 ,

where C is a skinny closed curve encircling the points 2, 3, . . . , n. Changing C to an
arbitrarily large circle centered at the origin, derive the convergent series

Un = (Hn−1 − 1)n
ln 2 − n

2 + 2 + 2
ln 2


m≥1

ℜ (B(n+1,−1+ibm)),

where b = 2π/ ln 2, and B(n+1,−1+ibm) = Γ (n + 1)Γ (−1 + ibm)/Γ (n + ibm) =
n!/n

k=0(k − 1 + ibm).
x 55. [22 ] Show how to modify Program Q so that the partitioning element is the

median of the three keys (28), assuming that M > 1.
56. [M43 ] Analyze the average behavior of the quantities that occur in the running
time of Algorithm Q when the program has been modified to take the median of three
elements as in exercise 55. (See exercise 29.)

5.2.3. Sorting by Selection
Another important family of sorting techniques is based on the idea of repeated
selection. The simplest selection method is perhaps the following:

i) Find the smallest key; transfer the corresponding record to the output area;
then replace the key by the value ∞ (which is assumed to be higher than
any actual key).

ii) Repeat step (i). This time the second smallest key will be selected, since
the smallest key has been replaced by ∞.

iii) Continue repeating step (i) until N records have been selected.
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A selection method requires all of the input items to be present before sorting
may proceed, and it generates the final outputs one by one in sequence. This is
essentially the opposite of insertion, where the inputs are received sequentially
but we do not know any of the final outputs until sorting is completed.

Step (i) involves N−1 comparisons each time a new record is selected, and it
also requires a separate output area in memory. But we can obviously do better:
We can move the selected record into its proper final position, by exchanging it
with the record currently occupying that position. Then we need not consider
that position again in future selections, and we need not deal with infinite keys.
This idea yields our first selection sorting algorithm.

Algorithm S (Straight selection sort). Records R1, . . . , RN are rearranged in
place; after sorting is complete, their keys will be in order, K1 ≤ · · · ≤ KN.
Sorting is based on the method indicated above, except that it proves to be
more convenient to select the largest element first, then the second largest, etc.
S1. [Loop on j.] Perform steps S2 and S3 for j = N, N − 1, . . . , 2.
S2. [Find max(K1, . . . , Kj).] Search through keys Kj , Kj−1, . . . , K1 to find a

maximal one; let it be Ki, where i is as large as possible.
S3. [Exchange with Rj .] Interchange records Ri ↔ Rj . (Now records Rj , . . . , RN

are in their final position.)

S1. Loop on j S2. Find max(K1, . . . ,Kj) S3. Exchange with Rj

j=1

N≥j≥2

Fig. 21. Straight selection sorting.

Table 1 shows this algorithm in action on our sixteen example keys. Elements
that are candidates for the maximum during the right-to-left search in step S2
are shown in boldface type.

Table 1
STRAIGHT SELECTION SORTING

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
503 087 512 061 703 170 897 275 653 426 154 509 612 677 765 908
503 087 512 061 703 170 765 275 653 426 154 509 612 677 897 908
503 087 512 061 703 170 677 275 653 426 154 509 612 765 897 908
503 087 512 061 612 170 677 275 653 426 154 509 703 765 897 908
503 087 512 061 612 170 509 275 653 426 154 677 703 765 897 908
· · ·
061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908
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The corresponding MIX program is quite simple:

Program S (Straight selection sort). As in previous programs of this chapter,
the records in locations INPUT+1 through INPUT+N are sorted in place, on a full-
word key. rA ≡ current maximum, rI1 ≡ j − 1, rI2 ≡ k (the current search
position), rI3 ≡ i. Assume that N ≥ 2.
01 START ENT1 N-1 1 S1. Loop on j. j ← N.
02 2H ENT2 0,1 N − 1 S2. Find max(K1, . . . ,Kj). k ← j − 1.
03 ENT3 1,1 N − 1 i← j.
04 LDA INPUT,3 N − 1 rA← Ki.
05 8H CMPA INPUT,2 A
06 JGE *+3 A Jump if Ki ≥ Kk.
07 ENT3 0,2 B Otherwise set i← k,
08 LDA INPUT,3 B rA← Ki.
09 DEC2 1 A k ← k − 1.
10 J2P 8B A Repeat if k > 0.
11 LDX INPUT+1,1 N − 1 S3. Exchange with Rj .
12 STX INPUT,3 N − 1 Ri ← Rj .
13 STA INPUT+1,1 N − 1 Rj ← rA.
14 DEC1 1 N − 1
15 J1P 2B N − 1 N ≥ j ≥ 2.
The running time of this program depends on the number of items, N ; the
number of comparisons, A; and the number of changes to right-to-left maxima, B.
It is easy to see that

A =


N

2


= 1

2N(N − 1), (1)

regardless of the values of the input keys; hence only B is variable. In spite of the
simplicity of straight selection, this quantity B is not easy to analyze precisely.
Exercises 3 through 6 show that

B =

min 0, ave (N + 1)HN − 2N, max ⌊N2/4⌋


; (2)

in this case the maximum value turns out to be particularly interesting. The
standard deviation of B is of order N3/4; see exercise 7.

Thus the average running time of Program S is 2.5N2 + 3(N + 1)HN +
3.5N − 11 units, just slightly slower than straight insertion (Program 5.2.1S).
It is interesting to compare Algorithm S to the bubble sort (Algorithm 5.2.2B),
since bubble sorting may be regarded as a selection algorithm that sometimes
selects more than one element at a time. For this reason bubble sorting usually
does fewer comparisons than straight selection and it may seem to be preferable;
but in fact Program 5.2.2B is more than twice as slow as Program S! Bubble
sorting is handicapped by the fact that it does so many exchanges, while straight
selection involves very little data movement.

Refinements of straight selection. Is there any way to improve on the
selection method used in Algorithm S? For example, take the search for a
maximum in step S2; is there a substantially faster way to find a maximum?
The answer to the latter question is no!
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Lemma M. Every algorithm for finding the maximum of n elements, based on
comparing pairs of elements, must make at least n− 1 comparisons.

Proof. If we have made fewer than n− 1 comparisons, there will be at least two
elements that have never been found to be less than any others. Therefore we do
not know which of these two elements is larger, and we cannot have determined
the maximum.

Thus, any selection process that finds the largest element must perform at
least n−1 comparisons; and we might suspect that all sorting methods based on
n repeated selections are doomed to require Ω(n2) operations. But fortunately
Lemma M applies only to the first selection step; subsequent selections can make
use of previously gained information. For example, exercises 8 and 9 show that
a comparatively simple change to Algorithm S will cut the average number of
comparisons in half.

Consider the 16 numbers in Table 1; one way to save time on repeated
selections is to regard them as four groups of four. We can start by determining
the largest in each group, namely the respective keys

512, 908, 653, 765;

the largest of these four elements, 908, is then the largest of the entire file. To
get the second largest we need only look at 512, 653, 765, and the other three
elements of the group containing 908; the largest of {170, 897, 275} is 897, and
the largest of

512, 897, 653, 765
is 897. Similarly, to get the third largest element we determine the largest of
{170, 275} and then the largest of

512, 275, 653, 765.

Each selection after the first takes at most 5 additional comparisons. In general,
if N is a perfect square, we can divide the file into

√
N groups of

√
N elements

each; each selection after the first takes at most
√

N − 2 comparisons within
the group of the previously selected item, plus

√
N − 1 comparisons among the

“group leaders.” This idea is called quadratic selection; its total execution time
is O(N

√
N ), which is substantially better than order N2.

Quadratic selection was first published by E. H. Friend [JACM 3 (1956),
152–154], who pointed out that the same idea can be generalized to cubic,
quartic, and higher degrees of selection. For example, cubic selection divides the
file into 3√

N large groups, each containing 3√
N small groups, each containing 3√

N
records; the execution time is proportional to N

3√
N . If we carry this idea to its

ultimate conclusion we arrive at what Friend called “nth degree selecting,” based
on a binary tree structure. This method has an execution time proportional to
N log N ; we shall call it tree selection.

Tree selection. The principles of tree selection sorting are easy to understand
in terms of matches in a typical “knockout tournament.” Consider, for example,
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the results of the ping-pong contest shown in Fig. 22; at the bottom level, Kim
beats Sandy and Chris beats Lou, then in the next round Chris beats Kim, etc.

Chris

Chris Pat

Kim Chris Pat Robin

Kim Sandy Chris Lou Pat Ray Dale Robin

Fig. 22. A ping-pong tournament.

Figure 22 shows that Chris is the champion of the eight players, and 8−1 = 7
matches/comparisons were required to determine this fact. Pat is not necessarily
the second-best player; any of the people defeated by Chris, including the first-
round loser Lou, might possibly be second best. We can determine the second-
best player by having Lou play Kim, and the winner of that match plays Pat;
only two additional matches are required to find the second-best player, because
of the structure we have remembered from the earlier games.

In general, we can “output” the player at the root of the tree, and replay
the tournament as if that player had been sick and unable to play a good game.
Then the original second-best player will rise to the root; and to recalculate the
winners in the upper levels of the tree, only one path must be changed. It follows
that fewer than ⌈lg N⌉ further comparisons are needed to select the second-best
player. The same procedure will find the third-best, etc.; hence the total time for
such a selection sort will be roughly proportional to N log N , as claimed above.

Figure 23 shows tree selection sorting in action, on our 16 example numbers.
Notice that we need to know where the key at the root came from, in order to
know where to insert the next “−∞”. Therefore each branch node of the tree
should actually contain a pointer or index specifying the position of the relevant
key, instead of the key itself. It follows that we need memory space for N input
records, N − 1 pointers, and N output records or pointers to those records.
(If the output goes to tape or disk, of course, we don’t need to retain the output
records in high-speed memory.)

The reader should pause at this point and work exercise 10, because a good
understanding of the basic principles of tree selection will make it easier to
appreciate the remarkable improvements we are about to discuss.

One way to modify tree selection, essentially introduced by K. E. Iverson
[A Programming Language (Wiley, 1962), 223–227], does away with the need for
pointers by “looking ahead” in the following way: When the winner of a match
in the bottom level of the tree is moved up, the winning value can be replaced
immediately by −∞ at the bottom level; and whenever a winner moves up from
one branch to another, we can replace the corresponding value by the one that
should eventually move up into the vacated place (namely the larger of the two
keys below). Repeating this operation as often as possible converts Fig. 23(a)
into Fig. 24.
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512
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(a) Initial configuration.

512

512

512

503

503

897

897

897

897

897

653

653

653

509

509

765

765

765

765

677

677

170

170 275 426 154 612 703087 061 −∞

(b) Key 908 is replaced by −∞, and the second highest element moves up to the root.

512

512

512

512

512

503

503

509

509

509

509

170

170

275

275

275

426

426 154087 061 −∞ −∞ −∞

−∞

−∞

−∞ −∞

−∞

−∞ −∞

(c) Configuration after 908, 897, 765, 703, 677, 653, and 612 have been output.

Fig. 23. An example of tree selection sorting.

908

897 765

512 275 653 703

503 170 426 509 677

154 612

−∞ −∞

−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞087

061

Fig. 24. The Peter Principle applied to sorting. Everyone rises to their level of
incompetence in the hierarchy.
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Once the tree has been set up in this way we can proceed to sort by a “top-
down” method, instead of the “bottom up” method of Fig. 23: We output the
root, then move up its largest descendant, then move up the latter’s largest
descendant, and so forth. The process begins to look less like a ping-pong
tournament and more like a corporate system of promotions.

The reader should be able to see that this top-down method has the ad-
vantage that redundant comparisons of −∞ with −∞ can be avoided. (The
bottom-up approach finds −∞ omnipresent in the latter stages of sorting, but
the top-down approach can stop modifying the tree during each stage as soon
as a −∞ has been stored.)

Figures 23 and 24 are complete binary trees with 16 terminal nodes (see
Section 2.3.4.5), and it is convenient to represent such trees in consecutive
locations as shown in Fig. 25. Note that the parent of node number k is node
⌊k/2⌋, and its children are nodes 2k and 2k +1. This leads to another advantage
of the top-down approach, since it is often considerably simpler to go top-down
from node k to nodes 2k and 2k + 1 than bottom-up from node k to nodes k⊕ 1
and ⌊k/2⌋. (Here k⊕ 1 stands for k + 1 or k− 1, according as k is even or odd.)

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fig. 25. Sequential storage allocation for a complete binary tree.

Our examples of tree selection so far have more or less assumed that N is
a power of 2; but actually we can work with arbitrary N, since the complete
binary tree with N terminal nodes is readily constructed for any N.

Now we come to the crucial question: Can’t we do the top-down method
without using −∞ at all? Wouldn’t it be nice if the important information of
Fig. 24 were all in locations 1 through 16 of the complete binary tree, without the
useless “holes” containing −∞? Some reflection shows that it is indeed possible
to achieve this goal, not only eliminating −∞ but also avoiding the need for an
auxiliary output area. This line of thinking leads us to an important sorting
algorithm that was christened “heapsort” by its discoverer J. W. J. Williams
[CACM 7 (1964), 347–348].
Heapsort. Let us say that a file of keys K1, K2, . . . , KN is a heap if

K⌊j/2⌋ ≥ Kj for 1 ≤ ⌊j/2⌋ < j ≤ N. (3)
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Thus, K1 ≥ K2, K1 ≥ K3, K2 ≥ K4, etc.; this is exactly the condition that
holds in Fig. 24, and it implies in particular that the largest key appears “on top
of the heap,”

K1 = max (K1, K2, . . . , KN ). (4)
If we can somehow transform an arbitrary input file into a heap, we can sort the
elements by using a top-down selection procedure as described above.

An efficient approach to heap creation has been suggested by R. W. Floyd
[CACM 7 (1964), 701]. Let us assume that we have been able to arrange the file
so that

K⌊j/2⌋ ≥ Kj for l < ⌊j/2⌋ < j ≤ N, (5)
where l is some number≥ 1. (In the original file this condition holds vacuously for
l = ⌊N/2⌋, since no subscript j satisfies the condition ⌊N/2⌋ < ⌊j/2⌋ < j ≤ N.)
It is not difficult to see how to transform the file so that the inequalities in (5)
are extended to the case l = ⌊j/2⌋, working entirely in the subtree whose root
is node l. Then we can decrease l by 1, until condition (3) is finally achieved.
These ideas of Williams and Floyd lead to the following elegant algorithm, which
merits careful study:

Algorithm H (Heapsort). Records R1, . . . , RN are rearranged in place; after
sorting is complete, their keys will be in order, K1 ≤ · · · ≤ KN. First we
rearrange the file so that it forms a heap, then we repeatedly remove the top of
the heap and transfer it to its proper final position. Assume that N ≥ 2.
H1. [Initialize.] Set l← ⌊N/2⌋+ 1, r ← N.
H2. [Decrease l or r.] If l > 1, set l← l− 1, R← Rl, K ← Kl. (If l > 1, we are

in the process of transforming the input file into a heap; on the other hand
if l = 1, the keys K1 K2 . . . Kr presently constitute a heap.) Otherwise set
R ← Rr, K ← Kr, Rr ← R1, and r ← r − 1; if this makes r = 1, set
R1 ← R and terminate the algorithm.

H3. [Prepare for siftup.] Set j ← l. (At this point we have

K⌊k/2⌋ ≥ Kk for l < ⌊k/2⌋ < k ≤ r; (6)

and record Rk is in its final position for r < k ≤ N. Steps H3–H8 are called
the siftup algorithm; their effect is equivalent to setting Rl ← R and then
rearranging Rl, . . . , Rr so that condition (6) holds also for l = ⌊k/2⌋.)

H4. [Advance downward.] Set i ← j and j ← 2j. (In the following steps we
have i = ⌊j/2⌋.) If j < r, go right on to step H5; if j = r, go to step H6;
and if j > r, go to H8.

H5. [Find larger child.] If Kj < Kj+1, then set j ← j + 1.
H6. [Larger than K?] If K ≥ Kj , then go to step H8.
H7. [Move it up.] Set Ri ← Rj , and go back to step H4.
H8. [Store R.] Set Ri ← R. (This terminates the siftup algorithm initiated in

step H3.) Return to step H2.
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H1. Initialize H2. Decrease l or r

H3. Prepare
for siftup

H4. Advance
downward

H5. Find
larger child

H6. Larger
than K?

H7. Move
it up

H8. Store Rl=r=1

j>r

j=r

j<r

Yes

No

Fig. 26. Heapsort; dotted lines enclose the siftup algorithm.

Heapsort has sometimes been described as the algorithm, because of the
motion of l and r. The upper triangle represents the heap-creation phase, when
r = N and l decreases to 1; and the lower triangle represents the selection phase,
when l = 1 and r decreases to 1. Table 2 shows the process of heapsorting our
sixteen example numbers. (Each line in that table shows the state of affairs at
the beginning of step H2, and brackets indicate the position of l and r.)

Program H (Heapsort). The records in locations INPUT+1 through INPUT+N
are sorted by Algorithm H, with the following register assignments: rI1 ≡ l− 1,
rI2 ≡ r − 1, rI3 ≡ i, rI4 ≡ j, rI5 ≡ r − j, rA ≡ K ≡ R, rX ≡ Rj .
01 START ENT1 N/2 1 H1. Initialize. l← ⌊N/2⌋+ 1.
02 ENT2 N-1 1 r ← N.
03 1H DEC1 1 ⌊N/2⌋ l← l − 1.
04 LDA INPUT+1,1 ⌊N/2⌋ R← Rl, K ← Kl.
05 3H ENT4 1,1 P H3. Prepare for siftup. j ← l.
06 ENT5 0,2 P
07 DEC5 0,1 P rI5← r − j.
08 JMP 4F P To H4.
09 5H LDX INPUT,4 B +A−D H5. Find larger child.
10 CMPX INPUT+1,4 B +A−D
11 JGE 6F B +A−D Jump if Kj ≥ Kj+1.
12 INC4 1 C Otherwise set j ← j + 1.
13 DEC5 1 C
14 9H LDX INPUT,4 C +D rX← Rj .
15 6H CMPA INPUT,4 B +A H6. Larger than K?
16 JGE 8F B +A To H8 if K ≥ Kj .
17 7H STX INPUT,3 B H7. Move it up. Ri ← Rj .
18 4H ENT3 0,4 B + P H4. Advance downward. i← j.
19 DEC5 0,4 B + P rI5← rI5− j.
20 INC4 0,4 B + P j ← j + j.
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Table 2
EXAMPLE OF HEAPSORT

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 l r

503 087 512 061 908 170 897 275 [653 426 154 509 612 677 765 703] 9 16
503 087 512 061 908 170 897 [703 653 426 154 509 612 677 765 275] 8 16
503 087 512 061 908 170 [897 703 653 426 154 509 612 677 765 275] 7 16
503 087 512 061 908 [612 897 703 653 426 154 509 170 677 765 275] 6 16
503 087 512 061 [908 612 897 703 653 426 154 509 170 677 765 275] 5 16
503 087 512 [703 908 612 897 275 653 426 154 509 170 677 765 061] 4 16
503 087 [897 703 908 612 765 275 653 426 154 509 170 677 512 061] 3 16
503 [908 897 703 426 612 765 275 653 087 154 509 170 677 512 061] 2 16

[908 703 897 653 426 612 765 275 503 087 154 509 170 677 512 061] 1 16
[897 703 765 653 426 612 677 275 503 087 154 509 170 061 512] 908 1 15
[765 703 677 653 426 612 512 275 503 087 154 509 170 061] 897 908 1 14
[703 653 677 503 426 612 512 275 061 087 154 509 170] 765 897 908 1 13
[677 653 612 503 426 509 512 275 061 087 154 170] 703 765 897 908 1 12
[653 503 612 275 426 509 512 170 061 087 154] 677 703 765 897 908 1 11
[612 503 512 275 426 509 154 170 061 087] 653 677 703 765 897 908 1 10
[512 503 509 275 426 087 154 170 061] 612 653 677 703 765 897 908 1 9
[509 503 154 275 426 087 061 170] 512 612 653 677 703 765 897 908 1 8
[503 426 154 275 170 087 061] 509 512 612 653 677 703 765 897 908 1 7
[426 275 154 061 170 087] 503 509 512 612 653 677 703 765 897 908 1 6
[275 170 154 061 087] 426 503 509 512 612 653 677 703 765 897 908 1 5
[170 087 154 061] 275 426 503 509 512 612 653 677 703 765 897 908 1 4
[154 087 061] 170 275 426 503 509 512 612 653 677 703 765 897 908 1 3
[087 061] 154 170 275 426 503 509 512 612 653 677 703 765 897 908 1 2

21 J5P 5B B + P To H5 if j < r.
22 J5Z 9B P −A+D To H6 if j = r.
23 8H STA INPUT,3 P H8. Store R. Ri ← R.
24 2H J1P 1B P H2. Decrease l or r.
25 LDA INPUT+1,2 N − 1 If l = 1, set R← Rr, K ← Kr.
26 LDX INPUT+1 N − 1
27 STX INPUT+1,2 N − 1 Rr ← R1.
28 DEC2 1 N − 1 r ← r − 1.
29 J2P 3B N − 1 To H3 if r > 1.
30 STA INPUT+1 1 R1 ← R.

Although this program is only about twice as long as Program S, it is much
more efficient when N is large. Its running time depends on

P = N + ⌊N/2⌋ − 2, the number of siftup passes;
A, the number of siftup passes in which the key K finally lands

in an interior node of the heap;
B, the total number of keys promoted during siftups;
C, the number of times j ← j + 1 in step H5; and
D, the number of times j = r in step H4.
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These quantities are analyzed below; in practice they show comparatively little
fluctuation about their average values,

A ≈ 0.349N,

C ≈ 1
2 N lg N − 0.94N,

B ≈ N lg N − 1.87N,

D ≈ lg N.
(7)

For example, when N = 1000, four experiments on random input gave, respec-
tively, A = 371, 351, 341, 340; B = 8055, 8072, 8094, 8108; C = 4056, 4087,
4017, 4083; and D = 12, 14, 8, 13. The total running time,

7A + 14B + 4C + 20N − 2D + 15⌊N/2⌋ − 28,

is therefore approximately 16N lg N + 0.01N units on the average.
A glance at Table 2 makes it hard to believe that heapsort is very efficient;

large keys migrate to the left before we stash them at the right! It is indeed a
strange way to sort, when N is small; the sorting time for the 16 keys in Table 2
is 1068u, while the simple method of straight insertion (Program 5.2.1S) takes
only 514u. Straight selection (Program S) takes 853u.

For larger N, Program H is more efficient. It invites comparison with
shellsort (Program 5.2.1D) and quicksort (Program 5.2.2Q), since all three pro-
grams sort by comparisons of keys and use little or no auxiliary storage. When
N = 1000, the approximate average running times on MIX are

160000u for heapsort,
130000u for shellsort,
80000u for quicksort.

(MIX is a typical computer, but particular machines will of course yield somewhat
different relative values.) As N gets larger, heapsort will be superior to shell-
sort, but its asymptotic running time 16N lg N ≈ 23.08N ln N will never beat
quicksort’s 11.67N ln N. A modification of heapsort discussed in exercise 18 will
speed up the process by substantially reducing the number of comparisons, but
even this improvement falls short of quicksort.

On the other hand, quicksort is efficient only on the average, and its worst
case is of order N2. Heapsort has the interesting property that its worst case
isn’t much worse than the average: We always have

A ≤ 1.5N, B ≤ N⌊lg N⌋, C ≤ N⌊lg N⌋, (8)

so Program H will take no more than 18N⌊lg N⌋+ 38N units of time, regardless
of the distribution of the input data. Heapsort is the first sorting method we
have seen that is guaranteed to be of order N log N. Merge sorting, discussed in
Section 5.2.4 below, also has this property, but it requires more memory space.

Largest in, first out. We have seen in Chapter 2 that linear lists can often be
classified in a meaningful way by the nature of the insertion and deletion oper-
ations that make them grow and shrink. A stack has last-in-first-out behavior,
in the sense that every deletion removes the youngest item in the list — the item
that was inserted most recently of all items currently present. A simple queue
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has first-in-first-out behavior, in the sense that every deletion removes the oldest
remaining item. In more complex situations, such as the elevator simulation of
Section 2.2.5, we want a smallest-in-first-out list, where every deletion removes
the item having the smallest key. Such a list may be called a priority queue,
since the key of each item reflects its relative ability to get out of the list quickly.
Selection sorting is a special case of a priority queue in which we do N insertions
followed by N deletions.

Priority queues arise in a wide variety of applications. For example, some
numerical iterative schemes are based on repeated selection of an item having
the largest (or smallest) value of some test criterion; parameters of the selected
item are changed, and it is reinserted into the list with a new test value, based on
the new values of its parameters. Operating systems often make use of priority
queues for the scheduling of jobs. Exercises 15, 29, and 36 mention other typical
applications of priority queues, and many other examples will appear in later
chapters.

How shall we implement priority queues? One of the obvious methods is
to maintain a sorted list, containing the items in order of their keys. Inserting
a new item is then essentially the same problem we have treated in our study
of insertion sorting, Section 5.2.1. Another even more obvious way to deal with
priority queues is to keep the list of elements in arbitrary order, selecting the
appropriate element each time a deletion is required by finding the largest (or
smallest) key. The trouble with both of these obvious approaches is that they
require Ω(N) steps either for insertion or deletion, when there are N entries in
the list, so they are very time-consuming when N is large.

In his original paper on heapsorting, Williams pointed out that heaps are
ideally suited to large priority queue applications, since we can insert or delete
elements from a heap in O(log N) steps; furthermore, all elements of the heap
are compactly located in consecutive memory locations. The selection phase of
Algorithm H is a sequence of deletion steps of a largest-in-first-out process: To
delete the largest element K1 we remove it and sift KN up into a new heap of
N − 1 elements. (If we want a smallest-in-first-out algorithm, as in the elevator
simulation, we can obviously change the definition of heap so that “≥” becomes
“≤” in (3); for convenience, we shall consider only the largest-in-first-out case
here.) In general, if we want to delete the largest item and then insert a new
element x, we can do the siftup procedure with

l = 1, r = N, and K = x.

If we wish to insert an element x without a prior deletion, we can use the bottom-
up procedure of exercise 16.

A linked representation for priority queues. An efficient way to represent
priority queues as linked binary trees was discovered in 1971 by Clark A. Crane
[Technical Report STAN-CS-72-259 (Computer Science Department, Stanford
University, 1972)]. His method requires two link fields and a small count in
every record, but it has the following advantages over a heap:
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i) When the priority queue is being treated as a stack, the insertion and
deletion operations take a fixed time independent of the queue size.
ii) The records never move, only the pointers change.
iii) Two disjoint priority queues, having a total of N elements, can easily be
merged into a single priority queue, in only O(log N) steps.

Crane’s original method, slightly modified, is illustrated in Fig. 27, which
shows a special kind of binary tree structure. Each node contains a KEY field, a
DIST field, and two link fields LEFT and RIGHT. The DIST field is always set to
the length of a shortest path from that node to the null link Λ; in other words,
it is the distance from that node to the nearest empty subtree. If we define
DIST(Λ) = 0 and KEY(Λ) = −∞, the KEY and DIST fields in the tree satisfy the
following properties:

KEY(P) ≥ KEY(LEFT(P)), KEY(P) ≥ KEY(RIGHT(P)); (9)
DIST(P) = 1 + min(DIST(LEFT(P)), DIST(RIGHT(P))); (10)

DIST(LEFT(P)) ≥ DIST(RIGHT(P)). (11)

Relation (9) is analogous to the heap condition (3); it guarantees that the root
of the tree has the largest key. Relation (10) is just the definition of the DIST
fields as stated above. Relation (11) is the interesting innovation: It implies that
a shortest path to Λ may always be obtained by moving to the right. We shall
say that a binary tree with this property is a leftist tree, because it tends to lean
so heavily to the left.

It is clear from these definitions that DIST(P) = n implies the existence of
at least 2n empty subtrees below P; otherwise there would be a shorter path
from P to Λ. Thus, if there are N nodes in a leftist tree, the path leading
downward from the root towards the right contains at most ⌊lg(N + 1)⌋ nodes.
It is possible to insert a new node into the priority queue by traversing this path
(see exercise 33); hence only O(log N) steps are needed in the worst case. The
best case occurs when the tree is linear (all RIGHT links are Λ), and the worst
case occurs when the tree is perfectly balanced.

To remove the node at the root, we simply need to merge its two subtrees.
The operation of merging two disjoint leftist trees, pointed to respectively by
P and Q, is conceptually simple: If KEY(P) ≥ KEY(Q) we take P as the root
and merge Q with P’s right subtree; then DIST(P) is updated, and LEFT(P) is
interchanged with RIGHT(P) if necessary. A detailed description of this process
is not difficult to devise (see exercise 33).

Comparison of priority queue techniques. When the number of nodes,
N, is small, it is best to use one of the straightforward linear list methods to
maintain a priority queue; but when N is large, a log N method using heaps
or leftist trees is obviously much faster. In Section 6.2.3 we shall discuss the
representation of linear lists as balanced trees, and this leads to a third log N
method suitable for priority queue implementation. It is therefore appropriate
to compare these three techniques.
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Fig. 27. A priority queue represented as a leftist tree.

We have seen that leftist tree operations tend to be slightly faster than heap
operations, although heaps consume less memory space because they have no
link fields. Balanced trees take about the same space as leftist trees, perhaps
slightly less; the operations are slower than heaps, and the programming is more
complicated, but the balanced tree structure is considerably more flexible in
several ways. When using a heap or a leftist tree we cannot predict very easily
what will happen to two items with equal keys; it is impossible to guarantee
that items with equal keys will be treated in a last-in-first-out or first-in-first-
out manner, unless the key is extended to include an additional “serial number of
insertion” field so that no equal keys are really present. With balanced trees, on
the other hand, we can easily stipulate consistent conventions about equal keys,
and we can also do things such as “insert x immediately before (or after) y.”
Balanced trees are symmetrical, so that we can delete either the largest or the
smallest element at any time, while heaps and leftist trees must be oriented
one way or the other. (See exercise 31, however, which shows how to construct
symmetrical heaps.) Balanced trees can be used for searching as well as for
sorting; and we can rather quickly remove consecutive blocks of elements from
a balanced tree. But Ω(N) steps are needed in general to merge two balanced
trees, while leftist trees can be merged in only O(log N) steps.

In summary, heaps use minimum memory; leftist trees are great for merging
disjoint priority queues; and the flexibility of balanced trees is available, if
necessary, at reasonable cost.
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Many new ways to represent priority queues have been discovered since the
pioneering work of Williams and Crane discussed above. Programmers now

have a large menu of options to ponder, besides simple lists, heaps, leftist or
balanced trees:
• stratified trees, which provide symmetrical priority queue operations in only

O(log log M) steps when all keys lie in a given range 0 ≤ K < M [P. van
Emde Boas, R. Kaas, and E. Zijlstra, Math. Systems Theory 10 (1977),
99–127];
• binomial queues [J. Vuillemin, CACM 21 (1978), 309–315; M. R. Brown,

SICOMP 7 (1978), 298–319];
• pagodas [J. Françon, G. Viennot, and J. Vuillemin, FOCS 19 (1978), 1–7];
• pairing heaps [M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan,

Algorithmica 1 (1986), 111–129; J. T. Stasko and J. S. Vitter, CACM 30
(1987), 234–249; M. L. Fredman, JACM 46 (1999), 473–501];
• skew heaps [D. D. Sleator and R. E. Tarjan, SICOMP 15 (1986), 52–59];
• Fibonacci heaps [M. L. Fredman and R. E. Tarjan, JACM 34 (1987), 596–

615] and the more general AF-heaps [M. L. Fredman and D. E. Willard,
J. Computer and System Sci. 48 (1994), 533–551];
• calendar queues [R. Brown, CACM 31 (1988), 1220–1227; G. A. Davison,

CACM 32 (1989), 1241–1243];
• relaxed heaps [J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan,

CACM 31 (1988), 1343–1354];
• fishspear [M. J. Fischer and M. S. Paterson, JACM 41 (1994), 3–30];
• hot queues [B. V. Cherkassky, A. V. Goldberg, and C. Silverstein, SICOMP

28 (1999), 1326–1346];
etc. Not all of these methods will survive the test of time; leftist trees are in fact
already obsolete, except for applications with a strong tendency towards last-in-
first-out behavior. Detailed implementations and expositions of binomial queues
and Fibonacci heaps can be found in D. E. Knuth, The Stanford GraphBase
(New York: ACM Press, 1994), 475–489.

*Analysis of heapsort. Algorithm H is rather complicated, so it probably will
never submit to a complete mathematical analysis; but several of its properties
can be deduced without great difficulty. Therefore we shall conclude this section
by studying the anatomy of a heap in some detail.

Figure 28 shows the shape of a heap with 26 elements; each node has been
labeled in binary notation corresponding to its subscript in the heap. Asterisks
in this diagram denote the special nodes, those that lie on the path from 1 to N.

One of the most important attributes of a heap is the collection of its subtree
sizes. For example, in Fig. 28 the sizes of the subtrees rooted at 1, 2, . . . , 26 are,
respectively,

26∗, 15, 10∗, 7, 7, 6∗, 3, 3, 3, 3, 3, 3, 2∗, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1∗. (12)
Asterisks denote special subtrees, rooted at the special nodes; exercise 20 shows
that if the binary representation of N is

N = (bnbn−1 . . . b1b0)2, n = ⌊lg N⌋, (13)
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1

10 11

100 101 110 111

1000 1001 1010 1011 1100 1101 1110 1111

10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010

*

*

*

*

*

Fig. 28. A heap of 26 = (11010)2 elements looks like this.

then the special subtree sizes are always

(1bn−1 . . . b1b0)2, (1bn−2 . . . b1b0)2, . . . , (1b1b0)2, (1b0)2, (1)2. (14)

Nonspecial subtrees are always perfectly balanced, so their size is always of the
form 2k − 1. Exercise 21 shows that the nonspecial sizes consist of exactly

N − 1
2


1s,


N − 2

4


3s,


N − 4

8


7s, . . . ,


N − 2n−1

2n


(2n − 1)s. (15)

For example, Fig. 28 contains twelve nonspecial subtrees of size 1, six of size 3,
two of size 7, and one of size 15.

Let sl be the size of the subtree whose root is l, and let MN be the multiset
{s1, s2, . . . , sN} of all these sizes. We can calculate MN easily for any given N
by using (14) and (15). Exercise 5.1.4–20 tells us that the total number of ways
to arrange the integers {1, 2, . . . , N} into a heap is

N !/s1s2 . . . sN = N !


{s | s ∈MN}. (16)

For example, the number of ways to place the 26 letters {A, B, C, . . . , Z} into
Fig. 28 so that vertical lines preserve alphabetic order is

26!/(26 · 10 · 6 · 2 · 1 · 112 · 36 · 72 · 151).

We are now in a position to analyze the heap-creation phase of Algorithm H,
namely the computations that take place before the condition l = 1 occurs for
the first time in step H2. Fortunately we can reduce the study of heap creation
to the study of independent siftup operations, because of the following theorem.

Theorem H. If Algorithm H is applied to a random permutation of {1,2, . . . ,N},
each of the N !


{s | s ∈MN} possible heaps is an equally likely outcome of the

heap-creation phase. Moreover, each of the ⌊N/2⌋ siftup operations performed
during this phase is uniform, in the sense that each of the sl possible values of i
is equally likely when step H8 is reached.
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Proof. We can apply what numerical analysts might call a “backwards analysis”;
given a possible result K1 . . . KN of the siftup operation rooted at l, we see that
there are exactly sl prior configurations K ′

1 . . . K ′
N of the file that will sift up

to that result. Each of these prior configurations has a different value of K ′
l ;

hence, working backwards, there are exactly sl sl+1 . . . sN input permutations of
{1, 2, . . . , N} that yield the configuration K1 . . . KN after the siftup at position l
has been completed.

The case l = 1 is typical: Let K1 . . . KN be a heap, and let K ′
1 . . . K ′

N be
a file that is transformed by siftup into K1 . . . KN when l = 1, K = K ′

1. If
K = Ki, we must have K ′

i = K⌊i/2⌋, K ′
⌊i/2⌋ = K⌊i/4⌋, etc., while K ′

j = Kj

for all j not on the path from 1 to i. Conversely, for each i this construction
yields a file K ′

1 . . . K ′
N such that (a) siftup transforms K ′

1 . . . K ′
N into K1 . . . KN,

and (b) K⌊j/2⌋ ≥ Kj for 2 ≤ ⌊j/2⌋ < j ≤ N. Therefore exactly N such files
K ′

1 . . . K ′
N are possible, and the siftup operation is uniform. (An example of the

proof of this theorem appears in exercise 22.)
Referring to the quantities A, B, C, D in the analysis of Program H, we can

see that a uniform siftup operation on a subtree of size s contributes ⌊s/2⌋/s to
the average value of A; it contributes

1
s

(0 + 1 + 1 + 2 + · · ·+ ⌊lg s⌋) = 1
s

s
k=1
⌊lg k⌋ = 1

s


(s + 1)⌊lg s⌋ − 2⌊lg s⌋+1 + 2


to the average value of B (see exercise 1.2.4–42); and it contributes either 2/s or
0 to the average value of D, according as s is even or odd. The corresponding
contribution to C is somewhat more difficult to determine, so it has been left to
the reader (see exercise 26). Summing over all siftups, we find that the average
value of A during heap creation is

A′
N =


{⌊s/2⌋/s | s ∈MN}, (17)

and similar formulas hold for B, C, and D. It is therefore possible to compute
these average values exactly without great difficulty, and the following table
shows typical results:

N A′
N B′

N C ′
N D′

N

99 19.18 68.35 42.95 0.00
100 19.93 69.39 42.71 1.84
999 196.16 734.66 464.53 0.00

1000 196.94 735.80 464.16 1.92
9999 1966.02 7428.18 4695.54 0.00

10000 1966.82 7429.39 4695.06 1.97
10001 1966.45 7430.07 4695.84 0.00
10002 1967.15 7430.97 4695.95 1.73

Asymptotically speaking, we may ignore the special subtree sizes in MN, and we
find for example that

A′
N = N

2 ·
0
1 + N

4 ·
1
3 + N

8 ·
3
7 + · · ·+ O(log N) =


1− 1

2 α

N + O(log N), (18)
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where

α =

k≥1

1
2k−1 = 1.60669 51524 15291 76378 33015 23190 92458 04806−. (19)

(This value was first computed to high precision by J. W. Wrench, Jr., using the
series transformation of exercise 27. Paul Erdős has proved that α is irrational
[J. Indian Math. Soc. 12 (1948), 63–66], and Peter Borwein has demonstrated
the irrationality of many similar constants [Proc. Camb. Phil. Soc. 112 (1992),
141–146].) For large N, we may use the approximate formulas

A′
N ≈ 0.1967N + (−1)N0.3;

B′
N ≈ 0.74403N − 1.3 ln N ;

C ′
N ≈ 0.47034N − 0.8 ln N ;

D′
N ≈ (1.8± 0.2)[N even].

(20)

The minimum and maximum values are also readily determined. Only O(N)
steps are needed to create the heap (see exercise 23).

This theory nicely explains the heap-creation phase of Algorithm H. But
the selection phase is another story, which remains to be written! Let A′′

N , B′′
N ,

C ′′
N , and D ′′

N denote the average values of A, B, C, and D during the selection
phase when N elements are being heapsorted. The behavior of Algorithm H on
random input is subject to comparatively little fluctuation about the empirically
determined average values

A′′
N ≈ 0.152N ;

B′′
N ≈ N lg N − 2.61N ;

C ′′
N ≈ 1

2 N lg N − 1.41N ;
D ′′

N ≈ lg N ± 2;

(21)

but no adequate theoretical explanation for the behavior of D ′′
N or for the

conjectured constants 0.152, 2.61, or 1.41 has yet been found. The leading
terms of B′′

N and C ′′
N have, however, been established in an elegant manner by

R. Schaffer and R. Sedgewick; see exercise 30. Schaffer has also proved that the
minimum and maximum possible values of C ′′

N are respectively asymptotic to
1
4 N lg N and 3

4 N lg N .

EXERCISES
1. [10 ] Is straight selection (Algorithm S) a stable sorting method?
2. [15 ] Why does it prove to be more convenient to select the largest key, then

the second-largest, etc., in Algorithm S, instead of first finding the smallest, then the
second-smallest, etc.?

3. [M21 ] (a) Prove that if the input to Algorithm S is a random permutation of
{1, 2, . . . , N}, then the first iteration of steps S2 and S3 yields a random permutation
of {1, 2, . . . , N−1} followed by N. (In other words, the presence of each permutation
of {1, 2, . . . , N−1} in K1 . . . KN−1 is equally likely.) (b) Therefore if BN denotes the
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average value of the quantity B in Program S, given randomly ordered input, we have
BN = HN − 1 +BN−1. [Hint: See Eq. 1.2.10–(16).]

x 4. [M25 ] Step S3 of Algorithm S accomplishes nothing when i = j; is it a good idea
to test whether or not i = j before doing step S3? What is the average number of
times the condition i = j will occur in step S3 for random input?

5. [20 ] What is the value of the quantity B in the analysis of Program S, when the
input is N. . . 3 2 1?

6. [M29 ] (a) Let a1 a2 . . . aN be a permutation of {1, 2, . . . , N} having C cycles,
I inversions, and B changes to the right-to-left maxima when sorted by Program S.
Prove that 2B ≤ I +N − C. [Hint: See exercise 5.2.2–1.] (b) Show that I +N − C ≤
⌊N2/2⌋; hence B can never exceed ⌊N2/4⌋.

7. [M41 ] Find the variance of the quantity B in Program S, as a function of N,
assuming random input.

x 8. [24 ] Show that if the search for max (K1, . . . ,Kj) in step S2 is carried out by
examining keys in left-to-right order K1, K2, . . . , Kj , instead of going from right to
left as in Program S, it is often possible to reduce the number of comparisons needed
on the next iteration of step S2. Write a MIX program based on this observation.

9. [M25 ] What is the average number of comparisons performed by the algorithm
of exercise 8, for random input?
10. [12 ] What will be the configuration of the tree in Fig. 23 after 14 of the original
16 items have been output?
11. [10 ] What will be the configuration of the tree in Fig. 24 after the element 908
has been output?
12. [M20 ] How many times will −∞ be compared with −∞ when the bottom-up
method of Fig. 23 is used to sort a file of 2n elements into order?
13. [20 ] (J. W. J. Williams.) Step H4 of Algorithm H distinguishes between the three
cases j < r, j = r, and j > r. Show that if K ≥ Kr+1 it would be possible to simplify
step H4 so that only a two-way branch is made. How could the condition K ≥ Kr+1
be ensured throughout the heapsort process, by modifying step H2?
14. [10 ] Show that simple queues are special cases of priority queues. (Explain how
keys can be assigned to the elements so that a largest-in-first-out procedure is equivalent
to first-in-first-out.) Is a stack also a special case of a priority queue?

x 15. [M22 ] (B. A. Chartres.) Design a high-speed algorithm that builds a table of
the prime numbers ≤ N, making use of a priority queue to avoid division operations.
[Hint: Let the smallest key in the priority queue be the least odd nonprime number
greater than the last odd number considered as a prime candidate. Try to minimize
the number of elements in the queue.]
16. [20 ] Design an efficient algorithm that inserts a new key into a given heap of
n elements, producing a heap of n+ 1 elements.
17. [20 ] The algorithm of exercise 16 can be used for heap creation, instead of the
“decrease l to 1” method used in Algorithm H. Do both methods create the same heap
when they begin with the same input file?

x 18. [21 ] (R. W. Floyd.) During the selection phase of heapsort, the key K tends to
be quite small, so that nearly all of the comparisons in step H6 find K < Kj . Show
how to modify the algorithm so that K is not compared with Kj in the main loop of
the computation, thereby nearly cutting the average number of comparisons in half.
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19. [21 ] Design an algorithm that deletes a given element of a heap of length N,
producing a heap of length N − 1.
20. [M20 ] Prove that (14) gives the special subtree sizes in a heap.
21. [M24 ] Prove that (15) gives the nonspecial subtree sizes in a heap.

x 22. [20 ] What permutations of {1, 2, 3, 4, 5} are transformed into 5 3 4 1 2 by the heap-
creation phase of Algorithm H?
23. [M28 ] (a) Prove that the length of scan, B, in a siftup algorithm never exceeds
⌊lg (r/l)⌋. (b) According to (8), B can never exceed N⌊lgN⌋ in any particular appli-
cation of Algorithm H. Find the maximum value of B as a function of N, taken over
all possible input files. (You must prove that an input file exists such that B takes on
this maximum value.)
24. [M24 ] Derive an exact formula for the standard deviation of B′

N (the total length
of scan during the heap-creation phase of Algorithm H).
25. [M20 ] What is the average value of the contribution to C made during the siftup
pass when l = 1 and r = N, if N = 2n+1 − 1?
26. [M30 ] Solve exercise 25, (a) for N = 26, (b) for general N.
27. [M25 ] (T. Clausen, 1828.) Prove that

n≥1

xn

1− xn
=

n≥1

1 + xn

1− xn
xn2

.

(Setting x = 1
2 gives a very rapidly converging series for the evaluation of (19).)

28. [35 ] Explore the idea of ternary heaps, based on complete ternary trees instead
of binary trees. Do ternary heaps sort faster than binary heaps?
29. [26 ] (W. S. Brown.) Design an algorithm for multiplication of polynomials or
power series (a1x

i1 + a2x
i2 + · · · )(b1x

j1 + b2x
j2 + · · · ), in which the coefficients of

the answer c1x
i1+j1 + · · · are generated in order as the input coefficients are being

multiplied. [Hint: Use an appropriate priority queue.]
x 30. [HM35 ] (R. Schaffer and R. Sedgewick.) Let hnm be the number of heaps on

the elements {1, 2, . . . , n} for which the selection phase of heapsort does exactly m
promotions. Prove that hnm ≤ 2mn

k=2 lg k, and use this relation to show that the
average number of promotions performed by Algorithm H is N lgN +O(N log logN).
31. [37 ] (J. W. J. Williams.) Show that if two heaps are placed “back to back” in a
suitable way, it is possible to maintain a structure in which either the smallest or the
largest element can be deleted at any time in O(logn) steps. (Such a structure may be
called a priority deque.)
32. [M28 ] Prove that the number of heapsort promotions, B, is always at least
1
2N lgN + O(N), if the keys being sorted are distinct. Hint: Consider the movement
of the largest ⌈N/2⌉ keys.
33. [21 ] Design an algorithm that merges two disjoint priority queues, represented
as leftist trees, into one. (In particular, if one of the given queues contains a single
element, your algorithm will insert it into the other queue.)
34. [M41 ] How many leftist trees with N nodes are possible, ignoring the KEY values?
The sequence begins 1, 1, 2, 4, 8, 17, 38, 87, 203, 482, 1160, . . . ; show that the number
is asymptotically abNN−3/2 for suitable constants a and b, using techniques like those
of exercise 2.3.4.4–4.
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35. [26 ] If UP links are added to a leftist tree (see the discussion of triply linked trees in
Section 6.2.3), it is possible to delete an arbitrary node P from within the priority queue
as follows: Replace P by the merger of LEFT(P) and RIGHT(P); then adjust the DIST
fields of P’s ancestors, possibly swapping left and right subtrees, until either reaching
the root or reaching a node whose DIST is unchanged.

Prove that this process never requires changing more than O(logN) of the DIST
fields, if there are N nodes in the tree, even though the tree may contain very long
upward paths.
36. [18 ] (Least-recently-used page replacement.) Many operating systems make use of
the following type of algorithm: A collection of nodes is subjected to two operations,
(i) “using” a node, and (ii) replacing the least-recently-used node by a new node. What
data structure makes it easy to ascertain the least-recently-used node?
37. [HM32 ] Let eN (k) be the expected treewise distance of the kth-largest element
from the root, in a random heap of N elements, and let e(k) = limN→∞ eN (k). Thus
e(1) = 0, e(2) = 1, e(3) = 1.5, and e(4) = 1.875. Find the asymptotic value of e(k) to
within O(k−1).
38. [M21 ] Find a simple recurrence relation for the multiset MN of subtree sizes in a
heap or in a complete binary tree with N internal nodes.

5.2.4. Sorting by Merging
Merging (or collating) means the combination of two or more ordered files into
a single ordered file. For example, we can merge the two files 503 703 765 and
087 512 677 to obtain 087 503 512 677 703 765. A simple way to accomplish this
is to compare the two smallest items, output the smallest, and then repeat the
same process. Starting with 

503 703 765
087 512 677

we obtain

087


503 703 765
512 677

then

087 503


703 765
512 677

and

087 503 512


703 765
677

and so on. Some care is necessary when one of the two files becomes exhausted;
a detailed description of the process appears in the following algorithm:

Algorithm M (Two-way merge). This algorithm merges nonempty ordered files
x1 ≤ x2 ≤ · · · ≤ xm and y1 ≤ y2 ≤ · · · ≤ yn into a single file z1 ≤ z2 ≤ · · · ≤ zm+n.

M1. [Initialize.] Set i← 1, j ← 1, k ← 1.
M2. [Find smaller.] If xi ≤ yj , go to step M3, otherwise go to M5.
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M1. Initialize M2. Find smaller

M3. Output xi

M4. Transmit yj , . . . , yn

M5. Output yj

M6. Transmit xi, . . . , xm

xi≤yj xi>yj

x’s exhausted y’s exhausted

Fig. 29. Merging x1 ≤ · · · ≤ xm with y1 ≤ · · · ≤ yn.

M3. [Output xi.] Set zk ← xi, k ← k + 1, i← i + 1. If i ≤ m, return to M2.
M4. [Transmit yj , . . . , yn.] Set (zk, . . . , zm+n)← (yj , . . . , yn) and terminate the

algorithm.
M5. [Output yj .] Set zk ← yj , k ← k + 1, j ← j + 1. If j ≤ n, return to M2.
M6. [Transmit xi, . . . , xm.] Set (zk, . . . , zm+n) ← (xi, . . . , xm) and terminate

the algorithm.
We shall see in Section 5.3.2 that this straightforward procedure is essentially
the best possible way to merge on a conventional computer, when m ≈ n. (On
the other hand, when m is much smaller than n, it is possible to devise more
efficient merging algorithms, although they are rather complicated in general.)
Algorithm M could be made slightly simpler without much loss of efficiency by
placing sentinel elements xm+1 = yn+1 =∞ at the end of the input files, stopping
just before ∞ is output. For an analysis of Algorithm M, see exercise 2.

The total amount of work involved in Algorithm M is essentially propor-
tional to m + n, so it is clear that merging is a simpler problem than sorting.
Furthermore, we can reduce the problem of sorting to merging, because we can
repeatedly merge longer and longer subfiles until everything is in sort. We may
consider this to be an extension of the idea of insertion sorting: Inserting a new
element into a sorted file is the special case n = 1 of merging. If we want to
speed up the insertion process we can consider inserting several elements at a
time, “batching” them, and this leads naturally to the general idea of merge
sorting. From a historical point of view, merge sorting was one of the very first
methods proposed for computer sorting; it was suggested by John von Neumann
as early as 1945 (see Section 5.5).

We shall study merging in considerable detail in Section 5.4, with regard
to external sorting algorithms; our main concern in the present section is the
somewhat simpler question of merge sorting within a high-speed random-access
memory.

Table 1 shows a merge sort that “burns the candle at both ends” in a manner
similar to the scanning procedure we have used in quicksort and radix exchange:
We examine the input from the left and from the right, working towards the
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middle. Ignoring the top line of the table for a moment, let us consider the
transformation from line 2 to line 3. At the left we have the ascending run 503
703 765; at the right, reading leftwards, we have the run 087 512 677. Merging
these two sequences leads to 087 503 512 677 703 765, which is placed at the
left of line 3. Then the keys 061 612 908 in line 2 are merged with 170 509 897,
and the result (061 170 509 612 897 908) is recorded at the right end of line 3.
Finally, 154 275 426 653 is merged with 653 — discovering the overlap before it
causes any harm — and the result is placed at the left, following the previous run.
Line 2 of the table was formed in the same way from the original input in line 1.

Table 1
NATURAL TWO-WAY MERGE SORTING

←−−−−−−−−−−− ←−− ←−− ←−− ←−−−−−−−
503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703−−→ −−−−−−−→ −−−−−−−→ −−−−−−−→ −−−−−−−→ ←−− ←−−−−−−−−−−− ←−−−−−−−−−−−
503 703 765 061 612 908 154 275 426 653 897 509 170 677 512 087−−−−−−−−−−−→ −−−−−−−−−−−→ −−−−−−−−−−−−−−−→←−− ←−−−−−−−−−−−−−−−−−−−−−−−
087 503 512 677 703 765 154 275 426 653 908 897 612 509 170 061−−−−−−−−−−−−−−−−−−−−−−−→ −−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−−−−−−
061 087 170 503 509 512 612 677 703 765 897 908 653 426 275 154−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ←−−
061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Vertical lines in Table 1 represent the boundaries between runs. They are the
so-called stepdowns, where a smaller element follows a larger one in the direction
of reading. We generally encounter an ambiguous situation in the middle of the
file, when we read the same key from both directions; this causes no problem if we
are a little bit careful as in the following algorithm. The method is traditionally
called a “natural” merge because it makes use of the runs that occur naturally
in its input.

Algorithm N (Natural two-way merge sort). Records R1, . . . , RN are sorted
using two areas of memory, each of which is capable of holding N records. For
convenience, we shall say that the records of the second area are RN+1, . . . , R2N ,
although it is not really necessary that RN+1 be adjacent to RN. The initial
contents of RN+1, . . . , R2N are immaterial. After sorting is complete, the keys
will be in order, K1 ≤ · · · ≤ KN.

N1. [Initialize.] Set s← 0. (When s = 0, we will be transferring records from
the (R1, . . . , RN ) area to the (RN+1, . . . , R2N ) area; when s = 1, we will
be going the other way.)

N2. [Prepare for pass.] If s = 0, set i ← 1, j ← N, k ← N + 1, l ← 2N ; if
s = 1, set i← N + 1, j ← 2N, k ← 1, l← N. (Variables i, j, k, l point to
the current positions in the “source files” being read and the “destination
files” being written.) Set d ← 1, f ← 1. (Variable d gives the current
direction of output; f is set to zero if future passes are necessary.)

N3. [Compare Ki :Kj .] If Ki > Kj , go to step N8. If i = j, set Rk ← Ri and
go to N13.
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N1. Initialize N2. Prepare for pass N3. Compare Ki :Kj

N4. Transmit Ri

N5. Stepdown?

N6. Transmit Rj

N7. Stepdown?

N8. Transmit Rj

N9. Stepdown?

N10. Transmit Ri

N11. Stepdown?

N12. Switch sides

N13. Switch areas
i=j

i 6=j, Ki≤Kj Ki>Kj

Sorting
complete

Yes Yes
No No

No No
Yes Yes

Fig. 30. Merge sorting.

N4. [Transmit Ri.] (Steps N4–N7 are analogous to steps M3–M4 of Algo-
rithm M.) Set Rk ← Ri, k ← k + d.

N5. [Stepdown?] Increase i by 1. Then if Ki−1 ≤ Ki, go back to step N3.
N6. [Transmit Rj .] Set Rk ← Rj , k ← k + d.
N7. [Stepdown?] Decrease j by 1. Then if Kj+1 ≤ Kj , go back to step N6;

otherwise go to step N12.
N8. [Transmit Rj .] (Steps N8–N11 are dual to steps N4–N7.) Set Rk ← Rj ,

k ← k + d.
N9. [Stepdown?] Decrease j by 1. Then if Kj+1 ≤ Kj , go back to step N3.

N10. [Transmit Ri.] Set Rk ← Ri, k ← k + d.
N11. [Stepdown?] Increase i by 1. Then if Ki−1 ≤ Ki, go back to step N10.
N12. [Switch sides.] Set f ← 0, d ← −d, and interchange k ↔ l. Return to

step N3.
N13. [Switch areas.] If f = 0, set s← 1−s and return to N2. Otherwise sorting

is complete; if s = 0, set (R1, . . . , RN ) ← (RN+1, . . . , R2N ). (This last
copying operation is unnecessary if it is acceptable to have the output in
(RN+1, . . . , R2N ) about half of the time.)

This algorithm contains one tricky feature that is explained in exercise 5.
It would not be difficult to program Algorithm N for MIX, but we can

deduce the essential facts of its behavior without constructing the entire program.
The number of ascending runs in the input will be about 1

2 N, under random
conditions, since we have Ki > Ki+1 with probability 1

2 ; detailed information
about the number of runs, under slightly different hypotheses, has been derived
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in Section 5.1.3. Each pass cuts the number of runs in half (except in unusual
cases such as the situation in exercise 6). So the number of passes will usually be
about lg 1

2 N = lg N−1. Each pass requires us to transmit each of the N records,
and by exercise 2 most of the time is spent in steps N3, N4, N5, N8, N9. We
can sketch the time in the inner loop as follows, if we assume that there is low
probability of equal keys:

Step Operations Time
N3 CMPA, JG, JE 3.5u

Either


N4 STA, INC 3u

N5 INC, LDA, CMPA, JGE 6u

Or


N8 STX, INC 3u

N9 DEC, LDX, CMPX, JGE 6u

Thus about 12.5u is spent on each record in each pass, and the total running
time will be asymptotically 12.5N lg N, for both the average case and the worst
case. This is slower than quicksort’s average time, and it may not be enough
better than heapsort to justify taking twice as much memory space, since the
asymptotic running time of Program 5.2.3H is never more than 18N lg N.

The boundary lines between runs are determined in Algorithm N entirely by
stepdowns. This has the possible advantage that input files with a preponderance
of increasing order can be handled very quickly, and so can input files with
a preponderance of decreasing order; but it slows down the main loop of the
calculation. Instead of testing stepdowns, we can determine the length of runs
artificially, by saying that all runs in the input have length 1, all runs after the
first pass (except possibly the last run) have length 2, . . . , all runs after k passes
(except possibly the last run) have length 2k. This is called a straight two-merge,
as opposed to the “natural” merge in Algorithm N.

Straight two-way merging is very similar to Algorithm N, and it has essen-
tially the same flow chart; but things are sufficiently different that we had better
write down the whole algorithm again:
Algorithm S (Straight two-way merge sort). Records R1, . . . , RN are sorted
using two memory areas as in Algorithm N.

S1. [Initialize.] Set s ← 0, p ← 1. (For the significance of variables s, i, j, k,
l, and d, see Algorithm N. Here p represents the size of ascending runs to
be merged on the current pass; further variables q and r will keep track of
the number of unmerged items in a run.)

S2. [Prepare for pass.] If s = 0, set i← 1, j ← N, k ← N, l← 2N +1; if s = 1,
set i← N + 1, j ← 2N, k ← 0, l← N + 1. Then set d← 1, q ← p, r ← p.

S3. [Compare Ki : Kj .] If Ki > Kj , go to step S8.
S4. [Transmit Ri.] Set k ← k + d, Rk ← Ri.
S5. [End of run?] Set i← i + 1, q ← q − 1. If q > 0, go back to step S3.
S6. [Transmit Rj .] Set k ← k + d. Then if k = l, go to step S13; otherwise set

Rk ← Rj .
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Table 2
STRAIGHT TWO-WAY MERGE SORTING

503 | 087 | 512 | 061 | 908 | 170 | 897 | 275 653 | 426 | 154 | 509 | 612 | 677 | 765 | 703
503 703 | 512 677 | 509 908 | 426 897 653 275 | 170 154 | 612 061 | 765 087
087 503 703 765 | 154 170 509 908 897 653 426 275 | 677 612 512 061
061 087 503 512 612 677 703 765 908 897 653 509 426 275 170 154
061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

S7. [End of run?] Set j ← j − 1, r ← r − 1. If r > 0, go back to step S6;
otherwise go to S12.

S8. [Transmit Rj .] Set k ← k + d, Rk ← Rj .
S9. [End of run?] Set j ← j − 1, r ← r − 1. If r > 0, go back to step S3.

S10. [Transmit Ri.] Set k ← k + d. Then if k = l, go to step S13; otherwise set
Rk ← Ri.

S11. [End of run?] Set i← i + 1, q ← q − 1. If q > 0, go back to step S10.
S12. [Switch sides.] Set q ← p, r ← p, d ← −d, and interchange k ↔ l. If

j − i < p, return to step S10; otherwise return to S3.
S13. [Switch areas.] Set p ← p + p. If p < N, set s ← 1 − s and return to S2.

Otherwise sorting is complete; if s = 0, set

(R1, . . . , RN )← (RN+1, . . . , R2N ).

(The latter copying operation will be done if and only if ⌈lg N ⌉ is odd, or in
the trivial case N = 1, regardless of the distribution of the input. Therefore
it is possible to predict the location of the sorted output in advance, and
copying will usually be unnecessary.)

An example of this algorithm appears in Table 2. It is somewhat amazing
that the method works properly when N is not a power of 2; the runs being
merged are not all of length 2k, yet no provision has apparently been made for
the exceptions! (See exercise 8.) The former tests for stepdowns have been
replaced by decrementing q or r and testing the result for zero; this reduces the
asymptotic MIX running time to 11N lg N units, slightly faster than we were able
to achieve with Algorithm N.

In practice it would be worthwhile to combine Algorithm S with straight
insertion; we can sort groups of, say, 16 items using straight insertion, in place of
the first four passes of Algorithm S, thereby avoiding the comparatively wasteful
bookkeeping operations involved in short merges. As we saw with quicksort,
such a combination of methods does not affect the asymptotic running time, but
it gives us a reasonable improvement nevertheless.

Let us now study Algorithms N and S from the standpoint of data structures.
Why did we need 2N record locations instead of N? The reason is comparatively
simple: We were dealing with four lists of varying size (two source lists and
two destination lists on each pass); and we were using the standard “growing
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together” idea discussed in Section 2.2.2, for each pair of sequentially allocated
lists. But half of the memory space was always unused, and a little reflection
shows that we could really make use of a linked allocation for the four lists. If
we add one link field to each of the N records, we can do everything required
by the merging algorithms using simple link manipulations, without moving the
records at all! Adding N link fields is generally better than adding the space
needed for N more records, and the reduced record movement may also save
us time, unless our computer memory is especially good at sequential reading
and writing. Therefore we ought to consider also a merging algorithm like the
following one:

Algorithm L (List merge sort). Records R1, . . . , RN are assumed to contain
keys K1, . . . , KN, together with link fields L1, . . . , LN capable of holding the
numbers −(N + 1) through (N + 1). There are two auxiliary link fields L0 and
LN+1 in artificial records R0 and RN+1 at the beginning and end of the file. This
algorithm is a “list sort” that sets the link fields so that the records are linked
together in ascending order. After sorting is complete, L0 will be the index of
the record with the smallest key; and Lk, for 1 ≤ k ≤ N, will be the index of the
record that follows Rk, or Lk = 0 if Rk is the record with the largest key. (See
Eq. 5.2.1–(13).)

During the course of this algorithm, R0 and RN+1 serve as list heads for two
linear lists whose sublists are being merged. A negative link denotes the end of
a sublist known to be ordered; a zero link denotes the end of the entire list. We
assume that N ≥ 2.

The notation “|Ls| ← p” means “Set Ls to p or −p, retaining the previous
sign of Ls.” This operation is well-suited to MIX, but unfortunately not to most
computers; it is possible to modify the algorithm in straightforward ways to
obtain an equally efficient method for most other machines.

L1. [Prepare two lists.] Set L0 ← 1, LN+1 ← 2, Li ← −(i+2) for 1 ≤ i ≤ N−2,
and LN−1 ← LN ← 0. (We have created two lists containing R1, R3, R5, . . .
and R2, R4, R6, . . . , respectively; the negative links indicate that each or-
dered sublist consists of one element only. For another way to do this step,
taking advantage of ordering that may be present in the initial data, see
exercise 12.)

L2. [Begin new pass.] Set s ← 0, t ← N + 1, p ← Ls, q ← Lt. If q = 0, the
algorithm terminates. (During each pass, p and q traverse the lists being
merged; s usually points to the most recently processed record of the current
sublist, while t points to the end of the previously output sublist.)

L3. [Compare Kp : Kq.] If Kp > Kq, go to L6.
L4. [Advance p.] Set |Ls| ← p, s← p, p← Lp. If p > 0, return to L3.
L5. [Complete the sublist.] Set Ls ← q, s← t. Then set t← q and q ← Lq, one

or more times, until q ≤ 0. Finally go to L8.
L6. [Advance q.] (Steps L6 and L7 are dual to L4 and L5.) Set |Ls| ← q, s← q,

q ← Lq. If q > 0, return to L3.
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Table 3
LIST MERGE SORTING

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Kj − 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703 −
Lj 1 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 −16 0 0 2
Lj 2 −6 1 −8 3 −10 5 −11 7 −13 9 12 −16 14 0 0 15 4
Lj 4 3 1 −11 2 −13 8 5 7 0 12 10 9 14 16 0 15 6
Lj 4 3 6 7 2 0 8 5 1 14 12 10 13 9 16 0 15 11
Lj 4 12 11 13 2 0 8 5 10 14 1 6 3 9 16 7 15 0

L7. [Complete the sublist.] Set Ls ← p, s← t. Then set t← p and p← Lp, one
or more times, until p ≤ 0.

L8. [End of pass?] (At this point, p ≤ 0 and q ≤ 0, since both pointers have
moved to the end of their respective sublists.) Set p ← −p, q ← −q. If
q = 0, set |Ls| ← p, |Lt| ← 0 and return to L2. Otherwise return to L3.

An example of this algorithm in action appears in Table 3, where we can see the
link settings each time step L2 is encountered. It is possible to rearrange the
records R1, . . . , RN at the end of this algorithm so that their keys are in order,
using the method of exercise 5.2–12. There is an interesting similarity between
list merging and the addition of sparse polynomials (see Algorithm 2.2.4A).

Let us now construct a MIX program for Algorithm L, to see whether the
list manipulation is advantageous from the standpoint of speed as well as space:
Program L (List merge sort). For convenience, we assume that records are
one word long, with Lj in the (0:2) field and Kj in the (3:5) field of location
INPUT + j; rI1 ≡ p, rI2 ≡ q, rI3 ≡ s, rI4 ≡ t, rA ≡ Kq; N ≥ 2.
01 L EQU 0:2 Definition of field names
02 ABSL EQU 1:2
03 KEY EQU 3:5
04 START ENT1 N-2 1 L1. Prepare two lists.
05 ENNA 2,1 N − 2
06 STA INPUT,1(L) N − 2 Li ← −(i+ 2).
07 DEC1 1 N − 2
08 J1P *-3 N − 2 N − 2 ≥ i > 0.
09 ENTA 1 1
10 STA INPUT(L) 1 L0 ← 1.
11 ENTA 2 1
12 STA INPUT+N+1(L) 1 LN+1 ← 2.
13 STZ INPUT+N-1(L) 1 LN−1 ← 0.
14 STZ INPUT+N(L) 1 LN ← 0.
15 JMP L2 1 To L2.
16 L3Q LDA INPUT,2 C′′ +B′ L3. Compare Kp :Kq.
17 L3P CMPA INPUT,1(KEY) C
18 JL L6 C To L6 if Kq < Kp.
19 L4 ST1 INPUT,3(ABSL) C′ L4. Advance p. |Ls| ← p.
20 ENT3 0,1 C′ s← p.
21 LD1 INPUT,1(L) C′ p← Lp.
22 J1P L3P C′ To L3 if p > 0.
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23 L5 ST2 INPUT,3(L) B′ L5. Complete the sublist. Ls ← q.
24 ENT3 0,4 B′ s← t.
25 ENT4 0,2 D′ t← q.
26 LD2 INPUT,2(L) D′ q ← Lq.
27 J2P *-2 D′ Repeat if q > 0.
28 JMP L8 B′ To L8.
29 L6 ST2 INPUT,3(ABSL) C′′ L6. Advance q. |Ls| ← q.
30 ENT3 0,2 C′′ s← q.
31 LD2 INPUT,2(L) C′′ q ← Lq.
32 J2P L3Q C′′ To L3 if q > 0.
33 L7 ST1 INPUT,3(L) B′′ L7. Complete the sublist. Ls ← p.
34 ENT3 0,4 B′′ s← t.
35 ENT4 0,1 D′′ t← p.
36 LD1 INPUT,1(L) D′′ p← Lp.
37 J1P *-2 D′′ Repeat if p > 0.
38 L8 ENN1 0,1 B L8. End of pass? p← −p.
39 ENN2 0,2 B q ← −q.
40 J2NZ L3Q B To L3 if q ̸= 0.
41 ST1 INPUT,3(ABSL) A |Ls| ← p.
42 STZ INPUT,4(ABSL) A |Lt| ← 0.
43 L2 ENT3 0 A+ 1 L2. Begin new pass. s← 0.
44 ENT4 N+1 A+ 1 t← N + 1.
45 LD1 INPUT(L) A+ 1 p← Ls.
46 LD2 INPUT+N+1(L) A+ 1 q ← Lt.
47 J2NZ L3Q A+ 1 To L3 if q ̸= 0.
The running time of this program can be deduced using techniques we have
seen many times before (see exercises 13 and 14); it comes to approximately
(10N lg N + 4.92N)u on the average, with a small standard deviation of order√

N . Exercise 15 shows that the running time can in fact be reduced to about
(8N lg N)u, at the expense of a substantially longer program.

Thus we have a clear victory for linked-memory techniques over sequential
allocation, when internal merging is being done: Less memory space is required,
and the program runs about 10 to 20 percent faster. Similar algorithms have
been published by L. J. Woodrum [IBM Systems J. 8 (1969), 189–203] and
A. D. Woodall [Comp. J. 13 (1970), 110–111].

EXERCISES
1. [21 ] Generalize Algorithm M to a k-way merge of the input files xi1 ≤ · · · ≤ ximi

for i = 1, 2, . . . , k.
2. [M24 ] Assuming that each of the


m+n

m


possible arrangements of m x’s among

n y’s is equally likely, find the mean and standard deviation of the number of times
step M2 is performed during Algorithm M. What are the maximum and minimum
values of this quantity?

x 3. [20 ] (Updating.) Given records R1, . . . , RM and R′
1, . . . , R

′
N whose keys are dis-

tinct and in order, so that K1 < · · · < KM and K′
1 < · · · < K′

N , show how to modify
Algorithm M to obtain a merged file in which records Ri of the first file have been
discarded if their keys appear also in the second file.
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4. [21 ] The text observes that merge sorting may be regarded as a generalization
of insertion sorting. Show that merge sorting is also strongly related to tree selection
sorting as depicted in Fig. 23.

x 5. [21 ] Prove that i can never be equal to j in steps N6 or N10. (Therefore it is
unnecessary to test for a possible jump to N13 in those steps.)

6. [22 ] Find a permutation K1 K2 . . .K16 of {1, 2, . . . , 16} such that

K2 > K3, K4 > K5, K6 > K7, K8 > K9, K10 < K11, K12 < K13, K14 < K15,

yet Algorithm N will sort the file in only two passes. (Since there are eight or more
runs, we would expect to have at least four runs after the first pass, two runs after
the second pass, and sorting would ordinarily not be complete until after at least three
passes. How can we get by with only two passes?)

7. [16 ] Give a formula for the exact number of passes required by Algorithm S, as a
function of N.

8. [22 ] During Algorithm S, the variables q and r are supposed to represent the
lengths of the unmerged elements in the runs currently being processed; q and r both
start out equal to p, while the runs are not always this long. How can this possibly
work?

9. [24 ] Write a MIX program for Algorithm S. Specify the instruction frequencies in
terms of quantities analogous to A,B′, B′′, C′, . . . in Program L.
10. [25 ] (D. A. Bell.) Show that sequentially allocated straight two-way merging can
be done with at most 3

2N memory locations, instead of 2N as in Algorithm S.
11. [21 ] Is Algorithm L a stable sorting method?

x 12. [22 ] Revise step L1 of Algorithm L so that the two-way merge is “natural,” taking
advantage of ascending runs that are initially present. (In particular, if the input is
already sorted, step L2 should terminate the algorithm immediately after your step L1
has acted.)

x 13. [M34 ] Give an analysis of the average running time of Program L, in the style
of other analyses in this chapter: Interpret the quantities A,B,B′, . . . , and explain
how to compute their exact average values. How long does Program L take to sort the
16 numbers in Table 3?
14. [M24 ] Let the binary representation of N be 2e1 +2e2 + · · ·+2et, where e1 > e2 >
· · · > et ≥ 0, t ≥ 1. Prove that the maximum number of key comparisons performed
by Algorithm L is 1− 2et +

t
k=1(ek + k − 1)2ek.

15. [20 ] Hand simulation of Algorithm L reveals that it occasionally does redundant
operations; the assignments |Ls| ← p, |Ls| ← q in steps L4 and L6 are unnecessary
about half of the time, since we have Ls = p (or q) each time step L4 (or L6) returns
to L3. How can Program L be improved so that this redundancy disappears?
16. [28 ] Design a list merging algorithm like Algorithm L but based on three-way
merging.
17. [20 ] (J. McCarthy.) Let the binary representation of N be as in exercise 14, and
assume that we are given N records arranged in t ordered subfiles of respective sizes
2e1, 2e2, . . . , 2et. Show how to maintain this state of affairs when a new (N +1)st record
is added and N ← N+1. (The resulting algorithm may be called an online merge sort.)
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Fig. 31. A railway network with five “stacks.”

18. [40 ] (M. A. Kronrod.) Given a file of N records containing only two runs,

K1 ≤ · · · ≤ KM and KM+1 ≤ · · · ≤ KN ,

is it possible to sort the file with O(N) operations in a random-access memory, using
only a small fixed amount of additional memory space regardless of the sizes of M
and N? (All of the merging algorithms described in this section make use of extra
memory space proportional to N.)
19. [26 ] Consider a railway switching network with n “stacks,” as shown in Fig. 31
when n = 5; we considered one-stack networks in exercises 2.2.1–2 through 2.2.1–5. If
N railroad cars enter at the right, we observed that only comparatively few of the N !
permutations of those cars could appear at the left, in the one-stack case.

In the n-stack network, assume that 2n cars enter at the right. Prove that each
of the 2n! possible permutations of these cars is achievable at the left, by a suitable
sequence of operations. (Each stack is actually much bigger than indicated in the
illustration — big enough to accommodate all the cars, if necessary.)
20. [47 ] In the notation of exercise 2.2.1–4, at most a n

N permutations of N elements
can be produced with an n-stack railway network; hence the number of stacks needed
to obtain all N ! permutations is at least logN !/ log aN ≈ log4 N. Exercise 19 shows
that at most ⌈lgN ⌉ stacks are needed. What is the true rate of growth of the necessary
number of stacks, as N →∞?
21. [23 ] (A. J. Smith.) Explain how to extend Algorithm L so that, in addition to
sorting, it computes the number of inversions present in the input permutation.
22. [28 ] (J. K. R. Barnett.) Develop a way to speed up merge sorting on multiword
keys. (Exercise 5.2.2–30 considers the analogous problem for quicksort.)
23. [M30 ] Exercises 13 and 14 analyze a “bottom-up” or iterative version of merge
sort, where the cost c(N) of sorting N items satisfies the recurrence

c(N) = c(2k) + c(N − 2k) + f(2k, N − 2k) for 2k < N ≤ 2k+1

and f(m,n) is the cost of merging m things with n. Study the “top-down” or divide-
and-conquer recurrence

c(N) = c(⌈N/2⌉) + c(⌊N/2⌋) + f(⌈N/2⌉, ⌊N/2⌋) for N > 1,

which arises when merge sort is programmed recursively.

5.2.5. Sorting by Distribution
We come now to an interesting class of sorting methods that are essentially the
exact opposite of merging, when considered from a standpoint we shall discuss
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in Section 5.4.7. These methods were used to sort punched cards for many years,
long before electronic computers existed. The same approach can be adapted to
computer programming, and it is generally known as “bucket sorting,” “radix
sorting,” or “digital sorting,” because it is based on the digits of the keys.

Suppose we want to sort a 52-card deck of playing cards. We may define

A < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < J < Q < K,

as an ordering of the face values, and for the suits we may define

♣ < ♢ < ♡ < ♠.

One card is to precede another if either (i) its suit is less than the other suit, or
(ii) its suit equals the other suit but its face value is less. (This is a particular
case of lexicographic ordering between ordered pairs of objects; see exercise 5–2.)
Thus

A♣ < 2♣ < · · · < K♣ < A♢ < · · · < Q♠ < K♠.

We could sort the cards by any of the methods already discussed. Card
players often use a technique somewhat analogous to the idea behind radix
exchange: First they divide the cards into four piles, according to suit, then
they fiddle with each individual pile until everything is in order.

But there is a faster way to do the trick! First deal the cards face up into
13 piles, one for each face value. Then collect these piles by putting the aces
on the bottom, the 2s face up on top of them, then the 3s, etc., finally putting
the kings (face up) on top. Turn the deck face down and deal again, this time
into four piles for the four suits. (Again you turn the cards face up as you deal
them.) By putting the resulting piles together, with clubs on the bottom, then
diamonds, hearts, and spades, you’ll get the deck in perfect order.

The same idea applies to the sorting of numbers and alphabetic data. Why
does it work? Because (in our playing card example) if two cards go into different
piles in the final deal, they have different suits, so the one with the lower suit is
lowest. But if two cards have the same suit (and consequently go into the same
pile), they are already in proper order because of the previous sorting. In other
words, the face values will be in increasing order, on each of the four piles, as we
deal the cards on the second pass. The same proof can be abstracted to show
that any lexicographic ordering can be sorted in this way; for details, see the
answer to exercise 5–2, at the beginning of this chapter.

The sorting method just described is not immediately obvious, and it isn’t
clear who first discovered the fact that it works so conveniently. A 19-page
pamphlet entitled “The Inventory Simplified,” published by the Tabulating Ma-
chines Company division of IBM in 1923, presented an interesting Digit Plan
method for forming sums of products on their Electric Sorting Machine: Suppose,
for example, that we want to multiply the number punched in columns 1–10
by the number punched in columns 23–25, and to sum all of these products
for a large number of cards. We can sort first on column 25, then use the
Tabulating Machine to find the quantities a1, a2, . . . , a9, where ak is the total



170 SORTING 5.2.5

of columns 1–10 summed over all cards having k in column 25. Then we can
sort on column 24, finding the analogous totals b1, b2, . . . , b9; also on column 23,
obtaining c1, c2, . . . , c9. The desired sum of products is easily seen to be

a1 + 2a2 + · · ·+ 9a9 + 10b1 + 20b2 + · · ·+ 90b9 + 100c1 + 200c2 + · · ·+ 900c9.

This punched-card tabulating method leads naturally to the discovery of least-
significant-digit-first radix sorting, so it probably became known to the machine
operators. The first published reference to this principle for sorting appears in
L. J. Comrie’s early discussion of punched-card equipment [Transactions of the
Office Machinery Users’ Assoc., Ltd. (1929), 25–37, especially page 28].

In order to handle radix sorting inside a computer, we must decide what to
do with the piles. Suppose that there are M piles; we could set aside M areas of
memory, moving each record from an input area into its appropriate pile area.
But this is unsatisfactory, since each area must be large enough to hold N items,
and (M + 1)N record spaces would be required. Therefore most people rejected
the idea of radix sorting within a computer, until H. H. Seward [Master’s thesis,
M.I.T. Digital Computer Laboratory Report R-232 (1954), 25–28] pointed out
that we can achieve the same effect with only 2N record areas and M count fields.
We simply count how many elements will lie in each of the M piles, by making
a preliminary pass over the data; this tells us precisely how to allocate memory
for the piles. We have already made use of the same idea in the “distribution
counting sort,” Algorithm 5.2D.

Thus radix sorting can be carried out as follows: Start with a distribution
sort based on the least significant digit of the keys (in radix M notation), moving
records from the input area to an auxiliary area. Then do another distribution
sort, on the next least significant digit, moving the records back into the original
input area; and so on, until the final pass (on the most significant digit) puts all
records into the desired order.

If we have a decimal computer with 12-digit keys, and if N is rather large, we
can choose M = 1000 (considering three decimal digits as one radix-1000 digit);
then sorting will be complete in four passes, regardless of the size of N. Similarly,
if we have a binary computer and a 40-bit key, we can set M = 1024 = 210 and
complete the sorting in four passes. Actually each pass consists of three parts
(counting, allocating, moving); E. H. Friend [JACM 3 (1956), 151] suggested
combining two of those parts at the expense of M more memory locations, by
accumulating the counts for pass k + 1 while moving the records on pass k.

Table 1 shows how such a radix sort can be applied to our 16 example
numbers, with M = 10. Radix sorting is generally not useful for such small N,
so a small example like this is intended to illustrate the sufficiency rather than
the efficiency of the method.

An alert, “modern” reader will note, however, that the whole idea of mak-
ing digit counts for the storage allocation is tied to old-fashioned ideas about
sequential data representation. We know that linked allocation is specifically
designed to handle a set of tables of variable size, so it is natural to choose a
linked data structure for radix sorting. Since we traverse each pile serially, all
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Table 1
RADIX SORTING

Input area contents: 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

Counts for units digit distribution: 1 1 2 3 1 2 1 3 1 1

Storage allocations based on these counts: 1 2 4 7 8 10 11 14 15 16

Auxiliary area contents: 170 061 512 612 503 653 703 154 275 765 426 087 897 677 908 509

Counts for tens digit distribution: 4 2 1 0 0 2 2 3 1 1

Storage allocations based on these counts: 4 6 7 7 7 9 11 14 15 16

Input area contents: 503 703 908 509 512 612 426 653 154 061 765 170 275 677 087 897

Counts for hundreds digit distribution: 2 2 1 0 1 3 3 2 1 1

Storage allocations based on these counts: 2 4 5 5 6 9 12 14 15 16

Auxiliary area contents: 061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

we need is a single link from each item to its successor. Furthermore, we never
need to move the records; we merely adjust the links and proceed merrily down
the lists. The amount of memory required is (1 + ϵ)N + 2ϵM records, where ϵ
is the amount of space taken up by a link field. Formal details of this procedure
are rather interesting since they furnish an excellent example of typical data
structure manipulations, combining sequential and linked allocation:

Algorithm R (Radix list sort). Records R1, . . . , RN are each assumed to contain
a LINK field. Their keys are assumed to be p-tuples

(a1, a2, . . . , ap), 0 ≤ ai < M, (1)

where the order is defined lexicographically so that

(a1, a2, . . . , ap) < (b1, b2, . . . , bp) (2)

if and only if for some j, 1 ≤ j ≤ p, we have

ai = bi for all i < j, but aj < bj . (3)

The keys may, in particular, be thought of as numbers written in radix M
notation,

a1Mp−1 + a2Mp−2 · · ·+ ap−1M + ap, (4)

and in this case lexicographic order corresponds to the normal ordering of non-
negative numbers. The keys may also be strings of alphabetic letters, etc.

Sorting is done by keeping M “piles” of records, in a manner that exactly
parallels the action of a card sorting machine. The piles are really queues in the
sense of Chapter 2, since we link them together so that they are traversed in a
first-in-first-out manner. There are two pointer variables TOP[i] and BOTM[i]
for each pile, 0 ≤ i < M, and we assume as in Chapter 2 that

LINK(LOC(BOTM[i])) ≡ BOTM[i]. (5)
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R1. Loop on k

R2. Set piles empty

R3. Extract kth
digit of key

R4. Adjust links

R5. Step to
next record

R6. Do Algorithm Hk>p

1≤k≤p

Last
record

Fig. 32. Radix list sort.

R1. [Loop on k.] In the beginning, set P ← LOC(RN), a pointer to the last
record. Then perform steps R2 through R6 for k = 1, 2, . . . , p. (Steps R2
through R6 constitute one “pass.”) Then the algorithm terminates, with P
pointing to the record with the smallest key, LINK(P) to the record with next
smallest, then LINK(LINK(P)), etc.; the LINK in the final record will be Λ.

R2. [Set piles empty.] Set TOP[i] ← LOC(BOTM[i]) and BOTM[i] ← Λ, for
0 ≤ i < M .

R3. [Extract kth digit of key.] Let KEY(P), the key in the record referenced by P,
be (a1, a2, . . . , ap); set i← ap+1−k, the kth least significant digit of this key.

R4. [Adjust links.] Set LINK(TOP[i])← P, then set TOP[i]← P.
R5. [Step to next record.] If k = 1 (the first pass) and if P = LOC(Rj), for some

j ̸= 1, set P← LOC(Rj−1) and return to R3. If k > 1 (subsequent passes),
set P← LINK(P), and return to R3 if P ̸= Λ.

R6. [Do Algorithm H.] (We are now done distributing all elements onto the
piles.) Perform Algorithm H below, which “hooks together” the individual
piles into one list, in preparation for the next pass. Then set P← BOTM[0],
a pointer to the first element of the hooked-up list. (See exercise 3.)

Algorithm H (Hooking-up of queues). Given M queues, linked according to
the conventions of Algorithm R, this algorithm adjusts at most M links so that
a single queue is created, with BOTM[0] pointing to the first element, and with
pile 0 preceding pile 1 . . . preceding pile M−1.
H1. [Initialize.] Set i← 0.
H2. [Point to top of pile.] Set P← TOP[i].
H3. [Next pile.] Increase i by 1. If i = M, set LINK(P) ← Λ and terminate the

algorithm.
H4. [Is pile empty?] If BOTM[i] = Λ, go back to H3.
H5. [Tie piles together.] Set LINK(P)← BOTM[i]. Return to H2.
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Figure 33 shows the contents of the piles after each of the three passes, when
our 16 example numbers are sorted with M = 10. Algorithm R is very easy to
program for MIX, once a suitable way to treat the pass-by-pass variation of steps
R3 and R5 has been found. The following program does this without sacrificing
any speed in the inner loop, by overlaying two of the instructions. Note that
TOP[i] and BOTM[i] can be packed into the same word.

BOTM[0]

TOP[0]

170

BOTM[1]

TOP[1]

061

BOTM[2]

TOP[2]

612

512

BOTM[3]

TOP[3]

703

653

503

BOTM[4]

TOP[4]

154

BOTM[5]

TOP[5]

765

275

BOTM[6]

TOP[6]

426

BOTM[7]

TOP[7]

677

897

087

BOTM[8]

TOP[8]

908

BOTM[9]

TOP[9]

509

BOTM[0]

TOP[0]

703

503

908

509

BOTM[1]

TOP[1]

612

512

BOTM[2]

TOP[2]

426

BOTM[3]

TOP[3]

BOTM[4]

TOP[4]

BOTM[5]

TOP[5]

653

154

BOTM[6]

TOP[6]

061

765

BOTM[7]

TOP[7]

170

275

677

BOTM[8]

TOP[8]

087

BOTM[9]

TOP[9]

897

BOTM[0]

TOP[0]

061

087

BOTM[1]

TOP[1]

154

170

BOTM[2]

TOP[2]

275

BOTM[3]

TOP[3]

BOTM[4]

TOP[4]

426

BOTM[5]

TOP[5]

503

509

512

BOTM[6]

TOP[6]

612

653

677

BOTM[7]

TOP[7]

703

765

BOTM[8]

TOP[8]

897

BOTM[9]

TOP[9]

908

Fig. 33. Radix sort using linked allocation: contents of the ten piles after each pass.

Program R (Radix list sort). The given records in locations INPUT+1 through
INPUT+N are assumed to have p = 3 components (a1, a2, a3) stored respectively
in the (1:1), (2 :2), and (3:3) fields. (Thus M is assumed to be less than or
equal to the byte size of MIX.) The (4:5) field of each record is its LINK. We
let TOP[i] ≡ PILES + i(1 :2) and BOTM[i] ≡ PILES + i(4 :5), for 0 ≤ i < M. It
is convenient to make links relative to location INPUT, so that LOC(BOTM[i]) =
PILES+i−INPUT; to avoid negative links we therefore want the PILES table to be
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in higher locations than the INPUT table. Index registers are assigned as follows:
rI1 ≡ P, rI2 ≡ i, rI3 ≡ 3− k, rI4 ≡ TOP[i]; during Algorithm H, rI2 ≡ i−M.
01 LINK EQU 4:5
02 TOP EQU 1:2
03 START ENT1 N 1 R1. Loop on k. P = LOC(RN).
04 ENT3 2 1 k ← 1.
05 2H ENT2 M-1 3 R2. Set piles empty.
06 ENTA PILES-INPUT,2 3M LOC(BOTM[i])
07 STA PILES,2(TOP) 3M → TOP[i].
08 STZ PILES,2(LINK) 3M BOTM[i]← Λ.
09 DEC2 1 3M
10 J2NN *-4 3M M > i ≥ 0.
11 LDA R3SW,3 3
12 STA 3F 3 Modify instructions for pass k.
13 LDA R5SW,3 3
14 STA 5F 3
15 3H [LD2 INPUT,1(3:3)] R3. Extract kth digit of key.
16 4H LD4 PILES,2(TOP) 3N R4. Adjust links.
17 ST1 INPUT,4(LINK) 3N LINK(TOP[i])← P.
18 ST1 PILES,2(TOP) 3N TOP[i]← P.
19 5H [DEC1 1] R5. Step to next record.
20 J1NZ 3B 3N To R3 if not end of pass.
21 6H ENN2 M 3 R6. Do Algorithm H.
22 JMP 7F 3 To H2 with i← 0.
23 R3SW LD2 INPUT,1(1:1) N Instruction for R3 when k = 3.
24 LD2 INPUT,1(2:2) N Instruction for R3 when k = 2.
25 LD2 INPUT,1(3:3) N Instruction for R3 when k = 1.
26 R5SW LD1 INPUT,1(LINK) N Instruction for R5 when k = 3.
27 LD1 INPUT,1(LINK) N Instruction for R5 when k = 2.
28 DEC1 1 N Instruction for R5 when k = 1.
29 9H LDA PILES+M,2(LINK) 3M−3 H4. Is pile empty?
30 JAZ 8F 3M−3 To H3 if BOTM[i] = Λ.
31 STA INPUT,1(LINK) 3M−3−E H5. Tie piles together.
32 7H LD1 PILES+M,2(TOP) 3M − E H2. Point to top of pile.
33 8H INC2 1 3M H3. Next pile. i← i+ 1.
34 J2NZ 9B 3M To H4 if i ̸= M.
35 STZ INPUT,1(LINK) 3 LINK(P)← Λ.
36 LD1 PILES(LINK) 3 P← BOTM[0].
37 DEC3 1 3
38 J3NN 2B 3 Loop for 1 ≤ k ≤ 3.

The running time of Program R is 32N + 48M + 38 − 4E, where N is the
number of input records, M is the radix (the number of piles), and E is the
number of occurrences of empty piles. This compares very favorably with other
programs we have constructed based on similar assumptions (Programs 5.2.1M,
5.2.4L). A p-pass version of the program would take (11p− 1)N + O(pM) units
of time; the critical factor in the timing is the inner loop, which involves five
references to memory and one branch. On a typical computer we will have
M = br and p = ⌈t/r⌉, where t is the number of radix-b digits in the keys;
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increasing r will decrease p, so the formulas can be used to determine a best
value of r.

The only variable in the timing is E, the number of empty piles observed
in step H4. If we consider each of the MN sequences of radix-M digits to be
equally probable, we know from our study of the “poker test” in Section 3.3.2D
that there are M − r empty piles with probability

M(M − 1) . . . (M − r + 1)
MN


N

r


(6)

on each pass, where

N
r


is a Stirling number of the second kind. By exercise 6,

E =


min max(M−N, 0)p, ave M


1− 1
M

N
p, max (M−1)p


. (7)

An ever-increasing number of “pipeline” or “number-crunching” computers
have appeared in recent years. These machines have multiple arithmetic units
and look-ahead circuitry so that memory references and computation can be
highly overlapped; but their efficiency deteriorates noticeably in the presence of
conditional branch instructions unless the branch almost always goes the same
way. The inner loop of a radix sort is well adapted to such machines, because
it is a straight iterative calculation of typical number-crunching form. Therefore
radix sorting is usually more efficient than any other known method for internal
sorting on such machines, provided that N is not too small and the keys are not
too long.

Of course, radix sorting is not very efficient when the keys are extremely
long. For example, imagine sorting 60-digit decimal numbers with 20 passes of a
radix sort, using M = 103; very few pairs of numbers will tend to have identical
keys in their leading 9 digits, so the first 17 passes accomplish very little. In our
analysis of radix exchange sorting, we found that it was unnecessary to inspect
many bits of the key, when we looked at the keys from the left instead of the
right. Let us therefore reconsider the idea of a radix sort that starts at the most
significant digit (MSD) instead of the least significant digit (LSD).

We have already remarked that an MSD-first radix method suggests itself
naturally; in fact, it is not hard to see why the post office uses such a method
to sort mail. A large collection of letters can be sorted into separate bags for
different geographical areas; each of these bags then contains a smaller number
of letters that can be sorted independently of the other bags, into finer and
finer geographical divisions. (Indeed, bags of letters can be transported nearer
to their destinations before they are sorted further, or as they are being sorted
further.) This principle of “divide and conquer” is quite appealing, and the
only reason it doesn’t work especially well for sorting punched cards is that it
ultimately spends too much time fussing with very small piles. Algorithm R is
relatively efficient, even though it considers LSD first, since we never have more
than M piles, and the piles need to be hooked together only p times. On the
other hand, it is not difficult to design an MSD-first radix method using linked
memory, with negative links as in Algorithm 5.2.4L to denote the boundaries
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between piles. (See exercise 10.) The main difficulty is that empty piles tend to
proliferate and to consume a great deal of time in an MSD-first method.

Perhaps the best compromise has been suggested by M. D. MacLaren [JACM
13 (1966), 404–411], who recommends an LSD-first sort as in Algorithm R, but
applied only to the most significant digits. This does not completely sort the file,
but it usually brings the file very nearly into order so that very few inversions
remain; therefore straight insertion can be used to finish up. Our analysis of
Program 5.2.1M applies also to this situation, so that if the keys are uniformly
distributed we will have an average of 1

4 N(N − 1)M−p inversions remaining in
the file after sorting on the leading p digits. (See Eq. 5.2.1–(17) and exercise
5.2.1–38.) MacLaren has computed the average number of memory references
per item sorted, and the optimum choice of M and p (assuming that M is
a power of 2, that the keys are uniformly distributed, and that N/Mp ≤ 0.1
so that deviations from uniformity are tolerable) turns out to be given by the
following table:

N = 100 1000 10000 100000 1000000 107 108 109

best M = 32 128 512 1024 8192 215 217 219

best p = 2 2 2 2 2 2 2 2
β(N) = 19.3 18.5 18.2 18.1 18.0 18.0 18.0 18.0

Here β(N) denotes the average number of memory references per item sorted,

β(N) = 5p + 8 + 2pM

N
+ N − 1

2Mp
− HN

N
; (8)

it is bounded as N →∞, if we take p = 2 and M >
√

N , so the average sorting
time is actually O(N) instead of order N log N. This method is an improvement
over multiple list insertion (Program 5.2.1M), which is essentially the case p = 1.
Exercise 12 gives MacLaren’s interesting procedure for final rearrangement of a
partially list-sorted file.

It is also possible to avoid the link fields, using the methods of Algo-
rithm 5.2D and exercise 5.2–13, so that only O

√
N


memory locations are

needed in addition to the space required for the records themselves. The average
sorting time is proportional to N if the input records are uniformly distributed.

W. Dobosiewicz obtained good results by using an MSD-first distribution
sort until reaching short subfiles, with the distribution process constrained so
that the first M/2 piles were guaranteed to receive between 25% and 75% of the
records [see Inf. Proc. Letters 7 (1978), 1–6; 8 (1979), 170–172]; this ensured
that the average time to sort uniform keys would be O(N) while the worst case
would be O(N log N). His papers inspired several other researchers to devise
new address calculation algorithms, of which the most instructive is perhaps the
following 2-level scheme due to Markku Tamminen [J. Algorithms 6 (1985), 138–
144]: Assume that all keys are fractions in the interval [0 . . 1). First distribute
the N records into ⌊N/8⌋ bins by mapping key K into bin ⌊KN/8⌋. Then suppose
bin k has received Nk records; if Nk ≤ 16, sort it by straight insertion, otherwise
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sort it by a MacLaren-like distribution-plus-insertion sort into M2 bins, where
M2 ≈ 10Nk. Tamminen proved the following remarkable result:

Theorem T. There is a constant T such that the sorting method just de-
scribed performs at most TN operations on the average, whenever the keys
are independent random numbers whose density function f(x) is bounded and
Riemann-integrable for 0 ≤ x ≤ 1. (The constant T does not depend on f .)

Proof. See exercise 18. Intuitively, the first distribution into N/8 piles finds
intervals in which f is approximately constant; the second distribution will then
make the expected bin size approximately constant.

Several versions of radix sort that have been well tuned for sorting large
arrays of alphabetic strings are described in an instructive article by P. M.
McIlroy, K. Bostic, and M. D. McIlroy, Computing Systems 6 (1993), 5–27.

EXERCISES
x 1. [20 ] The algorithm of exercise 5.2–13 shows how to do a distribution sort with

only N record areas (and M count fields), instead of 2N record areas. Does this lead
to an improvement over the radix sorting algorithm illustrated in Table 1?

2. [13 ] Is Algorithm R a stable sorting method?
3. [15 ] Explain why Algorithm H makes BOTM[0] point to the first record in the

“hooked-up” queue, even though pile 0 might be empty.
x 4. [23 ] Algorithm R keeps the M piles linked together as queues (first-in-first-out).

Explore the idea of linking the piles as stacks instead. (The arrows in Fig. 33 would
go downward instead of upward, and the BOTM table would be unnecessary.) Show that
if the piles are “hooked together” in an appropriate order, it is possible to achieve a
valid sorting method. Does this lead to a simpler or a faster algorithm?

5. [20 ] What changes are necessary to Program R so that it sorts eight-byte keys
instead of three-byte keys? Assume that the most significant bytes of Ki are stored in
location KEY+i(1:5), while the three least significant bytes are in location INPUT+i(1:3)
as presently. What is the running time of the program, after these changes have been
made?

6. [M24 ] Let gMN (z) =

pMNkz

k, where pMNk is the probability that exactly k
empty piles are present after a random radix-sort pass puts N elements into M piles.

a) Show that gM(N+1)(z) = gMN (z) + ((1− z)/M)g′MN (z).
b) Use this relation to find simple expressions for the mean and variance of this

probability distribution, as a function of M and N.
7. [20 ] Discuss the similarities and differences between Algorithm R and radix ex-

change sorting (Algorithm 5.2.2R).
x 8. [20 ] The radix-sorting algorithms discussed in the text assume that all keys being

sorted are nonnegative. What changes should be made to the algorithms when the keys
are numbers expressed in two’s complement or ones’ complement notation?

9. [20 ] Continuing exercise 8, what changes should be made to the algorithms when
the keys are numbers expressed in signed magnitude notation?
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10. [30 ] Design an efficient most-significant-digit-first radix-sorting algorithm that
uses linked memory. (As the size of the subfiles decreases, it is wise to decrease M, and
to use a nonradix method on the really short subfiles.)
11. [16 ] The sixteen input numbers shown in Table 1 start with 41 inversions; after
sorting is complete, of course, there are no inversions remaining. How many inversions
would be present in the file if we omitted pass 1, doing a radix sort only on the tens
and hundreds digits? How many inversions would be present if we omitted both pass 1
and pass 2?
12. [24 ] (M. D. MacLaren.) Suppose that Algorithm R has been applied only to the
p leading digits of the actual keys; thus the file is nearly sorted when we read it in
the order of the links, but keys that agree in their first p digits may be out of order.
Design an algorithm that rearranges the records in place so that their keys are in order,
K1 ≤ K2 ≤ · · · ≤ KN. [Hint: The special case that the file is perfectly sorted appears
in the answer to exercise 5.2–12; it is possible to combine this with straight insertion
without loss of efficiency, since few inversions remain in the file.]
13. [40 ] Implement the internal sorting method suggested in the text at the close of
this section, producing a subroutine that sorts random data in O(N) units of time with
only O(

√
N ) additional memory locations.

14. [22 ] The sequence of playing cards

8 7
K 1010

Q 3
6 5

9 2
A J

4
4

can be sorted into increasing order A 2 . . . J Q K from top to bottom in two passes,
using just two piles for intermediate storage: Deal the cards face down into two piles
containing respectively A 2 9 3 10 and 4 J 5 6 Q K 7 8 (from bottom to top); then put
the second pile on the first, turn the deck face up, and deal into two piles A 2 3 4 5 6 7 8,
9 10 J Q K. Combine these piles, turn them face up, and you’re done.

Prove that this sequence of cards cannot be sorted into decreasing order K Q J . . . 2 A
from top to bottom in two passes, even if you are allowed to use up to three piles for
intermediate storage. (Dealing must always be from the top of the deck, turning the
cards face down as they are dealt. Top to bottom is right to left in the illustration.)
15. [M25 ] Consider the problem of exercise 14 when all cards must be dealt face up
instead of face down. Thus, one pass can be used to convert increasing order into
decreasing order. How many passes are required?

x 16. [25 ] Design an algorithm to sort strings α1, . . . , αn on an m-letter alphabet into
lexicographic order. The total running time of your algorithm should be O(m+n+N),
where N = |α1|+ · · ·+ |αn| is the total length of all the strings.
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17. [15 ] In the two-level distribution sort proposed by Tamminen (see Theorem T),
why is a MacLaren-like method used for the second level of distribution but not the
first level?
18. [HM26 ] Prove Theorem T. Hint: Show first that MacLaren’s distribution-plus-
insertion algorithm does O(BN) operations, on the average, when it is applied to
independent random keys whose probability density function satisfies f(x) ≤ B for
0 ≤ x ≤ 1.

For sorting the roots and words
we had the use of 1100 lozenge boxes,

and used trays for the forms.
— GEORGE V. WIGRAM (1843)
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5.3. OPTIMUM SORTING
Now that we have analyzed a great many methods for internal sorting, it is
time to turn to a broader question: What is the best possible way to sort? Can
we place limits on the maximum sorting speeds that will ever be achievable, no
matter how clever a programmer might be?

Of course there is no best possible way to sort; we must define precisely
what is meant by “best,” and there is no best possible way to define “best.”
We have discussed similar questions about the theoretical optimality of algo-
rithms in Sections 4.3.3, 4.6.3, and 4.6.4, where high-precision multiplication
and polynomial evaluation were considered. In each case it was necessary to
formulate a rather simple definition of a “best possible” algorithm, in order to
give sufficient structure to the problem to make it workable. And in each case
we ran into interesting problems that are so difficult they still haven’t been
completely resolved. The same situation holds for sorting; some very interesting
discoveries have been made, but many fascinating questions remain unanswered.

Studies of the inherent complexity of sorting have usually been directed
towards minimizing the number of times we make comparisons between keys
while sorting n items, or merging m items with n, or selecting the tth largest of an
unordered set of n items. Sections 5.3.1, 5.3.2, and 5.3.3 discuss these questions
in general, and Section 5.3.4 deals with similar issues under the interesting
restriction that the pattern of comparisons must essentially be fixed in advance.
Several other types of interesting theoretical questions related to optimum sorting
appear in the exercises for Section 5.3.4, and in the discussion of external sorting
(Sections 5.4.4, 5.4.8, and 5.4.9).

As soon as an Analytical Engine exists,
it will necessarily guide the future course of the science.

Whenever any result is sought by its aid,
the question will then arise —

By what course of calculation can these
results be arrived at by the machine

in the shortest time?

— CHARLES BABBAGE (1864)

5.3.1. Minimum-Comparison Sorting
The minimum number of key comparisons needed to sort n elements is obviously
zero, because we have seen radix methods that do no comparisons at all. In fact,
it is possible to write MIX programs that are able to sort, although they contain
no conditional jump instructions at all! (See exercise 5–8 at the beginning of this
chapter.) We have also seen several sorting methods that are based essentially
on comparisons of keys, yet their running time in practice is dominated by other
considerations such as data movement, housekeeping operations, etc.

Therefore it is clear that comparison counting is not the only way to measure
the effectiveness of a sorting method. But it is fun to scrutinize the number of
comparisons anyway, since a theoretical study of this subject gives us a good
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1:2

2:3 2:3

1 2 3 1:3 1:3 3 2 1

1 3 2 3 1 2 2 1 3 2 3 1

Level 0

Level 1

Level 2

Level 3

Fig. 34. A comparison tree for sorting three elements.

deal of useful insight into the nature of sorting processes, and it also helps us to
sharpen our wits for the more mundane problems that confront us at other times.

In order to rule out radix-sorting methods, which do no comparisons at
all, we shall restrict our discussion to sorting techniques that are based solely
on an abstract linear ordering relation “<” between keys, as discussed at the
beginning of this chapter. For simplicity, we shall also confine our discussion to
the case of distinct keys, so that there are only two possible outcomes of any
comparison of Ki versus Kj : either Ki < Kj or Ki > Kj . (For an extension
of the theory to the general case where equal keys are allowed, see exercises 3
through 12. For bounds on the worst-case running time that is needed to sort
integers without the restriction to comparison-based methods, see Fredman and
Willard, J. Computer and Syst. Sci. 47 (1993), 424–436; Ben-Amram and Galil,
J. Comp. Syst. Sci. 54 (1997), 345–370; Thorup, SODA 9 (1998), 550–555.)

The problem of sorting by comparisons can also be expressed in other
equivalent ways. Given a set of n distinct weights and a balance scale, we can
ask for the least number of weighings necessary to completely rank the weights in
order of magnitude, when the pans of the balance scale can each accommodate
only one weight. Alternatively, given a set of n players in a tournament, we
can ask for the smallest number of games that suffice to rank all contestants,
assuming that the strengths of the players can be linearly ordered (with no ties).

All n-element sorting methods that satisfy the constraints above can be
represented in terms of an extended binary tree structure such as that shown
in Fig. 34. Each internal node (drawn as a circle) contains two indices “i :j”
denoting a comparison of Ki versus Kj . The left subtree of this node represents
the subsequent comparisons to be made if Ki < Kj , and the right subtree
represents the actions to be taken when Ki > Kj . Each external node of the tree
(drawn as a box) contains a permutation a1 a2 . . . an of {1, 2, . . . , n}, denoting
the fact that the ordering

Ka1 < Ka2 < · · · < Kan

has been established. (If we look at the path from the root to this external node,
each of the n − 1 relationships Kai

< Kai+1 for 1 ≤ i < n will be the result of
some comparison ai :ai+1 or ai+1:ai on this path.)
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1:2

2:3

3:1

Fig. 35. Example of a redundant comparison.

Thus Fig. 34 represents a sorting method that first compares K1 with K2;
if K1 > K2, it goes on (via the right subtree) to compare K2 with K3, and
then if K2 < K3 it compares K1 with K3; finally if K1 > K3 it knows that
K2 < K3 < K1. An actual sorting algorithm will usually also move the keys
around in the file, but we are interested here only in the comparisons, so we
ignore all data movement. A comparison of Ki with Kj in this tree always
means the original keys Ki and Kj , not the keys that might currently occupy
the ith and jth positions of the file after the records have been shuffled around.

It is possible to make redundant comparisons; for example, in Fig. 35 there
is no reason to compare 3:1, since K1 < K2 and K2 < K3 implies that K1 < K3.
No permutation can possibly correspond to the left subtree of node 3:1 in Fig. 35;
consequently that part of the algorithm will never be performed! Since we are
interested in minimizing the number of comparisons, we may assume that no re-
dundant comparisons are made. Hence we have an extended binary tree structure
in which every external node corresponds to a permutation. All permutations of
the input keys are possible, and every permutation defines a unique path from
the root to an external node; it follows that there are exactly n! external nodes
in a comparison tree that sorts n elements with no redundant comparisons.

The best worst case. The first problem that arises naturally is to find
comparison trees that minimize the maximum number of comparisons made.
(Later we shall consider the average number of comparisons.)

Let S(n) be the minimum number of comparisons that will suffice to sort
n elements. If all the internal nodes of a comparison tree are at levels < k, it is
obvious that there can be at most 2k external nodes in the tree. Hence, letting
k = S(n), we have

n! ≤ 2S(n).

Since S(n) is an integer, we can rewrite this formula to obtain the lower bound

S(n) ≥ ⌈lg n!⌉. (1)

Stirling’s approximation tells us that

⌈lg n!⌉ = n lg n− n/ln 2 + 1
2 lg n + O(1), (2)

hence roughly n lg n comparisons are needed.
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Relation (1) is often called the information-theoretic lower bound, since
cognoscenti of information theory would say that lg n! “bits of information” are
being acquired during a sorting process; each comparison yields at most one bit of
information. Trees such as Fig. 34 have also been called “questionnaires”; their
mathematical properties were first explored systematically in Claude Picard’s
book Théorie des Questionnaires (Paris: Gauthier-Villars, 1965).

Of all the sorting methods we have seen, the three that require fewest com-
parisons are binary insertion (see Section 5.2.1), tree selection (see Section 5.2.3),
and straight two-way merging (see Algorithm 5.2.4L). The maximum number of
comparisons for binary insertion is readily seen to be

B(n) =
n

k=1
⌈lg k⌉ = n⌈lg n⌉ − 2⌈lg n⌉ + 1, (3)

by exercise 1.2.4–42, and the maximum number of comparisons in two-way
merging is given in exercise 5.2.4–14. We will see in Section 5.3.3 that tree
selection has the same bound on its comparisons as either binary insertion or
two-way merging, depending on how the tree is set up. In all three cases we
achieve an asymptotic value of n lg n; combining these lower and upper bounds
for S(n) proves that

lim
n→∞

S(n)
n lg n

= 1. (4)

Thus we have an approximate formula for S(n), but it is desirable to obtain
more precise information. The following table gives exact values of the lower
and upper bounds discussed above, for small n:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
⌈lg n!⌉ = 0 1 3 5 7 10 13 16 19 22 26 29 33 37 41 45 49
B(n) = 0 1 3 5 8 11 14 17 21 25 29 33 37 41 45 49 54
L(n) = 0 1 3 5 9 11 14 17 25 27 30 33 38 41 45 49 65

Here B(n) and L(n) refer respectively to binary insertion and two-way list
merging. It can be shown that B(n) ≤ L(n) for all n (see exercise 2).

From the table above, we can see that S(4) = 5, but S(5) might be either
7 or 8. This brings us back to a problem stated at the beginning of Section 5.2:
What is the best way to sort five elements? Can five elements be sorted using
only seven comparisons?

The answer is yes, but a seven-step procedure is not especially easy to
discover. We begin by first comparing K1 :K2, then K3 :K4, then the larger
elements of these pairs. This produces a configuration that may be diagrammed

a c e

b d

(5)

to indicate that a < b < d and c < d. (It is convenient to represent known
ordering relations between elements by drawing directed graphs such as this,
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where x is known to be less than y if and only if there is a path from x to y in
the graph.) At this point we insert the fifth element K5 = e into its proper place
among {a, b, d}; only two comparisons are needed, since we may compare it first
with b and then with a or d. This leaves one of four possibilities,

e a c

b d

a c

e b d

a c

b e d

a c

b d e

(6)

and in each case we can insert c among the remaining elements less than d in
one or two more comparisons. This method for sorting five elements was first
found by H. B. Demuth [Ph.D. thesis, Stanford University (1956), 41–43].

Merge insertion. A pleasant generalization of the method above has been
discovered by Lester Ford, Jr. and Selmer Johnson. Since it involves some aspects
of merging and some aspects of insertion, we shall call it merge insertion. For
example, consider the problem of sorting 21 elements. We start by comparing
the ten pairs K1 :K2, K3 :K4, . . . , K19 :K20; then we sort the ten larger elements
of the pairs, using merge insertion. As a result we obtain the configuration

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

(7)

analogous to (5). The next step is to insert b3 among {b1, a1, a2}, then b2 among
the other elements less than a2; we arrive at the configuration

b4 b5 b6 b7 b8 b9 b10 b11

c1 c2 c3 c4 c5 c6 a4 a5 a6 a7 a8 a9 a10

(8)

Let us call the upper-line elements the main chain. We can insert b5 into its
proper place in the main chain, using three comparisons (first comparing it to
c4, then c2 or c6, etc.); then b4 can be moved into the main chain in three more
steps, leading to

b6 b7 b8 b9 b10 b11

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 a6 a7 a8 a9 a10

(9)

The next step is crucial; is it clear what to do? We insert b11 (not b7) into the
main chain, using only four comparisons. Then b10, b9, b8, b7, b6 (in this order)
can also be inserted into their proper places in the main chain, using at most
four comparisons each.

A careful count of the comparisons involved here shows that the 21 elements
have been sorted in at most 10 + S(10) + 2 + 2 + 3 + 3 + 4 + 4 + 4 + 4 + 4 + 4 = 66
steps. Since

265 < 21! < 266,
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we also know that no fewer than 66 would be possible in any event; hence

S(21) = 66. (10)

(Binary insertion would have required 74 comparisons.)
In general, merge insertion proceeds as follows for n elements:

i) Make pairwise comparisons of ⌊n/2⌋ disjoint pairs of elements. (If n is odd,
leave one element out.)

ii) Sort the ⌊n/2⌋ larger numbers, found in step (i), by merge insertion.
iii) Name the elements a1, a2, . . . , a⌊n/2⌋, b1, b2, . . . , b⌈n/2⌉ as in (7), where a1 ≤

a2 ≤ · · · ≤ a⌊n/2⌋ and bi ≤ ai for 1 ≤ i ≤ ⌊n/2⌋; call b1 and the a’s the
“main chain.” Insert the remaining b’s into the main chain, using binary
insertion, in the following order, leaving out all bj for j > ⌈n/2⌉:

b3, b2; b5, b4; b11, b10, . . . , b6; . . . ; btk , btk−1, . . . , btk−1+1; . . . . (11)

We wish to define the sequence (t1, t2, t3, t4, . . . ) = (1, 3, 5, 11, . . . ), which
appears in (11), in such a way that each of btk , btk−1, . . . , btk−1+1 can be inserted
into the main chain with at most k comparisons. Generalizing (7), (8), and (9),
we obtain the diagram

x1 x2 x2tk−1
atk−1+1 atk−1+2 atk−1

btk−1+1 btk−1+2 btk−1 btk

where the main chain up to and including atk−1 contains 2tk−1 + (tk − tk−1− 1)
elements. This number must be less than 2k; our best bet is to set it equal to
2k − 1, so that

tk−1 + tk = 2k. (12)
Since t1 = 1, we may set t0 = 1 for convenience, and we find that

tk = 2k − tk−1 = 2k − 2k−1 + tk−2 = · · · = 2k − 2k−1 + · · ·+ (−1)k20

=

2k+1 + (−1)k


/3 (13)

by summing a geometric series. (Curiously, this same sequence arose in our
study of an algorithm for calculating the greatest common divisor of two integers;
see exercise 4.5.2–36.)

Let F (n) be the number of comparisons required to sort n elements by merge
insertion. Clearly

F (n) = ⌊n/2⌋+ F (⌊n/2⌋) + G

⌈n/2⌉


, (14)

where G represents the amount of work involved in step (iii). If tk−1 ≤ m ≤ tk,
we have

G(m) =
k−1
j=1

j(tj − tj−1) + k(m− tk−1) = km− (t0 + t1 + · · ·+ tk−1), (15)



186 SORTING 5.3.1

summing by parts. Let us set

wk = t0 + t1 + · · ·+ tk−1 = ⌊2k+1/3⌋, (16)

so that (w0, w1, w2, w3, w4, . . . ) = (0, 1, 2, 5, 10, 21, . . . ). Exercise 13 shows that

F (n)− F (n− 1) = k if and only if wk < n ≤ wk+1, (17)

and the latter condition is equivalent to

2k+1

3 < n ≤ 2k+2

3 ,

or k + 1 < lg 3n ≤ k + 2; hence

F (n)− F (n− 1) =

lg 3

4 n

. (18)

(This formula is due to A. Hadian [Ph.D. thesis, Univ. of Minnesota (1969),
38–42].) It follows that F (n) has a remarkably simple expression,

F (n) =
n

k=1


lg 3

4 k

, (19)

quite similar to the corresponding formula (3) for binary insertion. A closed
form for this sum appears in exercise 14.

Equation (19) makes it easy to construct a table of F (n); we have
n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

⌈lg n!⌉ = 0 1 3 5 7 10 13 16 19 22 26 29 33 37 41 45 49
F (n) = 0 1 3 5 7 10 13 16 19 22 26 30 34 38 42 46 50

n = 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
⌈lg n!⌉ = 53 57 62 66 70 75 80 84 89 94 98 103 108 113 118 123

F (n) = 54 58 62 66 71 76 81 86 91 96 101 106 111 116 121 126
Notice that F (n) = ⌈lg n!⌉ for 1 ≤ n ≤ 11 and for 20 ≤ n ≤ 21, so we know that
merge insertion is optimum for those n:

S(n) = ⌈lg n!⌉ = F (n) for n = 1, . . . , 11, 20, and 21. (20)

Hugo Steinhaus posed the problem of finding S(n) in the second edition of his
classic book Mathematical Snapshots (Oxford University Press, 1950), 38–39. He
described the method of binary insertion, which is the best possible way to sort n
objects if we start by sorting n−1 of them first before the nth is considered; and
he conjectured that binary insertion would be optimum in general. Several years
later [Calcutta Math. Soc. Golden Jubilee Commemoration 2 (1959), 323–327],
he reported that two of his colleagues, S. Trybuła and P. Czen, had “recently”
disproved his conjecture, and that they had determined S(n) for n ≤ 11. Trybuła
and Czen may have independently discovered the method of merge insertion,
which was published soon afterwards by Ford and Johnson [AMM 66 (1959),
387–389].

After the discovery of merge insertion, the first unknown value of S(n) was
S(12). Table 1 shows that 12! is quite close to 229, hence the existence of a
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Table 1
VALUES OF FACTORIALS IN BINARY NOTATION

(1)2 = 1!
(10)2 = 2!

(110)2 = 3!
(11000)2 = 4!

(1111000)2 = 5!
(1011010000)2 = 6!

(1001110110000)2 = 7!
(1001110110000000)2 = 8!

(1011000100110000000)2 = 9!
(1101110101111100000000)2 = 10!

(10011000010001010100000000)2 = 11!
(11100100011001111110000000000)2 = 12!

(101110011001010001100110000000000)2 = 13!
(1010001001100001110110010100000000000)2 = 14!

(10011000001110111011101110101100000000000)2 = 15!
(100110000011101110111011101011000000000000000)2 = 16!

(1010000110111111011101110110011011000000000000000)2 = 17!
(10110101111101110110011001010011100110000000000000000)2 = 18!

(110110000001010111001001100000110100010010000000000000000)2 = 19!
(10000111000011011001110111110010000010101101000000000000000000)2 = 20!

29-step sorting procedure for 12 elements is somewhat unlikely. An exhaustive
search (about 60 hours on a Maniac II computer) was therefore carried out by
Mark Wells, who discovered that S(12) = 30 [Proc. IFIP Congress 65 2 (1965),
497–498; Elements of Combinatorial Computing (Pergamon, 1971), 213–215].
Thus the merge insertion procedure turns out to be optimum for n = 12 as well.

*A slightly deeper analysis. In order to study S(n) more carefully, let us look
more closely at partial ordering diagrams such as (5). After several comparisons
have been made, we can represent the knowledge we have gained in terms of a
directed graph. This directed graph contains no cycles, in view of the transitivity
of the < relation, so we can draw it in such a way that all arcs go from left to
right; it is therefore convenient to leave arrows off the diagram. In this way (5)
becomes

a c e

b d

(21)

If G is such a directed graph, let T (G) be the number of permutations consistent
with G, that is, the number of ways to assign the integers {1, 2, . . . , n} to the
vertices of G so that the number on vertex x is less than the number on vertex
y whenever x → y in G. For example, one of the permutations consistent with
(21) has a = 1, b = 4, c = 2, d = 5, e = 3. We have studied T (G) for various G
in Section 5.1.4, where we observed that T (G) is the number of ways in which
G can be sorted topologically.
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If G is a graph on n elements that can be obtained after k comparisons, we
define the efficiency of G to be

E(G) = n!
2kT (G) . (22)

(This idea is due to Frank Hwang and Shen Lin.) Strictly speaking, the efficiency
is not a function of the graph G alone, it depends on the way we arrived at G
during a sorting process, but it is convenient to be a little careless in our language.
After making one more comparison, between elements i and j, we obtain two
graphs G1 and G2, one for the case Ki < Kj and one for the case Ki > Kj .
Clearly

T (G) = T (G1) + T (G2).
If T (G1) ≥ T (G2), we have

T (G) ≤ 2T (G1),

E(G1) = n!
2k+1T (G1) = E(G)T (G)

2T (G1) ≤ E(G). (23)

Therefore each comparison leads to at least one graph of less or equal efficiency;
we can’t improve the efficiency by making further comparisons.

When G has no arcs at all, we have k = 0 and T (G) = n!, so the initial
efficiency is 1. At the other extreme, when G is a graph representing the final
result of sorting, G looks like a straight line and T (G) = 1. Thus, for example,
if we want to find a sorting procedure that sorts five elements in at most seven
steps, we must obtain the linear graph q q q qq , whose efficiency is 5!/(27×1) =
120/128 = 15/16. It follows that all of the graphs arising in the sorting procedure
must have efficiency ≥ 15

16 ; if any less efficient graph were to appear, at least one
of its descendants would also be less efficient, and we would ultimately reach
a linear graph whose efficiency is < 15

16 . In general, this argument proves that
all graphs corresponding to the tree nodes of a sorting procedure for n elements
must have efficiency ≥ n!/2l, where l is the number of levels of the tree (not
counting external nodes). This is another way to prove that S(n) ≥ ⌈lg n!⌉,
although the argument is not really much different from what we said before.

The graph (21) has efficiency 1, since T (G) = 15 and since G has been
obtained in three comparisons. In order to see what vertices should be compared
next, we can form the comparison matrix

C(G) =



a b c d e

a 0 15 10 15 11
b 0 0 5 15 7
c 5 10 0 15 9
d 0 0 0 0 3
e 4 8 6 12 0

, (24)

where Cij is T (G1) for the graph G1 obtained by adding the arc i → j to G.
For example, if we compare Kc with Ke, the 15 permutations consistent with G
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split up into Cec = 6 having Ke < Kc and Cce = 9 having Kc < Ke. The
latter graph would have efficiency 15/(2× 9) = 5

6 < 15
16 , so it could not lead to a

seven-step sorting procedure. The next comparison must be Kb :Ke in order to
keep the efficiency ≥ 15

16 .
The concept of efficiency is especially useful when we consider the connected

components of graphs. Consider for example the graph

G =
a b

c

d e

f g

;

it has two components

G′ =
a b

c

and G′′ =
d e

f g

with no arcs connecting G′ to G′′, so it has been formed by making some
comparisons entirely within G′ and others entirely within G′′. In general, assume
that G = G′ ⊕ G′′ has no arcs between G′ and G′′, where G′ and G′′ have
respectively n′ and n′′ vertices; it is easy to see that

T (G) =


n′ + n′′

n′


T (G′)T (G′′), (25)

since each consistent permutation of G is obtained by choosing n′ elements
to assign to G′ and then making consistent permutations within G′ and G′′

independently. If k′ comparisons have been made within G′ and k′′ within G′′,
we have the basic result

E(G) = (n′ + n′′)!
2k′+k′′T (G) = n′ !

2k′T (G′)
n′′ !

2k′′T (G′′) = E(G′)E(G′′), (26)

showing that the efficiency of a graph is related in a simple way to the efficiency
of its components. Therefore we may restrict consideration to graphs having
only one component.

Now suppose that G′ and G′′ are one-component graphs, and suppose that
we want to hook them together by comparing a vertex x of G′ with a vertex y
of G′′. We want to know how efficient this will be. For this purpose we need a
function that can be denoted by 

p

m
<

q

n


, (27)

defined to be the number of permutations consistent with the graph

a1 a2 ap am

b1 b2 bq bn

(28)
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Thus


p
m< q

n


is


m+n
m


times the probability that the pth smallest of a set of

m numbers is less than the qth smallest of an independently chosen set of n
numbers. Exercise 17 shows that we can express


p
m< q

n


in two ways in terms

of binomial coefficients,
p

m
<

q

n


=


0≤k<q


m− p + n− k

m− p


p− 1 + k

p− 1


=


p≤j≤m


n− q + m− j

n− q


q − 1 + j

q − 1


. (29)

(Incidentally, it is by no means obvious on algebraic grounds that these two sums
of products of binomial coefficients should come out to be equal.) We also have
the formulas 

p

m
<

q

n


+


q

n
<

p

m


=


m + n

m


; (30)

q

n
<

p

m


=


m+1−p

m
<

n+1−q

n


; (31)

p

m
<

q

n


=


p

m−1 <
q

n


+


p

m
<

q

n−1


+ [p≤m][q = n]


m+n−1

m


. (32)

For definiteness, let us now consider the two graphs

G′ =
x1

x2

x3

x4
x5

x6

x7

, G′′ =

y1 y3

y2 y4

. (33)

It is not hard to show by direct enumeration that T (G′) = 42 and T (G′′) = 5; so
if G is the 11-vertex graph having G′ and G′′ as components, we have T (G) =11

4

· 42 · 5 = 69300 by Eq. (25). This is a formidable number of permutations

to list, if we want to know how many of them have xi < yj for each i and j.
But the calculation can be done by hand, in less than an hour, as follows. We
form the matrices A(G′) and A(G′′), where Aik is the number of consistent
permutations of G′ (or G′′) in which xi (or yi) is equal to k. Thus the number of
permutations of G in which xi is less than yj is the (i, p) element of A(G′) times
p
7 < q

4


times the (j, q) element of A(G′′), summed over 1 ≤ p ≤ 7 and 1 ≤ q ≤ 4.
In other words, we want to form the matrix product A(G′) · L · A(G′′)T , where
Lpq =


p
7 < q

4

. This comes to




21 16 5 0 0 0 0
0 5 10 12 10 5 0

21 16 5 0 0 0 0
0 0 12 18 12 0 0
0 0 0 0 5 16 21
0 5 10 12 10 5 0
0 0 0 0 5 16 21







210 294 322 329
126 238 301 325
70 175 265 315
35 115 215 295
15 65 155 260
5 29 92 204
1 8 36 120







2 3 0 0
2 2 0 1
1 0 2 2
0 0 3 2


=




48169 42042 66858 64031
22825 16005 53295 46475
48169 42042 66858 64031
22110 14850 54450 47190
5269 2442 27258 21131

22825 16005 53295 46475
5269 2442 27258 21131



.
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G1 G2 G3 G4

G5 G6 G7 G8

G9 G10 G11 G12

G13 G14 G15 G16

G17 G18 G19 G20

G21 G22 G23 G24

1 1 1 15
16

15
16

15
16

15
16

15
16

105
116

315
352

315
352 1

1 1 1 63
64

35
36

21
22

315
332

315
316

315
326

15
16

15
16

63
64

Fig. 36. Some graphs and their efficiencies, obtained at the beginning of a long proof
that S(12) > 29.

Thus the “best” way to hook up G′ and G′′ is to compare x1 with y2; this gives
42042 cases with x1 < y2 and 69300 − 42042 = 27258 cases with x1 > y2. (By
symmetry, we could also compare x3 with y2, x5 with y3, or x7 with y3, leading to
essentially the same results.) The efficiency of the resulting graph for x1 < y2 is

69300
84084 E(G′)E(G′′),

which is none too good; hence it is probably a bad idea to hook G′ up with G′′

in any sorting method. The point of this example is that we are able to make
such a decision without excessive calculation.

These ideas can be used to provide independent confirmation of Mark Wells’s
proof that S(12) = 30. Starting with a graph containing one vertex, we can
repeatedly try to add a comparison to one of our graphs G or to G′⊕G′′ (a pair
of graph components G′ and G′′) in such a way that the two resulting graphs
have 12 or fewer vertices and efficiency ≥ 12!/229 ≈ 0.89221. Whenever this is
possible, we take the resulting graph of least efficiency and add it to our set,
unless one of the two graphs is isomorphic to a graph we already have included.
If both of the resulting graphs have the same efficiency, we arbitrarily choose
one of them. A graph can be identified with its dual (obtained by reversing the
order), so long as we consider adding comparisons to G′ ⊕ dual(G′′) as well as
to G′ ⊕G′′. A few of the smallest graphs obtained in this way are displayed in
Fig. 36 together with their efficiencies.

Exactly 1649 graphs were generated, by computer, before this process ter-
minated. Since the graph q q q q q q q q q q qq was not obtained, we may
conclude that S(12) > 29. It is plausible that a similar experiment could be
performed to deduce that S(22) > 70 in a fairly reasonable amount of time, since
22!/270 ≈ 0.952 requires extremely high efficiency to sort in 70 steps. (Only 91
of the 1649 graphs found on 12 or fewer vertices had such high efficiency.)
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Marcin Peczarski [see Algorithmica 40 (2004), 133–145; Information Proc.
Letters 101 (2007), 126–128] extended Wells’s method and proved that S(13) =
34, S(14) = 38, S(15) = 42, S(22) = 71; thus merge insertion is optimum
in those cases as well. Intuitively, it seems likely that S(16) will some day be
shown to be less than F (16), since F (16) involves no fewer steps than sorting
ten elements with S(10) comparisons and then inserting six others by binary
insertion, one at a time. There must be a way to improve upon this! But at
present, the smallest case where F (n) is definitely known to be nonoptimum is
n = 47: After sorting 5 and 42 elements with F (5) + F (42) = 178 comparisons,
we can merge the results with 22 further comparisons, using a method due to
J. Schulte Mönting, Theoretical Comp. Sci. 14 (1981), 19–37; this strategy beats
F (47) = 201. (Glenn K. Manacher [JACM 26 (1979), 441–456] had previously
proved that infinitely many n exist with S(n) < F (n), starting with n = 189.)

The average number of comparisons. So far we have been considering
procedures that are best possible in the sense that their worst case isn’t bad;
in other words, we have looked for “minimax” procedures that minimize the
maximum number of comparisons. Now let us look for a “minimean” procedure
that minimizes the average number of comparisons, assuming that the input is
random so that each permutation is equally likely.

Consider once again the tree representation of a sorting procedure, as shown
in Fig. 34. The average number of comparisons in that tree is

2 + 3 + 3 + 3 + 3 + 2
6 = 2 2

3 ,

averaging over all permutations. In general, the average number of comparisons
in a sorting method is the external path length of the tree divided by n!. (Recall
that the external path length is the sum of the distances from the root to each of
the external nodes; see Section 2.3.4.5.) It is easy to see from the considerations
of Section 2.3.4.5 that the minimum external path length occurs in a binary tree
with N external nodes if there are 2q − N external nodes at level q − 1 and
2N − 2q at level q, where q = ⌈lg N⌉. (The root is at level zero.) The minimum
external path length is therefore

(q − 1)(2q −N) + q(2N − 2q) = (q + 1)N − 2q. (34)

The minimum path length can also be characterized in another interesting way:
An extended binary tree has minimum external path length for a given number
of external nodes if and only if there is a number l such that all external nodes
appear on levels l and l + 1. (See exercise 20.)

If we set q = lg N + θ, where 0 ≤ θ < 1, the formula for minimum external
path length becomes

N (lg N + 1 + θ − 2θ). (35)
The function 1 + θ− 2θ is shown in Fig. 37; for 0 < θ < 1 it is positive but very
small, never exceeding

1− (1 + ln ln 2)/ ln 2 = 0.08607 13320 55934+. (36)
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

Fig. 37. The function 1 + θ − 2θ.

Thus the minimum possible average number of comparisons, obtained by dividing
(35) by N, is never less than lg N and never more than lg N +0.0861. [This result
was first obtained by A. Gleason in an internal IBM memorandum (1956).]

Now if we set N = n!, we get a lower bound for the average number of
comparisons in any sorting scheme. Asymptotically speaking, this lower bound is

lg n! + O(1) = n lg n− n/ ln 2 + O(log n). (37)

Let F (n) be the average number of comparisons performed by the merge
insertion algorithm; we have

n = 1 2 3 4 5 6 7 8
lower bound (34) = 0 2 16 112 832 6896 62368 619904

n! F (n) = 0 2 16 112 832 6912 62784 623232

Thus merge insertion is optimum in both senses for n ≤ 5, but for n = 6
it averages 6912/720 = 9.6 comparisons while our lower bound says that an
average of 6896/720 = 9.577777 . . . comparisons might be possible. A moment’s
reflection shows why this is true: Some “fortunate” permutations of six elements
are sorted by merge insertion after only eight comparisons, so the comparison
tree has external nodes appearing on three levels instead of two. This forces
the overall path length to be higher. Exercise 24 shows that it is possible to
construct a six-element sorting procedure that requires nine or ten comparisons
in each case; it follows that this method is superior to merge insertion, on the
average, and no worse than merge insertion in its worst case.

When n = 7, Y. Césari [Thesis (Univ. of Paris, 1968), page 37] has shown
that no sorting method can attain the lower bound 62368 on external path
length. (It is possible to prove this fact without a computer, using the results of
exercise 22.) On the other hand, he has constructed procedures that do achieve
the lower bound (34) when n = 9 or 10. In general, the problem of minimizing
the average number of comparisons turns out to be substantially more difficult
than the problem of determining S(n). It may even be true that, for some n, all
methods that minimize the average number of comparisons require more than
S(n) comparisons in their worst case.

EXERCISES
1. [20 ] Draw the comparison trees for sorting four elements using the method of

(a) binary insertion; (b) straight two-way merging. What are the external path lengths
of these trees?

2. [M24 ] Prove that B(n) ≤ L(n), and find all n for which equality holds.
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3. [M22 ] (Weak orderings.) When equality between keys is allowed, there are 13
possible outcomes when sorting three elements:

K1 = K2 = K3, K1 = K2 < K3, K1 = K3 < K2,

K2 = K3 < K1, K1 < K2 = K3, K2 < K1 = K3,

K3 < K1 = K2, K1 < K2 < K3, K1 < K3 < K2,

K2 < K1 < K3, K2 < K3 < K1, K3 < K1 < K2, K3 < K2 < K1.

Let Pn denote the number of possible outcomes when n elements are sorted with ties
allowed, so that (P0, P1, P2, P3, P4, P5, . . . ) = (1, 1, 3, 13, 75, 541, . . . ). Prove that the
generating function P (z) =


n≥0 Pnz

n/n! is equal to 1/(2− ez). Hint: Show that

Pn =

k>0


n

k


Pn−k when n > 0.

4. [HM27 ] (O. A. Gross.) Determine the asymptotic value of the numbers Pn of
exercise 3, as n→∞. [Possible hint: Consider the partial fraction expansion of cot z.]

5. [16 ] When keys can be equal, each comparison may have three results instead
of two: Ki < Kj , Ki = Kj , Ki > Kj . Sorting algorithms for this general situation
can be represented as extended ternary trees, in which each internal node i :j has
three subtrees; the left, middle, and right subtrees correspond respectively to the three
possible outcomes of the comparison.

Draw an extended ternary tree that defines a sorting algorithm for n = 3, when
equal keys are allowed. There should be 13 external nodes, corresponding to the 13
possible outcomes listed in exercise 3.

x 6. [M22 ] Let S′(n) be the minimum number of comparisons necessary to sort n
elements and to determine all equalities between keys, when each comparison has three
outcomes as in exercise 5. The information-theoretic argument of the text can readily
be generalized to show that S′(n) ≥ ⌈log3 Pn⌉, where Pn is the function studied in
exercises 3 and 4; but prove that, in fact, S′(n) = S(n).

7. [20 ] Draw an extended ternary tree in the sense of exercise 5 for sorting four
elements, when it is known that all keys are either 0 or 1. (Thus if K1 < K2 and
K3 < K4, we know that K1 = K3 and K2 = K4!) Use the minimum average number
of comparisons, assuming that the 24 possible inputs are equally likely. Be sure to
determine all equalities that are present; for example, don’t stop sorting when you
know only that K1 ≤ K2 ≤ K3 ≤ K4.

8. [26 ] Draw an extended ternary tree as in exercise 7 for sorting four elements,
when it is known that all keys are either −1, 0, or +1. Use the minimum average
number of comparisons, assuming that the 34 possible inputs are equally likely.

9. [M20 ] When sorting n elements as in exercise 7, knowing that all keys are 0 or 1,
what is the minimum number of comparisons in the worst case?

x 10. [M25 ] When sorting n elements as in exercise 7, knowing that all keys are 0 or 1,
what is the minimum average number of comparisons as a function of n?
11. [HM27 ] When sorting n elements as in exercise 5, and knowing that all keys are
members of the set {1, 2, . . . ,m}, let Sm(n) be the minimum number of comparisons
needed in the worst case. [Thus by exercise 6, Sn(n) = S(n).] Prove that, for fixed m,
Sm(n) is asymptotically n lgm+O(1) as n→∞.
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x 12. [M25 ] (W. G. Bouricius, circa 1954.) Suppose that equal keys may occur, but we
merely want to sort the elements {K1,K2, . . . ,Kn} so that a permutation a1 a2 . . . an

is determined with Ka1 ≤ Ka2 ≤ · · · ≤ Kan ; we do not need to know whether or not
equality occurs between Kai and Kai+1 .

Let us say that a comparison tree sorts a sequence of keys strongly if it will sort
the sequence in the stated sense no matter which branch is taken below the nodes i :j
for which Ki = Kj . (The tree is binary, not ternary.)

a) Prove that a comparison tree with no redundant comparisons sorts every sequence
of keys strongly if and only if it sorts every sequence of distinct keys.

b) Prove that a comparison tree sorts every sequence of keys strongly if and only if
it sorts every sequence of zeros and ones strongly.

13. [M28 ] Prove (17).
14. [M24 ] Find a closed form for the sum (19).
15. [M21 ] Determine the asymptotic behavior of B(n) and F (n) up to O(logn).
[Hint: Show that in both cases the coefficient of n involves the function shown in
Fig. 37.]
16. [HM26 ] (F. Hwang and S. Lin.) Prove that F (n) > ⌈lgn!⌉ for n ≥ 22.
17. [M20 ] Prove (29).
18. [20 ] If the procedure whose first steps are shown in Fig. 36 had produced the
linear graph q q q q q q q q q q qq with efficiency 12!/229, would this have proved
that S(12) = 29?
19. [40 ] Experiment with the following heuristic rule for deciding which pair of el-
ements to compare next while designing a comparison tree: At each stage of sorting
{K1, . . . ,Kn}, let ui be the number of keys known to be ≤ Ki as a result of the com-
parisons made so far, and let vi be the number of keys known to be ≥ Ki, for 1 ≤ i ≤ n.
Renumber the keys in terms of increasing ui/vi, so that u1/v1 ≤ u2/v2 ≤ · · · ≤ un/vn.
Now compare Ki :Ki+1 for some i that minimizes |uivi+1 − ui+1vi|. (Although this
method is based on far less information than a full comparison matrix as in (24), it
appears to give optimum results in many cases.)

x 20. [M26 ] Prove that an extended binary tree has minimum external path length if
and only if there is a number l such that all external nodes appear on levels l and l+ 1
(or perhaps all on a single level l).
21. [M21 ] The height of an extended binary tree is the maximum level number of its
external nodes. If x is an internal node of an extended binary tree, let t(x) be the
number of external nodes below x, and let l(x) denote the root of x’s left subtree. If
x is an external node, let t(x) = 1. Prove that an extended binary tree has minimum
height among all binary trees with the same number of nodes ift(x)− 2t(l(x))

 ≤ 2⌈lg t(x)⌉ − t(x)

for all internal nodes x.
22. [M24 ] Continuing exercise 21, prove that a binary tree has minimum external
path length among all binary trees with the same number of nodes if and only ift(x)− 2t(l(x))

 ≤ 2⌈lg t(x)⌉ − t(x) and
t(x)− 2t(l(x))

 ≤ t(x)− 2⌊lg t(x)⌋

for all internal nodes x. [Thus, for example, if t(x) = 67, we must have t(l(x)) = 32,
33, 34, or 35. If we merely wanted to minimize the height of the tree we could have
3 ≤ t(l(x)) ≤ 64, by the preceding exercise.]
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23. [10 ] The text proves that the average number of comparisons made by any sorting
method for n elements must be at least ⌈lgn!⌉ ≈ n lgn. But multiple list insertion
(Program 5.2.1M) takes only O(n) units of time on the average. How can this be?
24. [27 ] (C. Picard.) Find a sorting tree for six elements such that all external nodes
appear on levels 10 and 11.
25. [11 ] If there were a sorting procedure for seven elements that achieves the min-
imum average number of comparisons predicted by the use of Eq. (34), how many
external nodes would there be on level 13?
26. [M42 ] Find a sorting procedure for seven elements that minimizes the average
number of comparisons performed.

x 27. [20 ] Suppose it is known that the configurations K1 < K2 < K3, K1 < K3 < K2,
K2 < K1 < K3, K2 < K3 < K1, K3 < K1 < K2, K3 < K2 < K1 occur with respective
probabilities .01, .25, .01, .24, .25, .24. Find a comparison tree that sorts these three
elements with the smallest average number of comparisons.
28. [40 ] Write a MIX program that sorts five one-word keys in the minimum possible
amount of time, and halts. (See the beginning of Section 5.2 for ground rules.)
29. [M25 ] (S. M. Chase.) Let a1 a2 . . . an be a permutation of {1, 2, . . . , n}. Prove that
any algorithm that decides whether this permutation is even or odd (that is, whether
it has an even or odd number of inversions), based solely on comparisons between the
a’s, must make at least n lgn comparisons, even though the algorithm has only two
possible outcomes.
30. [M23 ] (Optimum exchange sorting.) Every exchange sorting algorithm as defined
in Section 5.2.2 can be represented as a comparison-exchange tree, namely a binary tree
structure whose internal nodes have the form i :j for i < j, interpreted as the following
operation: “If Ki ≤ Kj , continue by taking the left branch of the tree; if Ki > Kj ,
continue by interchanging records i and j and then taking the right branch of the tree.”
When an external node is encountered, it must be true that K1 ≤ K2 ≤ · · · ≤ Kn.
Thus, a comparison-exchange tree differs from a comparison tree in that it specifies
data movement as well as comparison operations.

Let Se(n) denote the minimum number of comparison-exchanges needed, in the
worst case, to sort n elements by means of a comparison-exchange tree. Prove that
Se(n) ≤ S(n) + n− 1.
31. [M38 ] Continuing exercise 30, prove that Se(5) = 8.
32. [M42 ] Continuing exercise 31, investigate Se(n) for small values of n > 5.
33. [M30 ] (T. N. Hibbard.) A real-valued search tree of order x and resolution δ is
an extended binary tree in which all nodes contain a nonnegative real value such that
(i) the value in each external node is ≤ δ, (ii) the value in each internal node is at
most the sum of the values in its two children, and (iii) the value in the root is x. The
weighted path length of such a tree is defined to be the sum, over all external nodes, of
the level of that node times the value it contains.

Prove that a real-valued search tree of order x and resolution 1 has minimum
weighted path length, taken over all such trees of the same order and resolution, if and
only if equality holds in (ii) and the following further conditions hold for all pairs of
values x0 and x1 that are contained in sibling nodes: (iv) There is no integer k ≥ 0 such
that x0 < 2k < x1 or x1 < 2k < x0. (v) ⌈x0⌉−x0 + ⌈x1⌉−x1 < 1. (In particular if x is
an integer, condition (v) implies that all values in the tree are integers, and condition
(iv) is equivalent to the result of exercise 22.)



5.3.2 MINIMUM-COMPARISON MERGING 197

Also prove that the corresponding minimum weighted path length is x⌈lg x⌉ +
⌈x⌉ − 2⌈lg x⌉.
34. [M50 ] Determine the exact value of S(n) for infinitely many n.
35. [49 ] Determine the exact value of S(16).
36. [M50 ] (S. S. Kislitsyn, 1968.) Prove or disprove: Any directed acyclic graph G
with T (G) > 1 has two vertices u and v such that the digraphs G1 and G2 ob-
tained from G by adding the arcs u ← v and u → v are acyclic and satisfy 1 ≤
T (G1)/T (G2) ≤ 2. (Thus T (G1)/T (G) always lies between 1

3 and 2
3 , for some u and v.)

*5.3.2. Minimum-Comparison Merging
Let us now consider a related question: What is the best way to merge an
ordered set of m elements with an ordered set of n? Denoting the elements to
be merged by

A1 < A2 < · · · < Am and B1 < B2 < · · · < Bn, (1)

we shall assume as in Section 5.3.1 that the m + n elements are distinct. The
A’s may appear among the B’s in


m+n
m


ways, so the arguments we have used

for the sorting problem tell us immediately that at least
lg


m + n

m


(2)

comparisons are required. If we set m = αn and let n → ∞, while α is fixed,
Stirling’s approximation tells us that

lg


αn + n

αn


= n


(1 + α) lg(1 + α)− α lg α


− 1

2 lg n + O(1). (3)

The normal merging procedure, Algorithm 5.2.4M, takes m + n− 1 comparisons
in its worst case.

Let M(m, n) denote the function analogous to S(n), namely the minimum
number of comparisons that will always suffice to merge m things with n. By
the observations we have just made,

lg


m + n

m


≤M(m, n) ≤ m + n− 1 for all m, n ≥ 1. (4)

Formula (3) shows how far apart this lower bound and upper bound can be.
When α = 1 (that is, m = n), the lower bound is 2n − 1

2 lg n + O(1), so both
bounds have the right order of magnitude but the difference between them can
be arbitrarily large. When α = 0.5 (that is, m = 1

2 n), the lower bound is
3
2 n(lg 3− 2

3 ) + O(log n),

which is about lg 3− 2
3 ≈ 0.918 times the upper bound. And as α decreases, the

bounds get farther and farther apart, since the standard merging algorithm is
primarily designed for files with m ≈ n.
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When m = n, the merging problem has a fairly simple solution; it turns
out that the lower bound of (4), not the upper bound, is at fault. The follow-
ing theorem was discovered independently by R. L. Graham and R. M. Karp
about 1968:
Theorem M. For all m ≥ 1, we have M(m, m) = 2m− 1.
Proof. Consider any algorithm that merges A1 < · · · < Am with B1 < · · · < Bm.
When it compares Ai :Bj , take the branch Ai < Bj if i < j, the branch Ai > Bj

if i ≥ j. Merging must eventually terminate with the configuration

B1 < A1 < B2 < A2 < · · · < Bm < Am, (5)

since this is consistent with all the branches taken. And each of the 2m − 1
comparisons

B1 :A1, A1 :B2, B2 :A2, . . . , Bm :Am

must have been made explicitly, or else there would be at least two configurations
consistent with the known facts. For example, if A1 has not been compared to
B2, the configuration

B1 < B2 < A1 < A2 < · · · < Bm < Am

is indistinguishable from (5).
A simple modification of this proof yields the companion formula

M(m, m+1) = 2m, for m ≥ 0. (6)

Constructing lower bounds. Theorem M shows that the “information the-
oretic” lower bound (2) can be arbitrarily far from the true value; thus the
technique used to prove Theorem M gives us another way to discover lower
bounds. Such a proof technique is often viewed as the creation of an adversary,
a pernicious being who tries to make algorithms run slowly. When an algorithm
for merging decides to compare Ai :Bj , the adversary determines the fate of the
comparison so as to force the algorithm down the more difficult path. If we can
invent a suitable adversary, as in the proof of Theorem M, we can ensure that
every valid merging algorithm will have to make quite a few comparisons.

We shall make use of constrained adversaries, whose power is limited with
regard to the outcomes of certain comparisons. A merging method that is under
the influence of a constrained adversary does not know about the constraints,
so it must make the necessary comparisons even though their outcomes have
been predetermined. For example, in our proof of Theorem M we constrained all
outcomes by condition (5), yet the merging algorithm was unable to make use
of that fact in order to avoid any of the comparisons.

The constraints we shall use in the following discussion apply to the left and
right ends of the files. Left constraints are symbolized by

. (meaning no left constraint),
\ (meaning that all outcomes must be consistent with A1 < B1),
/ (meaning that all outcomes must be consistent with A1 > B1);
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similarly, right constraints are symbolized by
. (meaning no right constraint),
\ (meaning that all outcomes must be consistent with Am < Bn),
/ (meaning that all outcomes must be consistent with Am > Bn).

There are nine kinds of adversaries, denoted by λMρ, where λ is a left constraint
and ρ is a right constraint. For example, a \M\ adversary must say that A1 < Bj

and Ai < Bn; a .M. adversary is unconstrained. For small values of m and n,
constrained adversaries of certain kinds are impossible; when m = 1 we obviously
can’t have a \M/ adversary.

Let us now construct a rather complicated, but very formidable, adversary
for merging. It does not always produce optimum results, but it gives lower
bounds that cover a lot of interesting cases. Given m, n, and the left and right
constraints λ and ρ, suppose the adversary is asked which is the greater of Ai

or Bj . Six strategies can be used to reduce the problem to cases of smaller m+n:
Strategy A(k, l), for i ≤ k ≤ m and 1 ≤ l ≤ j. Say that Ai < Bj , and
require that subsequent operations merge {A1, . . . , Ak} with {B1, . . . , Bl−1} and
{Ak+1, . . . , Am} with {Bl, . . . , Bn}. Thus future comparisons Ap :Bq will result
in Ap < Bq if p ≤ k and q ≥ l; Ap > Bq if p > k and q < l; they will be
handled by a (k, l−1, λ, .) adversary if p ≤ k and q < l; they will be handled by
an (m−k, n+1−l, . , ρ) adversary if p > k and q ≥ l.
Strategy B(k, l), for i ≤ k ≤ m and 1 ≤ l < j. Say that Ai < Bj , and
require that subsequent operations merge {A1, . . . , Ak} with {B1, . . . , Bl} and
{Ak+1, . . . , Am} with {Bl, . . . , Bn}, stipulating that Ak < Bl < Ak+1. (Note
that Bl appears in both lists to be merged. The condition Ak < Bl < Ak+1
ensures that merging one group gives no information that could help to merge
the other.) Thus future comparisons Ap :Bq will result in Ap < Bq if p ≤ k and
q ≥ l; Ap > Bq if p > k and q ≤ l; they will be handled by a (k, l, λ, \) adversary
if p ≤ k and q ≤ l; by an (m−k, n+1−l, /, ρ) adversary if p > k and q ≥ l.
Strategy C(k, l), for i < k ≤ m and 1 ≤ l ≤ j. Say that Ai < Bj , and
require that subsequent operations merge {A1, . . . , Ak} with {B1, . . . , Bl−1} and
{Ak, . . . , Am} with {Bl, . . . , Bn}, stipulating that Bl−1 < Ak < Bl. (Analogous
to Strategy B, interchanging the roles of A and B.)
Strategy A′(k, l), for 1 ≤ k ≤ i and j ≤ l ≤ n. Say that Ai > Bj , and
require the merging of {A1, . . . , Ak−1} with {B1, . . . , Bl} and {Ak, . . . , Am} with
{Bl+1, . . . , Bn}. (Analogous to Strategy A.)
Strategy B′(k, l), for 1 ≤ k ≤ i and j < l ≤ n. Say that Ai > Bj , and
require the merging of {A1, . . . , Ak−1} with {B1, . . . , Bl} and {Ak, . . . , Am} with
{Bl, . . . , Bn}, subject to Ak−1 < Bl < Ak. (Analogous to Strategy B.)
Strategy C′(k, l), for 1 ≤ k < i and j ≤ l ≤ n. Say that Ai > Bj , and
require the merging of {A1, . . . , Ak} with {B1, . . . , Bl} and {Ak, . . . , Am} with
{Bl+1, . . . , Bn}, subject to Bl < Ak < Bl+1. (Analogous to Strategy C.)
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Because of the constraints, the strategies above cannot be used in certain
cases summarized here:

Strategy Must be omitted when

A(k, 1), B(k, 1), C(k, 1) λ = /

A′(1, l), B′(1, l), C′(1, l) λ = \
A(m, l), B(m, l), C(m, l) ρ = /

A′(k, n), B′(k, n), C′(k, n) ρ = \

Let λMρ(m, n) denote the maximum lower bound for merging that is ob-
tainable by an adversary of the class described above. Each strategy, when
applicable, gives us an inequality relating these nine functions, when the first
comparison is Ai :Bj , namely,

A(k, l): λMρ(m, n) ≥ 1 + λM.(k, l−1) + .Mρ(m−k, n+1−l);
B(k, l): λMρ(m, n) ≥ 1 + λM\(k, l) + /Mρ(m−k, n+1−l);
C(k, l): λMρ(m, n) ≥ 1 + λM/(k, l−1) + \Mρ(m+1−k, n+1−l);
A′(k, l): λMρ(m, n) ≥ 1 + λM.(k−1, l) + .Mρ(m+1−k, n−l);
B′(k, l): λMρ(m, n) ≥ 1 + λM\(k−1, l) + /Mρ(m+1−k, n+1−l);
C′(k, l): λMρ(m, n) ≥ 1 + λM/(k, l) + \Mρ(m+1−k, n−l).

For fixed i and j, the adversary will adopt a strategy that maximizes the lower
bound given by all possible right-hand sides, when k and l lie in the ranges
permitted by i and j. Then we define λMρ(m, n) to be the minimum of these
lower bounds taken over 1 ≤ i ≤ m and 1 ≤ j ≤ n. When m or n is zero,
λMρ(m, n) is zero.

For example, consider the case m = 2 and n = 3, and suppose that our
adversary is unconstrained. If the first comparison is A1 :B1, the adversary may
adopt strategy A′(1, 1), requiring .M.(0, 1) + .M.(2, 2) = 3 further comparisons.
If the first comparison is A1 :B3, the adversary may adopt strategy B(1, 2),
requiring .M\(1, 2) + /M.(1, 2) = 4 further comparisons. No matter what
comparison Ai :Bj is made first, the adversary can guarantee that at least three
further comparisons must be made. Hence .M.(2, 3) = 4.

It isn’t easy to do these calculations by hand, but a computer can grind out
tables of λMρ functions rather quickly. There are obvious symmetries, such as

/M.(m, n) = .M\(m, n) = \M.(n, m) = .M/(n, m), (7)

by means of which we can reduce the nine functions to just four,

.M.(m, n), /M.(m, n), /M\(m, n), and /M/(m, n).

Table 1 shows the resulting values for all m, n ≤ 10; our merging adversary has
been defined in such a way that

.M.(m, n) ≤M(m, n) for all m, n ≥ 0. (8)
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Table 1
LOWER BOUNDS FOR MERGING, FROM THE “ADVERSARY”

.M.(m,n) /M.(m,n)
1 2 3 4 5 6 7 8 9 10 n 1 2 3 4 5 6 7 8 9 10

1 1 2 2 3 3 3 3 4 4 4 1 2 2 3 3 3 3 4 4 4 1
2 2 3 4 5 5 6 6 6 7 7 1 3 4 4 5 5 6 6 7 7 2
3 2 4 5 6 7 7 8 8 9 9 1 3 5 6 7 7 8 8 9 9 3
4 3 5 6 7 8 9 10 10 11 11 1 4 5 7 8 9 9 10 10 11 4
5 3 5 7 8 9 10 11 12 12 13 1 4 6 8 9 10 11 12 12 13 5
6 3 6 7 9 10 11 12 13 14 15 1 4 6 8 10 11 12 13 14 14 6
7 3 6 8 10 11 12 13 14 15 16 1 4 7 9 10 12 13 14 15 16 7
8 4 6 8 10 12 13 14 15 16 17 1 5 7 9 11 13 14 15 16 17 8
9 4 7 9 11 12 14 15 16 17 18 1 5 8 10 11 13 15 16 17 18 9

10 4 7 9 11 13 15 16 17 18 19 1 5 8 10 12 14 15 17 18 19 10

m m
/M\(m,n) /M/(m,n)

1 −∞ 2 2 3 3 3 3 4 4 4 1 1 1 1 1 1 1 1 1 1 1
2 −∞ 2 4 4 5 5 6 6 7 7 1 3 3 4 4 4 4 5 5 5 2
3 −∞ 2 4 6 6 7 8 8 8 9 1 3 5 5 6 6 7 7 8 8 3
4 −∞ 2 5 6 8 8 9 10 10 11 1 4 5 7 7 8 9 9 9 10 4
5 −∞ 2 5 7 8 10 10 11 12 13 1 4 6 7 9 9 10 11 11 12 5
6 −∞ 2 5 7 9 10 12 13 14 14 1 4 6 8 9 11 11 12 13 14 6
7 −∞ 2 5 8 10 11 12 14 15 16 1 4 7 9 10 11 13 14 15 15 7
8 −∞ 2 6 8 10 12 13 15 16 17 1 5 7 9 11 12 14 15 16 17 8
9 −∞ 2 6 9 10 12 14 16 17 18 1 5 8 9 11 13 15 16 17 18 9

10 −∞ 2 6 9 11 13 15 16 18 19 1 5 8 10 12 14 15 17 18 19 10

1 2 3 4 5 6 7 8 9 10 n 1 2 3 4 5 6 7 8 9 10

This relation includes Theorem M as a special case, because our adversary will
use the simple strategy of that theorem when |m− n| ≤ 1.

Let us now consider some simple relations satisfied by the M function:

M(m, n) = M(n, m); (9)
M(m, n) ≤M(m, n+1); (10)

M(k+m, n) ≤M(k, n) + M(m, n); (11)
M(m, n) ≤ max


M(m, n−1) + 1, M(m−1, n) + 1


, for m ≥ 1, n ≥ 1; (12)

M(m, n) ≤ max

M(m, n−2) + 1, M(m−1, n) + 2


, for m ≥ 1, n ≥ 2. (13)

Relation (12) comes from the usual merging procedure, if we first compare
A1 :B1. Relation (13) is derived similarly, by first comparing A1 :B2; if A1 > B2,
we need M(m, n−2) more comparisons, but if A1 < B2, we can insert A1 into
its proper place and merge {A2, . . . , Am} with {B1, . . . , Bn}. Generalizing, we
can see that if m ≥ 1 and n ≥ k we have

M(m, n) ≤ max

M(m, n−k) + 1, M(m−1, n) + 1 + ⌈lg k⌉


, (14)

by first comparing A1 :Bk and using binary search if A1 < Bk.
It turns out that M(m, n) = .M.(m, n) for all m, n ≤ 10, so Table 1 actually

gives the optimum values for merging. This can be proved by using (9)–(14)
together with special constructions for (m, n) = (2, 8), (3, 6), and (5, 9) given in
exercises 8, 9, and 10.
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On the other hand, our adversary doesn’t always give the best possible
lower bounds; the simplest example is m = 3, n = 11, when .M.(3, 11) = 9
but M(3, 11) = 10. To see where the adversary has “failed” in this case, we
must study the reasons for its decisions. Further scrutiny reveals that if (i, j) ̸=
(2, 6), the adversary can find a strategy that demands 10 comparisons; but when
(i, j) = (2, 6), no strategy beats Strategy A(2, 4), leading to the lower bound
1 + .M.(2, 3) + .M.(1, 8) = 9. It is necessary but not sufficient to finish by
merging {A1, A2} with {B1, B2, B3} and {A3} with {B4, . . . , B11}, so the lower
bound fails to be sharp in this case.

Similarly it can be shown that .M.(2, 38) = 10 while M(2, 38) = 11, so our
adversary isn’t even good enough to solve the case m = 2. But there is an infinite
class of values for which it excels:

Theorem K. M(m, m+2) = 2m + 1, for m ≥ 2;
M(m, m+3) = 2m + 2, for m ≥ 4;
M(m, m+4) = 2m + 3, for m ≥ 6.

Proof. We can in fact prove the result with M replaced by .M. ; for small m the
results have been obtained by computer, so we may assume that m is sufficiently
large. We may also assume that the first comparison is Ai :Bj where i ≤ ⌈m/2⌉.
If j ≤ i we use strategy A′(i, i), obtaining

.M.(m, m+d) ≥ 1 + .M.(i−1, i) + .M.(m+1−i, m+d−i) = 2m + d− 1

by induction on d, for d ≤ 4. If j > i we use strategy A(i, i+1), obtaining

.M.(m, m+d) ≥ 1 + .M.(i, i) + .M.(m−i, m+d−i) = 2m + d− 1

by induction on m.

The first two parts of Theorem K were obtained by F. K. Hwang and S. Lin
in 1969. Paul Stockmeyer and Frances Yao showed several years later that the
pattern evident in these three formulas holds in general, namely that the lower
bounds derived by the adversarial strategies above suffice to establish the values
M(m, m+d) = 2m + d− 1 for m ≥ 2d− 2. [SICOMP 9 (1980), 85–90.]

Upper bounds. Now let us consider upper bounds for M(m, n); good upper
bounds correspond to efficient merging algorithms.

When m = 1 the merging problem is equivalent to an insertion problem,
and there are n + 1 places in which A1 might fall among B1, . . . , Bn. For this
case it is easy to see that any extended binary tree with n + 1 external nodes is
the tree for some merging method! (See exercise 2.) Hence we may choose an
optimum binary tree, realizing the information-theoretic lower bound

1 + ⌊lg n⌋ = M(1, n) = ⌈lg(n + 1)⌉. (15)

Binary search (Section 6.2.1) is, of course, a simple way to attain this value.
The case m = 2 is extremely interesting, but considerably harder. It has

been solved completely by R. L. Graham, F. K. Hwang, and S. Lin (see exercises
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11, 12, and 13), who proved the general formula

M(2, n) =

lg 7

12 (n + 1)


+

lg 14

17 (n + 1)

. (16)

We have seen that the usual merging procedure is optimum when m = n,
while the rather different binary search procedure is optimum when m = 1. What
we need is an in-between method that combines the normal merging algorithm
with binary search in such a way that the best features of both are retained.
Formula (14) suggests the following algorithm, due to F. K. Hwang and S. Lin
[SICOMP 1 (1972), 31–39]:

Algorithm H (Binary merging).
H1. [If not done, choose t.] If m or n is zero, stop. Otherwise, if m > n, set

t← ⌊lg(m/n)⌋ and go to step H4. Otherwise set t← ⌊lg(n/m)⌋.
H2. [Compare.] Compare Am :Bn+1−2t . If Am is smaller, set n ← n − 2t and

return to step H1.
H3. [Insert.] Using binary search (which requires exactly t more comparisons),

insert Am into its proper place among {Bn+1−2t , . . . , Bn}. If k is maximal
such that Bk < Am, set m← m− 1 and n← k. Return to H1.

H4. [Compare.] (Steps H4 and H5 are like H2 and H3, interchanging the roles
of m and n, A and B.) If Bn < Am+1−2t , set m ← m − 2t and return to
step H1.

H5. [Insert.] Insert Bn into its proper place among the A’s. If k is maximal
such that Ak < Bn, set m← k and n← n− 1. Return to H1.

As an example of this algorithm, Table 2 shows the process of merging
the three keys {087, 503, 512} with thirteen keys {061, 154, . . . , 908}; eight
comparisons are required in this example. The elements compared at each step
are shown in boldface type.

Table 2
EXAMPLE OF BINARY MERGING

A B Output
087 503 512 061 154 170 275 426 509 612 653 677 703 765 897 908
087 503 512 061 154 170 275 426 509 612 653 677 703 765 897 908
087 503 512 061 154 170 275 426 509 612 653 677 703 765 897 908
087 503 512 061 154 170 275 426 509 612 653 677 703 765 897 908
087 503 061 154 170 275 426 509 512 612 653 677 703 765 897 908
087 503 061 154 170 275 426 509 512 612 653 677 703 765 897 908
087 061 154 170 275 426 503 509 512 612 653 677 703 765 897 908
087 061 154 170 275 426 503 509 512 612 653 677 703 765 897 908

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

Let H(m, n) be the maximum number of comparisons required by Hwang
and Lin’s algorithm. To calculate H(m, n), we may assume that k = n in step
H3 and k = m in step H5, since we shall prove that H(m−1, n) ≤ H(m−1, n+1)
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for all n ≥ m− 1 by induction on m. Thus when m ≤ n we have
H(m, n) = max


H(m, n−2t)+1, H(m−1, n)+t+1


, (17)

for 2tm ≤ n < 2t+1m. Replace n by 2n + ϵ, with ϵ = 0 or 1, to get
H(m, 2n+ϵ) = max


H(m, 2n+ϵ−2t+1) + 1, H(m−1, 2n+ϵ)+t+2


,

for 2tm ≤ n < 2t+1m; and it follows by induction on n that
H(m, 2n+ϵ) = H(m, n) + m, for m ≤ n and ϵ = 0 or 1. (18)

It is also easy to see that H(m, n) = m + n − 1 when m ≤ n < 2m; hence a
repeated application of (18) yields the general formula

H(m, n) = m + ⌊n/2t⌋ − 1 + tm, for m ≤ n, t = ⌊lg(n/m)⌋. (19)
This implies that H(m, n) ≤ H(m, n+1) for all n ≥ m, verifying our inductive
hypothesis about step H3.

Setting m = αn and θ = lg(n/m)− t gives
H(αn, n) = αn(1 + 2θ − θ − lg α) + O(1), (20)

as n→∞. We know by Eq. 5.3.1–(36) that 1.9139 < 1 + 2θ − θ ≤ 2; hence (20)
may be compared with the information-theoretic lower bound (3). Hwang and
Lin have proved (see exercise 17) that

H(m, n) <


lg


m + n

m


+ min (m, n). (21)

The Hwang–Lin binary merging algorithm does not always give optimum
results, but it has the great virtue that it can be programmed rather easily.
It reduces to “uncentered binary search” when m = 1, and it reduces to the
usual merging procedure when m ≈ n, so it represents an excellent compromise
between those two methods. Furthermore, it is optimum in many cases (see
exercise 16). Improved algorithms have been found by F. K. Hwang and D. N.
Deutsch, JACM 20 (1973), 148–159; G. K. Manacher, JACM 26 (1979), 434–
440; and most notably by C. Christen, FOCS 19 (1978), 259–266. Christen’s
merging procedure, called forward-testing-backward-insertion, saves about m/3
comparisons over Algorithm H when n/m→∞. Moreover, Christen’s procedure
achieves the lower bound .M.(m, n) = ⌊(11m + n − 3)/4⌋ when 5m − 3 ≤ n ≤
7m + 2[m even]; hence it is optimum in such cases (and, remarkably, so is our
adversarial lower bound).

Formula (18) suggests that the M function itself might satisfy
M(m, n) ≤M(m, ⌊n/2⌋) + m. (22)

This is actually true (see exercise 19). Tables of M(m, n) suggest several other
plausible relations, such as

M(m+1, n) ≥ 1 + M(m, n) ≥M(m, n+1), for m ≤ n; (23)
M(m+1, n + 1) ≥ 2 + M(m, n); (24)

but no proof of these inequalities is known.
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EXERCISES
1. [15 ] Find an interesting relation between M(m,n) and the function S defined in

Section 5.3.1. [Hint: Consider S(m+ n).]
x 2. [22 ] When m = 1, every merging algorithm without redundant comparisons

defines an extended binary tree with


m+n
m


= n + 1 external nodes. Prove that,

conversely, every extended binary tree with n+ 1 external nodes corresponds to some
merging algorithm with m = 1.

3. [M24 ] Prove that .M.(1, n) = M(1, n) for all n.
4. [M42 ] Is .M.(m,n) ≥ ⌈lg


m+n

m


⌉ for all m and n?

5. [M30 ] Prove that .M.(m,n) ≤ .M\(m,n+1).
6. [M26 ] The stated proof of Theorem K requires that a lot of cases be verified by

computer. How can the number of such cases be drastically reduced?
7. [21 ] Prove (11).

x 8. [24 ] Prove that M(2, 8) ≤ 6, by finding an algorithm that merges two elements
with eight others using at most six comparisons.

9. [27 ] Prove that three elements can be merged with six in at most seven steps.
10. [33 ] Prove that five elements can be merged with nine in at most twelve steps.
[Hint: Experience with the adversary suggests first comparing A1 :B2, then trying
A5 :B8 if A1 < B2.]
11. [M40 ] (F. K. Hwang, S. Lin.) Let g2k = ⌊ 17

14 2k⌋ and g2k+1 = ⌊ 12
7 2k⌋, for k ≥ 0,

so that (g0, g1, g2, . . . ) = (1, 1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 54, 77, . . . ). Prove that it takes
more than t comparisons to merge two elements with gt elements, in the worst case;
but two elements can be merged with gt − 1 in at most t steps. [Hint: Show that if
n = gt or n = gt − 1 and if we want to merge {A1, A2} with {B1, B2, . . . , Bn} in t
comparisons, we can’t do better than to compare A2 :Bgt−1 on the first step.]
12. [M21 ] Let Rn(i, j) be the least number of comparisons required to sort the distinct
objects {α, β,X1, . . . , Xn}, given the relations

α < β, X1 < X2 < · · · < Xn, α < Xi+1, β > Xn−j .

(The condition α < Xi+1 or β > Xn−j becomes vacuous when i ≥ n or j ≥ n.
Therefore Rn(n, n) = M(2, n).)

Clearly, Rn(0, 0) = 0. Prove that

Rn(i, j) = 1 + min( min
1≤k≤i

max(Rn(k−1, j), Rn−k(i−k, j)),
min

1≤k≤j
max(Rn(i, k−1), Rn−k(i, j−k)))

for 0 ≤ i ≤ n, 0 ≤ j ≤ n, i+ j > 0.
13. [M42 ] (R. L. Graham.) Show that the solution to the recurrence in exercise 12
may be expressed as follows. Define the function G(x), for 0 < x <∞, by the rules

G(x) =


1, if 0 < x ≤ 5

7;
1
2 + 1

8G(8x− 5), if 5
7 < x ≤ 3

4;
1
2G(2x− 1), if 3

4 < x ≤ 1;
0, if 1 < x <∞.
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(See Fig. 38.) Since Rn(i, j) = Rn(j, i) and since Rn(0, j) = M(1, j), we may assume
that 1 ≤ i ≤ j ≤ n. Let p = ⌊lg i⌋, q = ⌊lg j⌋, r = ⌊lgn⌋, and let t = n− 2r + 1. Then

Rn(i, j) = p+ q + Sn(i, j) + Tn(i, j),

where Sn and Tn are functions that are either 0 or 1:
Sn(i, j) = 1 if and only if q < r or (i− 2p ≥ u and j − 2r ≥ u),
Tn(i, j) = 1 if and only if p < r or (t > 6

7 2r−2 and i− 2r ≥ v),

where u = 2pG(t/2p) and v = 2r−2G(t/2r−2).
(This may be the most formidable recurrence relation that will ever be solved!)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

Fig. 38. Graham’s function (see exercise 13).

14. [41 ] (F. K. Hwang.) Let h3k = ⌊ 43
28 2k⌋ − 1, h3k+1 = h3k + 3 · 2k−3, h3k+2 =

⌊ 17
7 2k − 6

7⌋ for k ≥ 3, and let the initial values be defined so that

(h0, h1, h2, . . . ) = (1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 23, 29, 38, 48, 60, 76, . . . ) .

Prove that M(3, ht) > t and M(3, ht−1) ≤ t for all t, thereby establishing the exact
values of M(3, n) for all n.
15. [12 ] Step H1 of the binary merge algorithm may require the calculation of the
expression ⌊lg(n/m)⌋, for n ≥ m. Explain how to compute this easily without division
or calculation of a logarithm.
16. [18 ] For which m and n is Hwang and Lin’s binary merging algorithm optimum,
for 1 ≤ m ≤ n ≤ 10?
17. [M25 ] Prove (21). [Hint: The inequality isn’t very tight.]
18. [M40 ] Study the average number of comparisons used by binary merge.

x 19. [23 ] Prove that the M function satisfies (22).
20. [20 ] Show that if M(m, n+1) ≤ M(m+1, n) for all m ≤ n, then M(m, n+1) ≤
1 +M(m,n) for all m ≤ n.
21. [M47 ] Prove or disprove (23) and (24).
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22. [M43 ] Study the minimum average number of comparisons needed to merge m
things with n.
23. [M31 ] (E. Reingold.) Let {A1, . . . , An} and {B1, . . . , Bn} be sets containing
n elements each. Consider an algorithm that attempts to test equality of these two
sets solely by making comparisons for equality between elements. Thus, the algorithm
asks questions of the form “Is Ai = Bj?” for certain i and j, and it branches depending
on the answer.

By defining a suitable adversary, prove that any such algorithm must make at least
1
2n(n+ 1) comparisons in its worst case.
24. [22 ] (E. L. Lawler.) What is the maximum number of comparisons needed by the
following algorithm for merging m elements with n ≥ m elements? “Set t← ⌊lg(n/m)⌋
and use Algorithm 5.2.4M to merge A1, A2, . . . , Am with B2t , B2·2t , . . . , Bq·2t , where
q = ⌊n/2t⌋. Then insert each Aj into its proper place among the Bk.”

x 25. [25 ] Suppose (xij) is an m × n matrix with nondecreasing rows and columns:
xij ≤ x(i+1)j for 1 ≤ i < m and xij ≤ xi(j+1) for 1 ≤ j < n. Show that M(m,n) is
the minimum number of comparisons needed to determine whether a given number x
is present in the matrix, if all comparisons are between x and some matrix element.

*5.3.3. Minimum-Comparison Selection
A similar class of interesting problems arises when we look for best possible
procedures to select the tth largest of n elements.

The history of this question goes back to Rev. C. L. Dodgson’s amusing
(though serious) essay on lawn tennis tournaments, which appeared in St. James’s
Gazette, August 1, 1883, pages 5–6. Dodgson — who is of course better known
as Lewis Carroll — was concerned about the unjust manner in which prizes were
awarded in tennis tournaments. Consider, for example, Fig. 39, which shows
a typical “knockout tournament” between 32 players labeled 01, 02 , . . . , 32.
In the finals, player 01 defeats player 05, so it is clear that player 01 is the
champion and deserves the first prize. The inequity arises because player 05
usually gets second prize, although someone else might well be the second best.
You can win second prize even if you are worse than half of the players in the
competition! In fact, as Dodgson observed, the second-best player wins second
prize if and only if the champion and the next-best are originally in opposite
halves of the tournament; this occurs with probability 2n−1/(2n−1), when there
are 2n competitors, so the wrong player receives second prize almost half of the
time. If the losers of the semifinal round (players 25 and 17 in Fig. 39) compete
for third prize, it is highly unlikely that the third-best player receives third prize.

Dodgson therefore set out to design a tournament that determines the true
second- and third-best players, assuming a transitive ranking. (In other words, if
player A beats player B and B beats C, Dodgson assumed that A would beat C.)
He devised a procedure in which losers are allowed to play further games until
they are known to be definitely inferior to three other players. An example of
Dodgson’s scheme appears in Fig. 40, which is a supplementary tournament to
be run in conjunction with Fig. 39. He tried to pair off players whose records in
previous rounds were equivalent; he also tried to avoid matches in which both
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players had been defeated by the same person. In this particular example, 16
loses to 11 and 13 loses to 12 in Round 1; after 13 beats 16 in the second
round, we can eliminate 16, who is now known to be inferior to 11, 12, and 13.
In Round 3 Dodgson did not allow 19 to play with 21, since they have both
been defeated by 18 and we could not automatically eliminate the loser of 19
versus 21.

Champion = 01

Round 5 (Finals) 01 05

Round 4 01 25 05 17

Round 3 01 02 25 29 05 11 17 18

Round 2 01 03 02 04 25 26 29 30 05 06 11 12 17 20 18 21

Round 1 01 07 03 10 02 08 04 09 25 28 26 27 29 32 30 3105 15 06 14 11 16 12 13 17 24 20 23 18 19 21 22

Fig. 39. A knockout tournament with 32 players.

It would be nice to report that Lewis Carroll’s tournament turns out to be
optimal, but unfortunately that is not the case. His diary entry for July 23,
1883, says that he composed the essay in about six hours, and he felt “we are
now so late in the [tennis] season that it is better it should appear soon than be
written well.” His procedure makes more comparisons than necessary, and it is
not formulated precisely enough to qualify as an algorithm. On the other hand, it
has some rather interesting aspects from the standpoint of parallel computation.
And it appears to be an excellent plan for a tennis tournament, because he
built in some dramatic effects; for example, he specified that the two finalists
should sit out round 5, playing an extended match during rounds 6 and 7. But
tournament directors presumably thought the proposal was too logical, and so
Carroll’s system has apparently never been tried. Instead, a method of “seeding”
is used to keep the supposedly best players in different parts of the tree.

Third prize = 03

Round 9 03 05 Second prize = 02

Round 8 02 05

Round 7 02 03

Round 6 02 06 03 17

Round 5 02 06 07 03 11 17 25

Round 4 02 20 12 06 23 07 29 03 26 11 18 13

Round 3 20 21 12 19 06 27 23 31 07 08 03 04 26 30 13 14

Round 2 19 22 27 28 23 24 31 32 07 10 08 09 13 16 14 15

Fig. 40. Lewis Carroll’s lawn tennis tournament (played in conjunction with Fig. 39).
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In a mathematical seminar during 1929–1930, Hugo Steinhaus posed the
problem of finding the minimum number of tennis matches required to determine
the first and second best players in a tournament, when there are n ≥ 2 players
in all. J. Schreier [Mathesis Polska 7 (1932), 154–160] gave a procedure that
requires at most n−2+⌈lg n⌉ matches, using essentially the same method as the
first two stages in what we have called tree selection sorting (see Section 5.2.3,
Fig. 23), avoiding redundant comparisons that involve −∞. Schreier also claimed
that n− 2 + ⌈lg n⌉ is best possible, but his proof was incorrect, as was another
attempted proof by J. Słupecki [Colloquium Mathematicum 2 (1951), 286–290].
Thirty-two years went by before a correct, although rather complicated, proof
was finally published by S. S. Kislitsyn [Sibirskĭı Mat. Zhurnal 5 (1964), 557–564].

Let Vt(n) denote the minimum number of comparisons needed to determine
the tth largest of n elements, for 1 ≤ t ≤ n, and let Wt(n) be the minimum
number required to determine the largest, second largest, . . . , and the tth largest,
collectively. By symmetry, we have

Vt(n) = Vn+1−t(n), (1)

and it is obvious that

V1(n) = W1(n), (2)
Vt(n) ≤Wt(n), (3)

Wn(n) = Wn−1(n) = S(n). (4)

We have observed in Lemma 5.2.3M that

V1(n) = n− 1. (5)

In fact, there is an astonishingly simple proof of this fact, since everyone in a
tournament except the champion must lose at least one game! By extending this
idea and using an “adversary” as in Section 5.3.2, we can prove the Schreier–
Kislitsyn theorem without much difficulty:
Theorem S. V2(n) = W2(n) = n− 2 + ⌈lg n⌉, for n ≥ 2.
Proof. Assume that n players have participated in a tournament that has
determined the second-best player by some given procedure, and let aj be the
number of players who have lost j or more matches. The total number of matches
played is then a1 + a2 + a3 + · · · . We cannot determine the second-best player
without also determining the champion (see exercise 2), so our previous argument
shows that a1 = n− 1. To complete the proof, we will show that there is always
some sequence of outcomes of the matches that makes a2 ≥ ⌈lg n⌉ − 1.

Suppose that at the end of the tournament the champion has played (and
beaten) p players; one of these is the second best, and the others must have lost
at least one other time, so a2 ≥ p− 1. Therefore we can complete the proof by
constructing an adversary who decides the results of the games in such a way
that the champion must play at least ⌈lg n⌉ other people.

Let the adversary declare A to be better than B if A is previously undefeated
and B has lost at least once, or if both are undefeated and B has won fewer
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matches than A at that time. In other circumstances the adversary may make
an arbitrary decision consistent with some partial ordering.

Consider the outcome of a complete tournament whose matches have been
decided by such an adversary. Let us say that “A supersedes B” if and only if A =
B or A supersedes the player who first defeated B. (Only a player’s first defeat
is relevant in this relation; a loser’s subsequent games are ignored. According
to the mechanism of the adversary, any player who first defeats another must
be previously unbeaten.) It follows that a player who won the first p matches
supersedes at most 2p players on the basis of those p contests. (This is clear
for p = 0, and for p > 0 the pth match was against someone who was either
previously beaten or who supersedes at most 2p−1 players.) Hence the champion,
who supersedes everyone, must have played at least ⌈lg n⌉ matches.

Theorem S completely resolves the problem of finding the second-best player,
in the minimax sense. Exercise 6 shows, in fact, that it is possible to give a simple
formula for the minimum number of comparisons needed to find the second
largest element of a set when an arbitrary partial ordering of the elements is
known beforehand.

What if t >> 2? In the paper cited above, Kislitsyn went on to consider larger
values of t, proving that

Wt(n) ≤ n− t +


n+1−t<j≤n

⌈lg j⌉, for 1 ≤ t ≤ n. (6)

For t = 1 and t = 2 we have seen that equality actually holds in this formula;
for t = 3 it can be slightly improved (see exercise 21).

We shall prove Kislitsyn’s theorem by showing that the first t stages of tree
selection require at most n− t +


n+1−t<j≤n⌈lg j⌉ comparisons, ignoring all of

the comparisons that involve −∞. It is interesting to note that, by Eq. 5.3.1–(3),
the right-hand side of (6) equals B(n) when t = n, and also when t = n − 1;
hence tree selection and binary insertion yield the same upper bound for the
sorting problem, although they are quite different methods.

Let α be an extended binary tree with n external nodes, and let π be a
permutation of {1, 2, . . . , n}. Place the elements of π into the external nodes,
from left to right in symmetric order, and fill in the internal nodes according to
the rules of a knockout tournament as in tree selection. When the resulting tree is
subjected to repeated selection operations, it defines a sequence cn−1 cn−2 . . . c1,
where cj is the number of comparisons required to bring element j to the root
of the tree when element j + 1 has been replaced by −∞. For example, if α is
the tree

(7)
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and if π = 5 3 1 4 2, we obtain the successive trees
5

5 4

5 3 4 2

1 4

4

3 4

4 2

1 4

c4 = 1

3

3 2

1 2

c3 = 2

2

1 2

c2 = 0

1

c1 = 0

If π had been 3 1 5 4 2, the sequence c4 c3 c2 c1 would have been 2 1 1 0 instead.
It is not difficult to see that c1 is always zero.

Let µ(α, π) be the multiset {cn−1, cn−2, . . . , c1} determined by α and π. If

α =
α′ α′′

and if elements 1 and 2 do not both appear in α′ or both in α′′, it is easy to see
that

µ(α, π) =

µ(α′, π′) + 1


⊎

µ(α′′, π′′) + 1


⊎ {0} (8)

for appropriate permutations π′ and π′′, where µ+1 denotes the multiset obtained
by adding 1 to each element of µ. (See exercise 7.) On the other hand, if elements
1 and 2 both appear in α′, we have

µ(α, π) =

µ(α′, π′) + ϵ


⊎

µ(α′′, π′′) + 1


⊎ {0},

where µ + ϵ denotes a multiset obtained by adding 1 to some elements of µ and
0 to the others. A similar formula holds when 1 and 2 both appear in α′′. Let us
say that multiset µ1 dominates µ2 if both µ1 and µ2 contain the same number
of elements, and if the kth largest element of µ1 is greater than or equal to the
kth largest element of µ2 for all k; and let us define µ(α) to be the dominant
µ(α, π), taken over all permutations π, in the sense that µ(α) dominates µ(α, π)
for all π and µ(α) = µ(α, π) for some π. The formulas above show that

µ( ) = ∅, µ( i
�� SS

α′ α′′

) =

µ(α′) + 1


⊎

µ(α′′) + 1


⊎ {0}; (9)

hence µ(α) is the multiset of all distances from the root to the internal nodes of α.
The reader who has followed this train of thought will now see that we are

ready to prove Kislitsyn’s theorem (6). Indeed, Wt(n) is less than or equal to
n − 1 plus the t − 1 largest elements of µ(α), where α is any tree being used
in tree selection sorting. We may take α to be the complete binary tree with
n external nodes (see Section 2.3.4.5), when

µ(α) =

⌊lg 1⌋, ⌊lg 2⌋, . . . , ⌊lg(n−1)⌋


=


⌈lg 2⌉−1, ⌈lg 3⌉−1, . . . , ⌈lg n⌉−1


. (10)

Formula (6) follows when we consider the t− 1 largest elements of this multiset.
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Kislitsyn’s theorem gives a good upper bound for Wt(n); he remarked that
V3(5) = 6 < W3(5) = 7, but he was unable to find a better bound for Vt(n) than
for Wt(n). A. Hadian and M. Sobel discovered a way to do this using replacement
selection instead of tree selection; their formula [Univ. of Minnesota, Dept. of
Statistics Report 121 (1969)],

Vt(n) ≤ n− t + (t− 1)

lg(n + 2− t)


, n ≥ t, (11)

is similar to Kislitsyn’s upper bound for Wt(n) in (6), except that each term in
the sum has been replaced by the smallest term.

Hadian and Sobel’s theorem (11) can be proved by using the following
construction: First set up a binary tree for a knockout tournament on n− t + 2
items. (This takes n − t + 1 comparisons.) The largest item is greater than
n − t + 1 others, so it can’t be tth largest. Replace it, where it appears at an
external node of the tree, by one of the t− 2 elements held in reserve, and find
the largest element of the resulting n− t+2; this requires at most


lg(n+2− t)


comparisons, because we need to recompute only one path in the tree. Repeat
this operation t−2 times in all, for each element held in reserve. Finally, replace
the currently largest element by −∞, and determine the largest of the remaining
n + 1 − t; this requires at most


lg(n + 2 − t)


− 1 comparisons, and it brings

the tth largest element of the original set to the root of the tree. Summing the
comparisons yields (11).

In relation (11) we should of course replace t by n + 1− t on the right-hand
side whenever n+1−t gives a better value (as when n = 6 and t = 3). Curiously,
the formula gives a smaller bound for V7(13) than it does for V6(13). The upper
bound in (11) is exact for n ≤ 6, but as n and t get larger it is possible to obtain
much better estimates of Vt(n).

For example, the following elegant method (due to David G. Doren) can be
used to show that V4(8) ≤ 12. Let the elements be X1, . . . , X8; first compare
X1 :X2 and X3 :X4 and the two winners, and do the same to X5 :X6 and X7 :X8
and their winners. Relabel elements so that X1 < X2 < X4 > X3, X5 < X6 <
X8 > X7, then compare X2 :X6; by symmetry assume that X2 < X6, so that we
have the configuration

1 2
3

4

5 6

7

8

(Now X1 and X8 are out of contention and we must find the third largest
of {X2, . . . , X7}.) Compare X2 :X7, and discard the smaller; in the worst case
we have X2 < X7 and we must find the third largest of

3 4

5 6
7

This can be done in V3(5)− 2 = 4 more steps, since the procedure of (11) that
achieves V3(5) = 6 begins by comparing two disjoint pairs of elements.
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Table 1
VALUES OF Vt(n) FOR SMALL n

n V1(n) V2(n) V3(n) V4(n) V5(n) V6(n) V7(n) V8(n) V9(n) V10(n)

1 0
2 1 1
3 2 3 2
4 3 4 4 3
5 4 6 6 6 4
6 5 7 8 8 7 5
7 6 8 10 10∗ 10 8 6
8 7 9 11 12 12 11 9 7
9 8 11 12 14 14∗ 14 12 11 8

10 9 12 14∗ 15 16∗∗ 16∗∗ 15 14∗ 12 9
∗ Exercises 10–12 give constructions that improve on Eq. (11) in these cases.

∗∗ See K. Noshita, Trans. of the IECE of Japan E59, 12 (December 1976), 17–18.

Other tricks of this kind can be used to produce the results shown in Table 1;
no general method is evident as yet. The values listed for V4(9) = V6(9) and
V5(10) = V6(10) were proved optimum in 1996 by W. Gasarch, W. Kelly, and
W. Pugh [SIGACT News 27, 2 (June 1996), 88–96], using a computer search.

A fairly good lower bound for the selection problem when t is small was
obtained by David G. Kirkpatrick [JACM 28 (1981), 150–165]: If 2 ≤ t ≤
(n + 1)/2, we have

Vt(n) ≥ n + t− 3 +
t−2
j=0


lg n− t + 2

t + j


. (12)

In his Ph.D. thesis [U. of Toronto, 1974], Kirkpatrick also proved that

V3(n) ≤ n + 1 +


lg n− 1
4


+


lg n− 1
5


; (13)

this upper bound matches the lower bound (12) for lg 5
3 ≈ 74% of all integers n,

and it exceeds (12) by at most 1. Kirkpatrick’s analysis made it natural to
conjecture that equality holds in (13) for all n > 4, but Jutta Eusterbrock found
the surprising counterexample V3(22) = 28 [Discrete Applied Math. 41 (1993),
131–137]. Then Kirkpatrick discovered that V3(42) = 50; this may well be the
only other counterexample [see Lecture Notes in Comp. Sci. 8066 (2013), 61–76].
Improved lower bounds for larger values of t were found by S. W. Bent and J. W.
John (see exercise 27):

Vt(n) ≥ n + m− 2
√

m

, m = 2 +


lg
n

t


(n + 1− t)


. (14)

This formula proves in particular that

Vαn(n) ≥


1 + α lg 1
α

+ (1− α) lg 1
1− α


n + O

√
n

. (15)
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A linear method. When n is odd and t = ⌈n/2⌉, the tth largest (and tth
smallest) element is called the median. According to (11), we can find the median
of n elements in ≈ 1

2 n lg n comparisons; but this is only about twice as fast as
sorting, even though we are asking for much less information. For several years,
concerted efforts were made by a number of people to find an improvement
over (11) when t and n are large. Finally in 1971, Manuel Blum discovered a
method that needed only O(n log log n) steps. Blum’s approach to the problem
suggested a new class of techniques, which led to the following construction due
to R. Rivest and R. Tarjan [J. Comp. and Sys. Sci. 7 (1973), 448–461]:

Theorem L. If n > 32 and 1 ≤ t ≤ n, we have Vt(n) ≤ 15n− 163.

Proof. The theorem is trivial when n is small, since Vt(n) ≤ S(n) ≤ 10n ≤
15n − 163 for 32 < n ≤ 210. By adding at most 13 dummy −∞ elements, we
may assume that n = 7(2q + 1) for some integer q ≥ 73. The following method
may now be used to select the tth largest:
Step 1. Divide the elements into 2q + 1 groups of seven elements each, and sort
each of the groups. This takes at most 13(2q + 1) comparisons.
Step 2. Find the median of the 2q + 1 median elements obtained in Step 1,
and call it x. By induction on q, this takes at most Vq+1(2q + 1) ≤ 30q − 148
comparisons.
Step 3. The n− 1 elements other than x have now been partitioned into three
sets (see Fig. 41):

4q + 3 elements known to be greater than x (Region B);
4q + 3 elements known to be less than x (Region C);
6q elements whose relation to x is unknown (Regions A and D).

By making 4q additional comparisons, we can tell exactly which of the elements
in regions A and D are less than x. (We first test x against the middle element
of each triple.)
Step 4. We have now found r elements greater than x and n − 1 − r elements
less than x, for some r. If t = r + 1, x is the answer; if t < r + 1, we need
to find the tth largest of the r large elements; and if t > r + 1, we need to
find the (t−1−r)th largest of the n − 1 − r small elements. The point is that
r and n − 1 − r are both less than or equal to 10q + 3 (the size of regions A
and D, plus either B or C). By induction on q this step therefore requires at
most 15(10q + 3)− 163 comparisons.

The total number of comparisons comes to at most

13(2q + 1) + 30q − 148 + 4q + 15(10q + 3)− 163 = 15(14q − 6)− 163.

Since we started with at least 14q − 6 elements, the proof is complete.
Theorem L shows that selection can always be done in linear time, namely

that Vt(n) = O(n). Of course, the method used in this proof is rather crude,
since it throws away good information in Step 4. Deeper study of the problem
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Region A

Region DRegion C

Region B

x

q





q









2q+1

Fig. 41. The selection algorithm of Rivest and Tarjan (q = 4).

has led to much sharper bounds; for example, A. Schönhage, M. Paterson, and
N. Pippenger [J. Comp. Sys. Sci. 13 (1976), 184–199] proved that the maximum
number of comparisons required to find the median is at most 3n+O(n log n)3/4.
See exercise 23 for a lower bound and for references to more recent results.

The average number. Instead of minimizing the maximum number of compar-
isons, we can ask instead for an algorithm that minimizes the average number
of comparisons, assuming random order. As usual, the minimean problem is
considerably harder than the minimax problem; indeed, the minimean problem
is still unsolved even in the case t = 2. Claude Picard mentioned the problem in
his book Théorie des Questionnaires (1965), and an extensive exploration was
undertaken by Milton Sobel [Univ. of Minnesota, Dept. of Statistics Reports
113 and 114 (November 1968); Revue Française d’Automatique, Informatique et
Recherche Opérationnelle 6, R-3 (December 1972), 23–68].

Sobel constructed the procedure of Fig. 42, which finds the second largest
of six elements using only 6 1

2 comparisons on the average. In the worst case,
8 comparisons are required, and this is worse than V2(6) = 7; in fact, an
exhaustive computer search by D. Hoey has shown that the best procedure for
this problem, if restricted to at most 7 comparisons, uses 6 26

45 comparisons on
the average. Thus no procedure that finds the second largest of six elements can
be optimum in both the minimax and the minimean senses simultaneously.

Let V t(n) denote the minimum average number of comparisons needed to
find the tth largest of n elements. Table 2 shows the exact values for small n, as
computed by D. Hoey.

R. W. Floyd discovered in 1970 that the median of n elements can be found
with only 3

2 n + O(n2/3 log n) comparisons, on the average. He and R. L. Rivest
refined this method a few years later and constructed an elegant algorithm to
prove that

V t(n) ≤ n + min(t, n−t) + O
√

n log n

. (16)

(See exercises 13 and 24.)
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2:5

4:5 2:6

4:6 5:6 4:6 2:3

5:6 4 5 4:6 3:5 4 6 3:6 3 4 2 4

5 6 6 5 4 6 3:6 5 4 3 4 6 4 3 4

6 4 3 4

2:4

3:4

1:2

12 8 6 24

3 3 4 12 3 8 2

4 1

Symmetrical

Symmetrical

Symmetrical

Fig. 42. A procedure that selects the second largest of {X1, X2, X3, X4, X5, X6}, using
6 1

2 comparisons on the average. Each “symmetrical” branch is identical to its sibling,
with names permuted in some appropriate manner. External nodes contain “j k” when
Xj is known to be the second largest and Xk the largest; the number of permutations
leading to such a node appears immediately below it.

Using another approach, based on a generalization of one of Sobel’s construc-
tions for t = 2, David W. Matula [Washington Univ. Tech. Report AMCS-73-9
(1973)] showed that

V t(n) ≤ n + t⌈lg t⌉(11 + ln ln n). (17)

Thus, for fixed t the average amount of work can be reduced to n + O(log log n)
comparisons. An elegant lower bound on V t(n) appears in exercise 25.

The sorting and selection problems are special cases of the much more
general problem of finding a permutation of n given elements that is consistent
with a given partial ordering. A. C. Yao [SICOMP 18 (1989), 679–689] has
shown that, if the partial ordering is defined by an acyclic digraph G on n
vertices with k connected components, the minimum number of comparisons
necessary to solve such problems is always Θ


lg

n!/T (G)


+ n− k


, in both the

worst case and on the average, where T (G) is the total number of permutations
consistent with the partial ordering (the number of topological sortings of G).

EXERCISES
1. [15 ] In Lewis Carroll’s tournament (Figs. 39 and 40), why was player 13 elimi-

nated in spite of winning in Round 3?
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Table 2
MINIMUM AVERAGE COMPARISONS FOR SELECTION

n V 1(n) V 2(n) V 3(n) V 4(n) V 5(n) V 6(n) V 7(n)

1 0
2 1 1
3 2 2 2

3 2
4 3 4 4 3
5 4 5 4

15 5 13
15 5 4

15 4
6 5 6 1

2 7 7
18 7 7

18 6 1
2 5

7 6 7 149
210 8 509

630 9 32
105 8 509

630 7 149
210 6

x 2. [M25 ] Prove that after we have found the tth largest of n elements by a sequence
of comparisons, we also know which t− 1 elements are greater than it, and which n− t
elements are less than it.

3. [20 ] Prove that Vt(n) > Vt(n− 1) and Wt(n) > Wt(n− 1), for 1 ≤ t < n.
x 4. [M25 ] (F. Fussenegger and H. N. Gabow.) Prove that Wt(n) ≥ n− t+ ⌈lgnt−1⌉.

5. [10 ] Prove that W3(n) ≤ V3(n) + 1.
x 6. [M26 ] (R. W. Floyd.) Given n distinct elements {X1, . . . , Xn} and a set of

relations Xi < Xj for certain pairs (i, j), we wish to find the second largest element.
If we know that Xi < Xj and Xi < Xk for j ̸= k, Xi cannot possibly be the second
largest, so it can be eliminated. The resulting relations now have a form such as

namely, m groups of elements that can be represented by a multiset {l1, l2, . . . , lm}; the
jth group contains lj +1 elements, one of which is known to be greater than the others.
For example, the configuration above can be described by the multiset {0, 1, 2, 2, 3, 5};
when no relations are known we have a multiset of n zeros.

Let f(l1, l2, . . . , lm) be the minimum number of comparisons needed to find the
second largest element of such a partially ordered set. Prove that

f(l1, l2, . . . , lm) = m− 2 + ⌈lg(2l1 + 2l2 + · · ·+ 2lm)⌉.

[Hint: Show that the best strategy is always to compare the largest elements of the two
smallest groups, until reducing m to unity; use induction on l1 + l2 + · · ·+ lm + 2m.]

7. [M20 ] Prove (8).
8. [M21 ] Kislitsyn’s formula (6) is based on tree selection sorting using the complete

binary tree with n external nodes. Would a tree selection method based on some other
tree give a better bound, for any t and n?

x 9. [20 ] Draw a comparison tree that finds the median of five elements in at most six
steps, using the replacement-selection method of Hadian and Sobel [see (11)].
10. [35 ] Show that the median of seven elements can be found in at most 10 steps.
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11. [38 ] (K. Noshita.) Show that the median of nine elements can be found in at
most 14 steps, of which the first seven are identical to Doren’s method.
12. [21 ] (Hadian and Sobel.) Prove that V3(n) ≤ V3(n − 1) + 2. [Hint: Start by
discarding the smallest of {X1, X2, X3, X4}.]

x 13. [HM28 ] (R. W. Floyd.) Show that if we start by finding the median element of
{X1, . . . , Xn2/3}, using a recursively defined method, we can go on to find the median
of {X1, . . . , Xn} with an average of 3

2n+O(n2/3 logn) comparisons.
x 14. [20 ] (M. Sobel.) Let Ut(n) be the minimum number of comparisons needed to

find the t largest of n elements, without necessarily knowing their relative order. Show
that U2(5) ≤ 5.
15. [22 ] (I. Pohl.) Suppose that we are interested in minimizing space instead of time.
What is the minimum number of data words needed in memory in order to compute
the tth largest of n elements, if each element fills one word and if the elements are
input one at a time into a single register?

x 16. [25 ] (I. Pohl.) Show that we can find both the maximum and the minimum of a
set of n elements, using at most ⌈ 3

2n⌉− 2 comparisons; and the latter number cannot
be lowered. [Hint: Any stage in such an algorithm can be represented as a quadruple
(a, b, c, d), where a elements have never been compared, b have won but never lost,
c have lost but never won, d have both won and lost. Construct an adversary.]
17. [20 ] (R. W. Floyd.) Show that it is possible to select, in order, both the k largest
and the l smallest elements of a set of n elements, using at most ⌈ 3

2n⌉ − k − l +
n+1−k<j≤n⌈lg j⌉+


n+1−l<j≤n⌈lg j⌉ comparisons.

18. [M20 ] If groups of size 5, not 7, had been used in the proof of Theorem L, what
theorem would have been obtained?
19. [M42 ] Extend Table 2 to n = 8.
20. [M47 ] What is the asymptotic value of V 2(n)− n, as n→∞?
21. [32 ] (P. V. Ramanan and L. Hyafil.) Prove that Wt(2k +2k+1−t) ≤ 2k +2k+1−t +
(t − 1)(k − 1), when k ≥ t ≥ 2; also show that equality holds for infinitely many k
and t, because of exercise 4. [Hint: Maintain two knockout trees and merge their results
cleverly.]
22. [24 ] (David G. Kirkpatrick.) Show that when 4 · 2k < n − 1 ≤ 5 · 2k, the upper
bound (11) for V3(n) can be reduced by 1 as follows: (i) Form four knockout trees of
size 2k. (ii) Find the minimum of the four maxima, and discard all 2k elements of its
tree. (iii) Using the known information, build a single knockout tree of size n− 1− 2k.
(iv) Continue as in the proof of (11).
23. [M49 ] What is the asymptotic value of V⌈n/2⌉(n), as n→∞?
24. [HM40 ] Prove that V t(n) ≤ n + t + O(

√
n logn) for t ≤ ⌈n/2⌉. Hint: Show

that with this many comparisons we can in fact find both the ⌊t −
√
t lnn⌋th and

⌈t+
√
t lnn ⌉th elements, after which the tth is easily located.

x 25. [M35 ] (W. Cunto and J. I. Munro.) Prove that V t(n) ≥ n+t−2 when t ≤ ⌈n/2⌉.
26. [M32 ] (A. Schönhage, 1974.) (a) In the notation of exercise 14, prove that Ut(n) ≥
min(2+Ut(n−1), 2+Ut−1(n−1)) for n ≥ 3. [Hint: Construct an adversary by reducing
from n to n − 1 as soon as the current partial ordering is not composed entirely of
components having the form q or q q .] (b) Similarly, prove that

Ut(n) ≥ min(2 + Ut(n− 1), 3 + Ut−1(n− 1), 3 + Ut(n− 2))
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for n ≥ 5, by constructing an adversary that deals with components q , q q , qq q�P ,q qq q��P . (c) Therefore we have Ut(n) ≥ n+ t+ min(⌊(n− t)/2⌋, t)− 3 for 1 ≤ t ≤ n/2.
[The inequalities in (a) and (b) apply also when V or W replaces U, thereby establishing
the optimality of several entries in Table 1.]

x 27. [M34 ] A randomized adversary is an adversary algorithm that is allowed to flip
coins as it makes decisions.

a) Let A be a randomized adversary and let Pr(l) be the probability that A reaches
leaf l of a given comparison tree. Show that if Pr(l) ≤ p for all l, the height of the
comparison tree is ≥ lg(1/p).

b) Consider the following adversary for the problem of selecting the tth largest of n
elements, given integer parameters q and r to be selected later:
A1. Choose a random set T of t elements; all


n
t


possibilities are equally likely.

(We will ensure that the t − 1 largest elements belong to T .) Let S =
{1, . . . , n} \T be the other elements, and set S0 ← S, T0 ← T ; S0 and T0 will
represent elements that might become the tth largest.

A2. While |T0| > r, decide all comparisons x :y as follows: If x ∈ S and y ∈ T , say
that x < y. If x ∈ S and y ∈ S, flip a coin to decide, and remove the smaller
element from S0 if it was in S0. If x ∈ T and y ∈ T , flip a coin to decide, and
remove the larger element from T0 if it was in T0.

A3. As soon as |T0| = r, partition the elements into three classes P,Q,R as follows:
If |S0| < q, let P = S, Q = T0, R = T \ T0. Otherwise, for each y ∈ T0, let
C(y) be the elements of S already compared with y, and choose y0 so that
|C(y0)| is minimum. Let P = (S \ S0) ∪ C(y0), Q = (S0 \ C(y0)) ∪ {y0},
R = T \{y0}. Decide all future comparisons x :y by saying that elements of P
are less than elements of Q, and elements of Q are less than elements of R;
flip a coin when x and y are in the same class.

Prove that if 1 ≤ r ≤ t and if |C(y0)| ≤ q − r at the beginning of step A3, each
leaf is reached with probability ≤ (n+ 1− t)/(2n−q


n
t


). Hint: Show that at least

n− q coin flips are made.
c) Continuing (b), show that we have

Vt(n) ≥ min(n− 1 + (r − 1)(q + 1− r), n− q + lg(


n
t


/(n+ 1− t))) ,

for all integers q and r.
d) Establish (14) by choosing q and r.

*5.3.4. Networks for Sorting
In this section we shall study a constrained type of sorting that is particularly
interesting because of its applications and its rich underlying theory. The new
constraint is to insist on an oblivious sequence of comparisons, in the sense that
whenever we compare Ki versus Kj the subsequent comparisons for the case
Ki < Kj are exactly the same as for the case Ki > Kj , but with i and j
interchanged.

Figure 43(a) shows a comparison tree in which this homogeneity condition is
satisfied. Notice that every level has the same number of comparisons, so there
are 2m outcomes after m comparisons have been made. But n! is not a power
of 2; some of the comparisons must therefore be redundant, in the sense that
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Fig. 43. (a) An oblivious comparison tree. (b) The corresponding network.
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one of their subtrees can never arise in practice. In other words, some branches
of the tree must make more comparisons than necessary, in order to ensure that
all of the corresponding branches of the tree will sort properly.

Since each path from top to bottom of such a tree determines the entire tree,
such a sorting scheme is most easily represented as a network; see Fig. 43(b).
The boxes in such a network represent “comparator modules” that have two
inputs (represented as lines coming into the module from above) and two outputs
(represented as lines leading downward); the left-hand output is the smaller of
the two inputs, and the right-hand output is the larger. At the bottom of the
network, K ′

1 is the smallest of {K1, K2, K3, K4}, K ′
2 the second smallest, etc.

It is not difficult to prove that any sorting network corresponds to an oblivious
comparison tree in the sense above, and that any oblivious tree corresponds to
a network of comparator modules.

Incidentally, we may note that comparator modules are fairly easy to manu-
facture, from an engineering point of view. For example, assume that the lines
contain binary numbers, where one bit enters each module per unit time, most
significant bit first. Each comparator module has three states, and behaves as
follows:

Time t Time (t + 1)
State Inputs State Outputs

0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 2 0 1
0 1 1 0 1 1
1 x y 1 x y
2 x y 2 y x

Initially all modules are in state 0 and are outputting 0 0. A module enters
either state 1 or state 2 as soon as its inputs differ. Numbers that begin to be
transmitted at the top of Fig. 43(b) at time t will begin to be output at the
bottom, in sorted order, at time t + 3, if a suitable delay element is attached to
the K ′

1 and K ′
4 lines.

K4 K′
4

K3 K′
3

K2 K′
2

K1 K′
1

1

1 1 1 1 1

2 2

2 2 2

2

3 3

3 3

3

3

4

4 4 4

4 4

Fig. 44. Another way to rep-
resent the network of Fig. 43,
as it sorts the sequence of four
numbers ⟨4, 1, 3, 2⟩.

In order to develop the theory of sorting networks it is convenient to repre-
sent them in a slightly different way, illustrated in Fig. 44. Here numbers enter at
the left, and comparator modules are represented by vertical connections between
two lines; each comparator causes an interchange of its inputs, if necessary, so
that the larger number sinks to the lower line after passing the comparator. At
the right of the diagram all the numbers are in order from top to bottom.
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Our previous studies of optimal sorting have concentrated on minimizing
the number of comparisons, with little or no regard for any underlying data
movement or for the complexity of the decision structure that may be necessary.
In this respect sorting networks have obvious advantages, since the data can be
maintained in n locations and the decision structure is “straight line” — there
is no need to remember the results of previous comparisons, since the plan is
immutably fixed in advance. Another important advantage of sorting networks
is that we can usually overlap several of the operations, performing them simul-
taneously (on a suitable machine). For example, the five steps in Figs. 43 and 44
can be collapsed into three when simultaneous nonoverlapping comparisons are
allowed, since the first two and the second two can be combined. We shall exploit
this property of sorting networks later in this section. Thus sorting networks can
be very useful, although it is not at all obvious that efficient n-element sorting
networks can be constructed for large n; we may find that many additional
comparisons are needed in order to keep the decision structure oblivious.
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(a) (b)

Fig. 45. Making (n+ 1)-sorters from n-sorters: (a) insertion, (b) selection.

There are two simple ways to construct a sorting network for n + 1 elements
when an n-element network is given, using either the principle of insertion or
the principle of selection. Figure 45(a) shows how the (n + 1)st element can
be inserted into its proper place after the first n elements have been sorted;
and part (b) of the figure shows how the largest element can be selected before
we proceed to sort the remaining ones. Repeated application of Fig. 45(a) gives
the network analog of straight insertion sorting (Algorithm 5.2.1S), and repeated
application of Fig. 45(b) yields the network analog of the bubble sort (Algorithm
5.2.2B). Figure 46 shows the corresponding six-element networks.

(a) (b)
Fig. 46. Network analogs of elementary internal sorting schemes, obtained by applying
the constructions of Fig. 45 repeatedly: (a) straight insertion, (b) bubble sort.
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Fig. 47. With parallelism, straight insertion = bubble sort!

Notice that when we collapse either network together to allow simultaneous
operations, both methods actually reduce to the same “triangular” (2n − 3)-
stage procedure (Fig. 47).

It is easy to prove that the network of Figs. 43 and 44 will sort any set
of four numbers into order, since the first four comparators route the smallest
and the largest elements to the correct places, and the last comparator puts the
remaining two elements in order. But it is not always so easy to tell whether or
not a given network will sort all possible input sequences; for example, both

and

are valid 4-element sorting networks, but the proofs of their validity are not triv-
ial. It would be sufficient to test each n-element network on all n! permutations
of n distinct numbers, but in fact we can get by with far fewer tests:

Theorem Z (Zero-one principle). If a network with n input lines sorts all
2n sequences of 0s and 1s into nondecreasing order, it will sort any arbitrary
sequence of n numbers into nondecreasing order.

Proof. (This is a special case of Bouricius’s theorem, exercise 5.3.1–12.) If f(x)
is any monotonic function, with f(x) ≤ f(y) whenever x ≤ y, and if a given
network transforms ⟨x1, . . . , xn⟩ into ⟨y1, . . . , yn⟩, then it is easy to see that the
network will transform ⟨f(x1), . . . , f(xn)⟩ into ⟨f(y1), . . . , f(yn)⟩. If yi > yi+1
for some i, consider the monotonic function f that takes all numbers < yi into 0
and all numbers ≥ yi into 1; this defines a sequence ⟨f(x1), . . . , f(xn)⟩ of 0s and
1s that is not sorted by the network. Hence if all 0–1 sequences are sorted, we
have yi ≤ yi+1 for 1 ≤ i < n.

The zero-one principle is quite helpful in the construction of sorting net-
works. As a nontrivial example, we can derive a generalized version of Batcher’s
“merge exchange” sort (Algorithm 5.2.2M). The idea is to sort m+n elements by
(i) sorting the first m and the last n independently, then (ii) applying an (m, n)-
merging network to the result. An (m, n)-merging network can be constructed
inductively as follows:
a) If m = 0 or n = 0, the network is empty. If m = n = 1, the network is a

single comparator module.
b) If mn > 1, let the sequences to be merged be ⟨x1, . . . , xm⟩ and ⟨y1, . . . , yn⟩.

Merge the “odd sequences” ⟨x1, x3, . . . , x2⌈m/2⌉−1⟩ and ⟨y1, y3, . . . , y2⌈n/2⌉−1⟩,
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Fig. 48. The odd-even merge, when m = 4 and n = 7.

obtaining the sorted result ⟨v1, v2, . . . , v⌈m/2⌉+⌈n/2⌉⟩; also merge the “even
sequences” ⟨x2, x4, . . . , x2⌊m/2⌋⟩ and ⟨y2, y4, . . . , y2⌊n/2⌋⟩, obtaining the sorted
result ⟨w1, w2, . . . , w⌊m/2⌋+⌊n/2⌋⟩. Finally, apply the comparison-interchange
operations

w1 :v2, w2 :v3, w3 :v4, . . . , w⌊m/2⌋+⌊n/2⌋ :v∗ (1)

to the sequence

⟨v1, w1, v2, w2, v3, w3, . . . , v⌊m/2⌋+⌊n/2⌋, w⌊m/2⌋+⌊n/2⌋, v∗, v∗∗⟩; (2)

the result will be sorted(!). Here v∗ = v⌊m/2⌋+⌊n/2⌋+1 does not exist if both m
and n are even, and v∗∗ = v⌊m/2⌋+⌊n/2⌋+2 does not exist unless both m and n are
odd; the total number of comparator modules indicated in (1) is ⌊(m+n−1)/2⌋.

Batcher’s (m, n)-merging network is called the odd-even merge. A (4, 7)-merge
constructed according to these principles is illustrated in Fig. 48.

To prove that this rather strange merging procedure actually works, when
mn > 1, we use the zero-one principle, testing it on all sequences of 0s and 1s.
After the initial m-sort and n-sort, the sequence ⟨x1, . . . , xm⟩ will consist of k
0s followed by m − k 1s, and the sequence ⟨y1, . . . , yn⟩ will be l 0s followed by
n− l 1s, for some k and l. Hence the sequence ⟨v1, v2, . . . ⟩ will consist of exactly
⌈k/2⌉ + ⌈l/2⌉ 0s, followed by 1s; and ⟨w1, w2, . . . ⟩ will consist of ⌊k/2⌋ + ⌊l/2⌋
0s, followed by 1s. Now here’s the point:

⌈k/2⌉+ ⌈l/2⌉

−

⌊k/2⌋+ ⌊l/2⌋


= 0, 1, or 2. (3)

If this difference is 0 or 1, the sequence (2) is already in order, and if the
difference is 2 one of the comparison-interchanges in (1) will fix everything up.
This completes the proof. (Note that the zero-one principle reduces the merging
problem from a consideration of


m+n
m


cases to only (m + 1)(n + 1), represented

by the two parameters k and l.)
Let C(m, n) be the number of comparator modules used in the odd-even

merge for m and n, not counting the initial m-sort and n-sort; we have

C(m, n) =


mn, if mn≤ 1;
C

⌈m/2⌉, ⌈n/2⌉


+C


⌊m/2⌋, ⌊n/2⌋


+

(m+n−1)/2


, if mn > 1.

(4)
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This is not an especially simple function of m and n, in general, but by noting
that C(1, n) = n and that

C(m + 1, n + 1)− C(m, n)
= 1 + C


⌊m/2⌋+ 1, ⌊n/2⌋+ 1


− C


⌊m/2⌋, ⌊n/2⌋


, if mn ≥ 1,

we can derive the relation

C(m + 1, n + 1)− C(m, n) = ⌊lg m⌋+ 2 + ⌊n/2⌊lg m⌋+1⌋, if n ≥ m ≥ 1. (5)

Consequently

C(m, m + r) = B(m) + m + Rm(r), for m ≥ 0 and r ≥ 0, (6)

where B(m) is the “binary insertion” function
m

k=1⌈lg k⌉ of Eq. 5.3.1–(3), and
where Rm(r) denotes the sum of the first m terms of the series

r + 0
1


+


r + 1
2


+


r + 2
4


+


r + 3
4


+


r + 4
8


+ · · ·+


r + j

2⌊lg j⌋+1


+ · · · . (7)

In particular, when r = 0 we have the important special case

C(m, m) = B(m) + m. (8)

Furthermore if t = ⌈lg m⌉,

Rm(r + 2t) = Rm(r) + 1 · 2t−1 + 2 · 2t−2 + · · ·+ 2t−1 · 20 + m

= Rm(r) + m + t · 2t−1.

Hence C(m, n + 2t)− C(m, n) has a simple form, and

C(m, n) =


t

2 + m

2t


n + O(1), for m fixed, n→∞, t = ⌈lg m⌉; (9)

the O(1) term is an eventually periodic function of n, with period length 2t. As
n→∞ we have C(n, n) = n lg n + O(n), by Eq. (8) and exercise 5.3.1–15.

Minimum-comparison networks. Let Ŝ(n) be the minimum number of
comparators needed in a sorting network for n elements; clearly Ŝ(n) ≥ S(n),
where S(n) is the minimum number of comparisons needed in a not-necessarily-
oblivious sorting procedure (see Section 5.3.1). We have Ŝ(4) = 5 = S(4), so
the new constraint causes no loss of efficiency when n = 4; but already when
n = 5 it turns out that Ŝ(5) = 9 while S(5) = 7. The problem of determining
Ŝ(n) seems to be even harder than the problem of determining S(n); even the
asymptotic behavior of Ŝ(n) is known only in a very weak sense.

It is interesting to trace the history of this problem, since each step was
forged with some difficulty. Sorting networks were first explored by P. N. Arm-
strong, R. J. Nelson, and D. G. O’Connor, about 1954 [see U.S. Patent 3029413 ];
in the words of their patent attorney, “By the use of skill, it is possible to
design economical n-line sorting switches using a reduced number of two-line
sorting switches.” After observing that Ŝ(n + 1) ≤ Ŝ(n) + n, they gave special
constructions for 4 ≤ n ≤ 8, using 5, 9, 12, 18, and 19 comparators, respectively.
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Then Nelson worked together with R. C. Bose to show that Ŝ(2n) ≤ 3n − 2n
for all n; hence Ŝ(n) = O(nlg 3) = O(n1.585). Bose and Nelson published their
interesting method in JACM 9 (1962), 282–296, where they conjectured that it
was best possible; T. N. Hibbard [JACM 10 (1963), 142–150] found a similar
but slightly simpler construction that used the same number of comparisons,
thereby reinforcing the conjecture.

In 1964, R. W. Floyd and D. E. Knuth found a new way to approach the
problem, leading to an asymptotic bound of the form Ŝ(n) = O


n1+c/

√
log n


.

Working independently, K. E. Batcher discovered the general merging strategy
outlined above. Using a number of comparators defined by the recursion

c(1) = 0, c(n) = c

⌈n/2⌉


+ c


⌊n/2⌋


+ C


⌈n/2⌉, ⌊n/2⌋


for n ≥ 2, (10)

he proved (see exercise 5.2.2–14) that
c(2t) = (t2 − t + 4)2t−2 − 1;

consequently Ŝ(n) = O

n(log n)2. Neither Floyd and Knuth nor Batcher pub-

lished their constructions until some time later [Notices of the Amer. Math. Soc.
14 (1967), 283; Proc. AFIPS Spring Joint Computer Conf. 32 (1968), 307–314].

Several people have found ways to reduce the number of comparators used
by Batcher’s merge-exchange construction; the following table shows the best
upper bounds currently known for Ŝ(n):

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
c(n) = 0 1 3 5 9 12 16 19 26 31 37 41 48 53 59 63
Ŝ(n) ≤ 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

(11)

Since Ŝ(n) < c(n) for 8 < n ≤ 16, merge exchange is nonoptimal for all n > 8.
When n ≤ 8, merge exchange uses the same number of comparators as the
construction of Bose and Nelson. Floyd and Knuth proved in 1964–1966 that
the values listed for Ŝ(n) are exact when n ≤ 8 [see A Survey of Combinatorial
Theory (North-Holland, 1973), 163–172]; M. Codish, L. Cruz-Filipe, M. Frank,
and P. Schneider-Kamp [arXiv:1405.5754 [cs.DM] (2014), 17 pages] have also
verified this when n ≤ 10. The remaining values of Ŝ(n) are still not known.

Constructions that lead to the values in (11) are shown in Fig. 49. The
network for n = 9, based on an interesting three-way merge, was found by R. W.
Floyd in 1964; its validity can be established by using the general principle
described in exercise 27. The network for n = 10 was discovered by A. Waksman
in 1969, by regarding the inputs as permutations of {1, 2, . . . , 10} and trying to
reduce as much as possible the number of values that can appear on each line at
a given stage, while maintaining some symmetry.

The network shown for n = 13 has quite a different pedigree: Hugues Juillé
[Lecture Notes in Comp. Sci. 929 (1995), 246–260] used a computer program
to construct it, by simulating an evolutionary process of genetic breeding. The
network exhibits no obvious rhyme or reason, but it works — and it’s shorter
than any other construction devised so far by human ratiocination.

A 62-comparator sorting network for 16 elements was found by G. Shapiro
in 1969, and this was rather surprising since Batcher’s method (63 comparisons)
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n=9 25 modules, delay 9 n=10 29 modules, delay 9

n=12 39 modules, delay 9 n=13 45 modules, delay 10

n=16 60 modules, delay 10

Fig. 49. Efficient sorting networks.

would appear to be at its best when n is a power of 2. Soon after hearing of
Shapiro’s construction, M. W. Green tripled the amount of surprise by finding
the 60-comparison sorter in Fig. 49. The first portion of Green’s construction
is fairly easy to understand; after the 32 comparison/interchanges to the left of
the dotted line have been made, the lines can be labeled with the 16 subsets of
{a, b, c, d}, in such a way that the line labeled s is known to contain a number less
than or equal to the contents of the line labeled t whenever s is a subset of t. The
state of the sort at this point is discussed further in exercise 32. Comparisons
made on subsequent levels of Green’s network become increasingly mysterious,
however, and as yet nobody has seen how to generalize the construction in order
to obtain correspondingly efficient networks for higher values of n.

Shapiro and Green also discovered the network shown for n = 12. When
n = 11, 14, or 15, good networks can be found by removing the bottom line of
the network for n + 1, together with all comparators touching that line.
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The best sorting network currently known for 256 elements, due to D. Van
Voorhis, shows that Ŝ(256) ≤ 3651, compared to 3839 by Batcher’s method.
[See R. L. Drysdale and F. H. Young, SICOMP 4 (1975), 264–270.] As n→∞,
it turns out in fact that Ŝ(n) = O(n log n); this astonishing upper bound was
proved by Ajtai, Komlós, and Szemerédi in Combinatorica 3 (1983), 1–19. The
networks they constructed are not of practical interest, since many comparators
were introduced just to save a factor of log n; Batcher’s method is much better,
unless n exceeds the total memory capacity of all computers on earth! But the
theorem of Ajtai, Komlós, and Szemerédi does establish the true asymptotic
growth rate of Ŝ(n), up to a constant factor.
Minimum-time networks. In physical realizations of sorting networks, and
on parallel computers, it is possible to do nonoverlapping comparison-exchanges
at the same time; therefore it is natural to try to minimize the delay time. A
moment’s reflection shows that the delay time of a sorting network is equal to
the maximum number of comparators in contact with any “path” through the
network, if we define a path to consist of any left-to-right route that possibly
switches lines at the comparators. We can put a sequence number on each
comparator indicating the earliest time it can be executed; this is one higher than
the maximum of the sequence numbers of the comparators that occur earlier on
its input lines. (See Fig. 50(a); part (b) of the figure shows the same network
redrawn so that each comparison is done at the earliest possible moment.)

1 2 3 1 2 3 4 4 3 5 6 6

(a)

1 2 3 4 5 6

(b)

Fig. 50. Doing each comparison at the earliest possible time.

Batcher’s odd-even merging network described above takes TB(m, n) units
of time, where TB(m, 0) = TB(0, n) = 0, TB(1, 1) = 1, and

TB(m, n) = 1 + max

TB(⌊m/2⌋, ⌊n/2⌋), TB(⌈m/2⌉, ⌈n/2⌉)


for mn ≥ 2.

We can use these relations to prove that TB(m, n+1) ≥ TB(m, n), by induction;
hence TB(m, n) = 1 + TB


⌈m/2⌉, ⌈n/2⌉


for mn ≥ 2, and it follows that

TB(m, n) = 1 +

lg max(m, n)


, for mn ≥ 1. (12)

Exercise 5 shows that Batcher’s sorting method therefore has a delay time of
1 + ⌈lg n⌉

2


. (13)

Let T̂ (n) be the minimum achievable delay time in any sorting network for
n elements. It is possible to improve some of the networks described above so
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n=6 12 modules, delay 5

n=9 25 modules, delay 7

n=10 31 modules, delay 7
n=11 35 modules, delay 8

n=12 40 modules, delay 8

n=16 61 modules, delay 9

Fig. 51. Sorting networks that are the fastest known, when comparisons are performed
in parallel.

that they have smaller delay time but use no more comparators, as shown for
n = 6, n = 9, and n = 11 in Fig. 51, and for n = 10 in exercise 7. Still smaller
delay time can be achieved if we add one or two extra comparator modules, as
shown in the remarkable networks for n = 10, 12, and 16 in Fig. 51. These
constructions yield the following upper bounds on T̂ (n) for small n:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T̂ (n) ≤ 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 (14)

In fact all of the values given here are known to be exact (see the answer to
exercise 4). The networks in Fig. 51 merit careful study, because it is by no
means obvious that they always sort. Some of these networks were discovered in
1969–1971 by G. Shapiro (n = 6, 12) and D. Van Voorhis (n = 10, 16); the others
were found in 2001 by Loren Schwiebert, using genetic methods (n = 9, 11).
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Merging networks. Let M̂(m, n) denote the minimum number of comparator
modules needed in a network that merges m elements x1 ≤ · · · ≤ xm with n
elements y1 ≤ · · · ≤ yn to form the sorted sequence z1 ≤ · · · ≤ zm+n. At present
no merging networks have been discovered that are superior to the odd-even
merge described above; hence the function C(m, n) in (6) represents the best
upper bound known for M̂(m, n).

R. W. Floyd has discovered an interesting way to find lower bounds for this
merging problem.

Theorem F. For all n ≥ 1, we have M̂(2n, 2n) ≥ 2M̂(n, n) + n.

Proof. Consider a network with M̂(2n, 2n) comparator modules, capable of
sorting all input sequences ⟨z1, . . . , z4n⟩ such that z1 ≤ z3 ≤ · · · ≤ z4n−1 and
z2 ≤ z4 ≤ · · · ≤ z4n. We may assume that each module replaces (zi, zj) by
min(zi, zj), max(zi, zj)


, for some i < j (see exercise 16). The comparators can

therefore be divided into three classes:
a) i ≤ 2n and j ≤ 2n.
b) i > 2n and j > 2n.
c) i ≤ 2n and j > 2n.

Class (a) must contain at least M̂(n, n) comparators, since z2n+1, z2n+2, . . . , z4n
may be already in their final position when the merge starts; similarly, there
are at least M̂(n, n) comparators in class (b). Furthermore the input sequence
⟨0, 1, 0, 1, . . . , 0, 1⟩ shows that class (c) contains at least n comparators, since n
zeros must move from {z2n+1, . . . , z4n} to {z1, . . . , z2n}.

Repeated use of Theorem F proves that M̂(2m, 2m) ≥ 1
2 (m + 2)2m; hence

M̂(n, n) ≥ 1
2 n lg n+O(n). We know from Theorem 5.3.2M that merging without

the network restriction requires only M(n, n) = 2n − 1 comparisons; hence we
have proved that merging with networks is intrinsically harder than merging in
general.

The odd-even merge shows that

M̂(m, n) ≤ C(m, n) = 1
2 (m + n) lg min(m, n) + O(m + n).

P. B. Miltersen, M. Paterson, and J. Tarui [JACM 43 (1996), 147–165] have
improved Theorem F by establishing the lower bound

M̂(m, n) ≥ 1
2

(m + n) lg(m + 1)−m/ ln 2


for 1 ≤ m ≤ n.

Consequently M̂(m, n) = 1
2 (m + n) lg min(m, n) + O(m + n).

The exact formula M̂(2, n) = C(2, n) =
 3

2 n


has been proved by A. C. Yao
and F. F. Yao [JACM 23 (1976), 566–571]. The value of M̂(m, n) is also known
to equal C(m, n) for m = n ≤ 5; see exercise 9.

Bitonic sorting. When simultaneous comparisons are allowed, we have seen
in Eq. (12) that the odd-even merge uses


lg(2n)


units of delay time, when

1 ≤ m ≤ n. Batcher has devised another type of network for merging, called a
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Fig. 52. Batcher’s bitonic sorter of order 7.

bitonic sorter, which lowers the delay time to

lg(m + n)


although it requires

more comparator modules. [See U.S. Patent 3428946 (1969).]
Let us say that a sequence ⟨z1, . . . , zp⟩ of p numbers is bitonic if z1 ≥ · · · ≥

zk ≤ · · · ≤ zp for some k, 1 ≤ k ≤ p. (Compare this with the ordinary definition
of “monotonic” sequences.) A bitonic sorter of order p is a comparator network
that is capable of sorting any bitonic sequence of length p into nondecreasing
order. The problem of merging x1 ≤ · · · ≤ xm with y1 ≤ · · · ≤ yn is a special
case of the bitonic sorting problem, since merging can be done by applying a
bitonic sorter of order m + n to the sequence ⟨xm, . . . , x1, y1, . . . , yn⟩.

Notice that when a sequence ⟨z1, . . . , zp⟩ is bitonic, so are all of its sub-
sequences. Shortly after Batcher discovered the odd-even merging networks, he
observed that we can construct a bitonic sorter of order p in an analogous way,
by first sorting the bitonic subsequences ⟨z1, z3, z5, . . . ⟩ and ⟨z2, z4, z6, . . . ⟩ inde-
pendently, then comparing and interchanging z1 :z2, z3 :z4, . . . . (See exercise 10
for a proof.) If C ′(p) is the corresponding number of comparator modules, we
have

C ′(p) = C ′⌈p/2⌉


+ C ′⌊p/2⌋


+ ⌊p/2⌋, for p ≥ 2; (15)
and the delay time is clearly ⌈lg p⌉. Figure 52 shows the bitonic sorter of order 7
constructed in this way: It can be used as a (3, 4)- as well as a (2, 5)-merging
network, with three units of delay; the odd-even merge for m = 2 and n = 5
saves one comparator but adds one more level of delay.

Batcher’s bitonic sorter of order 2t is particularly interesting; it consists of
t levels of 2t−1 comparators each. If we number the input lines z0, z1, . . . , z2t−1,
element zi is compared to zj on level l if and only if i and j differ only in the
lth most significant bit of their binary representations. This simple structure
leads to parallel sorting networks that are as fast as merge exchange, Algorithm
5.2.2M, but considerably easier to implement. (See exercises 11 and 13.)

Bitonic merging is optimum, in the sense that no parallel merging method
based on simultaneous disjoint comparisons can sort in fewer than


lg(m + n)


stages, whether it works obliviously or not. (See exercise 46.) Another way to
achieve this optimum time, with fewer comparisons but a slightly more compli-
cated control logic, is discussed in exercise 57.

When 1 ≤ m ≤ n, the nth smallest output of an (m, n)-merging network
depends on 2m + [m < n] of the inputs (see exercise 29). If it can be computed
by comparators with l levels of delay, it involves at most 2l of the inputs; hence
2l ≥ 2m + [m < n], and l ≥


lg(2m + [m < n])


. Batcher has shown [Report

GER-14122 (Akron, Ohio: Goodyear Aerospace Corporation, 1968)] that this
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y6

y5

y4

y3

y2

y1

x1

z7
z6

z5

z4

z3

z2
z1

Fig. 53. Merging one item with six others, with multiple fanout, in order to achieve
the minimum possible delay time.

minimum delay time is achievable if we allow “multiple fanout” in the network,
namely the splitting of lines so that the same number is fed to many modules
at once. For example, one of his networks, capable of merging one item with n
others after only two levels of delay, is illustrated for n = 6 in Fig. 53. Of course,
networks with multiple fanout do not conform to our conventions, and it is fairly
easy to see that any (1, n)-merging network without multiple fanout must have
a delay time of lg(n + 1) or more. (See exercise 45.)

Selection networks. We can also use networks to approach the problem of
Section 5.3.3. Let Ût(n) denote the minimum number of comparators required
in a network that moves the t largest of n distinct inputs into t specified output
lines; the numbers are allowed to appear in any order on these output lines.
Let V̂t(n) denote the minimum number of comparators required to move the tth
largest of n distinct inputs into a specified output line; and let Ŵt(n) denote the
minimum number of comparators required to move the t largest of n distinct
inputs into t specified output lines in nondecreasing order. It is not difficult to
deduce (see exercise 17) that

Ût(n) ≤ V̂t(n) ≤ Ŵt(n). (16)

Suppose first that we have 2t elements ⟨x1, . . . , x2t⟩ and we wish to select the
largest t. V. E. Alekseev [Kibernetika 5, 5 (1969), 99–103] has observed that we
can do the job by first sorting ⟨x1, . . . , xt⟩ and ⟨xt+1, . . . , x2t⟩, then comparing
and interchanging

x1 :x2t, x2 :x2t−1, . . . , xt :xt+1. (17)

Since none of these pairs can contain more than one of the largest t elements
(why?), Alekseev’s procedure must select the largest t elements.

If we want to select the t largest of nt elements, we can apply Alekseev’s
procedure n− 1 times, eliminating t elements each time; hence

Ût(nt) ≤ (n− 1)

2Ŝ(t) + t


. (18)
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Fig. 54. Separating the largest four from the smallest four. (Numbers on these lines
are used in the proof of Theorem A.)

Alekseev also derived an interesting lower bound for the selection problem:

Theorem A. Ût(n) ≥ (n− t)

lg(t + 1)


.

Proof. It is most convenient to consider the equivalent problem of selecting the
smallest t elements. We can attach numbers (l, u) to each line of a comparator
network, as shown in Fig. 54, where l and u denote respectively the minimum
and maximum values that can appear at that position when the input is a
permutation of {1, 2, . . . , n}. Let li and lj be the lower bounds on lines i and j
before a comparison of xi :xj , and let l′i and l′j be the corresponding lower bounds
after the comparison. It is obvious that l′i = min(li, lj); exercise 24 proves the
(nonobvious) relation

l′j ≤ li + lj . (19)
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Fig. 55. Another interpretation for the network of Fig. 54.

Now let us reinterpret the network operations in another way (see Fig. 55):
All input lines are assumed to contain zero, and each “comparator” now places
the smaller of its inputs on the upper line and the larger plus one on the lower
line. The resulting numbers ⟨m1, m2, . . . , mn⟩ have the property that

2mi ≥ li (20)
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Table 1
COMPARISONS NEEDED IN SELECTION NETWORKS (Ût(n), V̂t(n), Ŵt(n))

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

n = 1 (0, 0, 0)
n = 2 (1, 1, 1) (0, 1, 1)
n = 3 (2, 2, 2) (2, 3, 3) (0, 2, 3)
n = 4 (3, 3, 3) (4, 5, 5) (3, 5, 5) (0, 3, 5)
n = 5 (4, 4, 4) (6, 7, 7) (6, 7, 8) (4, 7, 9) (0, 4, 9)
n = 6 (5, 5, 5) (8, 9, 9) (8, 10, 10) (8, 10, 12) (5, 9, 12) (0, 5, 12)

throughout the network, since this holds initially and it is preserved by each
comparator because of (19). Furthermore, the final value of

m1 + m2 + · · ·+ mn

is the total number of comparators in the network, since each comparator adds
unity to this sum.

If the network selects the smallest t numbers, n − t of the li are ≥ t + 1;
hence n− t of the mi must be ≥


lg(t + 1)


.

The lower bound in Theorem A turns out to be exact when t = 1 and when
t = 2 (see exercise 19). Table 1 gives some values of Ût(n), V̂t(n), and Ŵt(n) for
small t and n. Andrew Yao [Ph.D. thesis, U. of Illinois (1975)] determined the
asymptotic behavior of Ût(n) for fixed t, by showing that Û3(n) = 2n+lg n+O(1)
and Ût(n) = n


lg(t + 1)


+ O


(log n)⌊lg t⌋ as n→∞; the minimum delay time

is lg n + ⌊lg t⌋ lg lg n + O(log log log n). N. Pippenger [SICOMP 20 (1991), 878–
887] has proved by nonconstructive methods that for any ϵ > 0 there exist
selection networks with Û⌈n/2⌉(n) ≤ (2+ ϵ)n lg n, whenever n is sufficiently large
(depending on ϵ).

EXERCISES — First Set
Several of the following exercises develop the theory of sorting networks in detail, and
it is convenient to introduce some notation. We let [i :j] stand for a comparison/
interchange module. A network with n inputs and r comparator modules is written
[i1 :j1][i2 :j2] . . . [ir :jr], where each of the i’s and j’s is ≤ n; we shall call it an n-network
for short. A network is called standard if iq < jq for 1 ≤ q ≤ r. Thus, for example,
Fig. 44 on page 221 depicts a standard 4-network, denoted by the comparator sequence
[1 :2][3 :4][1 :3][2 :4][2 :3].

The text’s convention for drawing network diagrams represents only standard
networks; all comparators [i :j] are represented by a line from i to j, where i < j. When
nonstandard networks must be drawn, we can use an arrow from i to j, indicating that
the larger number goes to the point of the arrow. For example, Fig. 56 illustrates a
nonstandard network for 16 elements, whose comparators are [1 :2][4 :3][5 :6][8 :7] . . . .
Exercise 11 proves that Fig. 56 is a sorting network.

If x = ⟨x1, . . . , xn⟩ is an n-vector and α is an n-network, we write xα for the
vector of numbers ⟨(xα)1, . . . , (xα)n⟩ produced by the network. For brevity, we also let
a∨b = max(a, b), a∧b = min(a, b), ā = 1−a. Thus (x[i :j])i = xi∧xj , (x[i :j])j = xi∨xj ,



5.3.4 NETWORKS FOR SORTING 235

Stage 1
︷ ︸︸ ︷

Stage 2
︷ ︸︸ ︷

Stage 3
︷ ︸︸ ︷

Stage 4
︷ ︸︸ ︷

Fig. 56. A nonstandard sorting network based on bitonic sorting.

and (x[i :j])k = xk when i ̸= k ̸= j. We say α is a sorting network if (xα)i ≤ (xα)i+1
for all x and for 1 ≤ i < n.

The symbol e(i) stands for a vector that has 1 in position i, 0 elsewhere; thus
(e(i))j = δij . The symbol Dn stands for the set of all 2n n-place vectors of 0s and 1s,
and Pn stands for the set of all n! vectors that are permutations of {1, 2, . . . , n}. We
write x ∧ y and x ∨ y for the vectors ⟨x1 ∧ y1, . . . , xn ∧ yn⟩ and ⟨x1 ∨ y1, . . . , xn ∨ yn⟩,
and we write x ⊆ y if xi ≤ yi for all i. Thus x ⊆ y if and only if x∨ y = y if and only if
x∧ y = x. If x and y are in Dn, we say that x covers y if x = (y ∨ e(i)) ̸= y for some i.
Finally for all x in Dn we let ν(x) be the number of 1s in x, and ζ(x) the number of 0s;
thus ν(x) + ζ(x) = n.

1. [20 ] Draw a network diagram for the odd-even merge when m = 3 and n = 5.
2. [22 ] Show that V. Pratt’s sorting algorithm (exercise 5.2.1–30) leads to a sorting

network for n elements that has approximately (log2 n)(log3 n) levels of delay. Draw
the corresponding network for n = 12.

3. [M20 ] (K. E. Batcher.) Find a simple relation between C(m,m−1) and C(m,m).
x 4. [M23 ] Prove that T̂ (6) = 5.

5. [M16 ] Prove that (13) is the delay time associated with the sorting network
outlined in (10).

6. [28 ] Let T (n) be the minimum number of stages needed to sort n distinct numbers
by making simultaneous disjoint comparisons (without necessarily obeying the network
constraint); such comparisons can be represented as a node containing a set of pairs
{i1 :j1, i2 :j2, . . . , ir :jr} where i1, j1, i2, j2, . . . , ir, jr are distinct, with 2r branches below
this node for the respective cases

⟨Ki1 < Kj1 , Ki2 < Kj2 , . . . , Kir < Kjr ⟩,
⟨Ki1 > Kj1 , Ki2 < Kj2 , . . . , Kir < Kjr ⟩, etc.

Prove that T (5) = T (6) = 5.
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Fig. 57. Sorting 16 elements with perfect shuffles.
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7. [25 ] Show that if the final three comparators of the network for n = 10 in Fig. 49
are replaced by the “weaker” sequence [5 :6][4 :5][6 :7], the network will still sort.

8. [M20 ] Prove that M̂(m1+m2, n1+n2) ≥ M̂(m1, n1) + M̂(m2, n2) + min(m1, n2),
for m1,m2, n1, n2 ≥ 0.

9. [M25 ] (R. W. Floyd.) Prove that M̂(3, 3) = 6, M̂(4, 4) = 9, M̂(5, 5) = 13.
10. [M22 ] Prove that Batcher’s bitonic sorter, as defined in the remarks preceding
(15), is valid. [Hint: It is only necessary to prove that all sequences consisting of k 1s
followed by l 0s followed by n− k − l 1s will be sorted.]
11. [M23 ] Prove that Batcher’s bitonic sorter of order 2t will not only sort sequences
⟨z0, z1, . . . , z2t−1⟩ for which z0 ≥ · · · ≥ zk ≤ · · · ≤ z2t−1, it also will sort any sequence
for which z0 ≤ · · · ≤ zk ≥ · · · ≥ z2t−1. [As a consequence, the network in Fig. 56 will
sort 16 elements, since each stage consists of bitonic sorters or reverse-order bitonic
sorters, applied to sequences that have been sorted in opposite directions.]
12. [M20 ] Prove or disprove: If x and y are bitonic sequences of the same length, so
are x ∨ y and x ∧ y.

x 13. [24 ] (H. S. Stone.) Show that a sorting network for 2t elements can be constructed
by following the pattern illustrated for t = 4 in Fig. 57. Each of the t2 steps in this
scheme consists of a “perfect shuffle” of the first 2t−1 elements with the last 2t−1,
followed by simultaneous operations performed on 2t−1 pairs of adjacent elements.
Each of the latter operations is either “0” (no operation), “+” (a standard comparator
module), or “−” (a reverse comparator module). The sorting proceeds in t stages of
t steps each; during the last stage all operations are “+”. During stage s, for s < t, we
do t−s steps in which all operations are “0”, followed by s steps in which the operations
within step q consist alternately of 2q−1 “+” followed by 2q−1 “−”, for q = 1, 2, . . . , s.

[Note that this sorting scheme could be performed by a fairly simple device whose
circuitry performs one “shuffle-and-operate” step and feeds the output lines back into
the input. The first three steps in Fig. 57 could of course be eliminated; they have
been retained only to make the pattern clear. Stone notes that the same pattern
“shuffle/operate” occurs in several other algorithms, such as the fast Fourier transform
(see 4.6.4–(40)).]

x 14. [M27 ] (V. E. Alekseev.) Let α = [i1 :j1] . . . [ir :jr] be an n-network; for 1 ≤ s ≤ r
we define αs = [i′1 :j′1] . . . [i′s−1 :j′s−1][is :js] . . . [ir :jr], where the i′k and j′k are obtained
from ik and jk by changing is to js and changing js to is wherever they appear. For
example, if α = [1:2][3 :4][1 :3][2 :4][2 :3], then α4 = [1:4][3 :2][1 :3][2 :4][2 :3].

a) Prove that Dnα = Dn(αs).
b) Prove that (αs)t = (αt)s.
c) A conjugate of α is any network of the form (. . . ((αs1 )s2) . . . )sk. Prove that α has

at most 2r−1 conjugates.
d) Let gα(x) = [x ∈ Dnα], and let fα(x) = (x̄i1 ∨ xj1 ) ∧ · · · ∧ (x̄ir ∨ xjr ). Prove that

gα(x) =

{fα′(x) | α′ is a conjugate of α}.

e) Let Gα be the directed graph with vertices {1, . . . , n} and with arcs is → js for
1 ≤ s ≤ r. Prove that α is a sorting network if and only if Gα′ has an oriented
path from i to i+ 1 for 1 ≤ i < n and for all α′ conjugate to α. [This condition is
somewhat remarkable, since Gα does not depend on the order of the comparators
in α.]

15. [20 ] Find a nonstandard sorting network for four elements that has only five
comparator modules.
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16. [M22 ] Prove that the following algorithm transforms any sorting network [i1 :j1]
. . . [ir :jr] into a standard sorting network of the same length:

T1. Let q be the smallest index such that iq > jq. If no such index exists, stop.
T2. Change all occurrences of iq to jq, and all occurrences of jq to iq, in all

comparators [is :js] for q ≤ s ≤ r. Return to T1.
Thus, [4:1][3:2][1:3][2:4][1:2][3:4] is first transformed into [1:4][3:2][4:3][2:1][4:2][3:1],
then [1 :4][2 :3][4 :2][3 :1][4 :3][2 :1], then [1 :4][2 :3][2 :4][3 :1][2 :3][4 :1], etc., until the
standard network [1 :4][2 :3][2 :4][1 :3][1 :2][3 :4] is obtained.
17. [M25 ] Let Dtn be the set of all


n
t


sequences ⟨x1, . . . , xn⟩ of 0s and 1s having

exactly t 1s. Show that Ût(n) is the minimum number of comparators needed in a
network that sorts all the elements of Dtn; V̂t(n) is the minimum number needed to
sort Dtn ∪D(t−1)n; and Ŵt(n) is the minimum number needed to sort


0≤k≤t Dkn.

x 18. [M20 ] Prove that a network that finds the median of 2t− 1 elements requires at
least (t−1)⌈lg(t+1)⌉+⌈lg t⌉ comparator modules. [Hint: See the proof of Theorem A.]
19. [M22 ] Prove that Û2(n) = 2n− 4 and V̂2(n) = 2n− 3, for all n ≥ 2.
20. [28 ] Prove that (a) V̂3(5) = 7; (b) Û4(n) ≤ 3n− 10 for n ≥ 6.
21. [21 ] True or false: Inserting a new standard comparator into any standard sorting
network yields another standard sorting network.
22. [M17 ] Let α be any n-network, and let x and y be n-vectors.

a) Prove that x ⊆ y implies that xα ⊆ yα.
b) Prove that x ·y ≤ (xα) ·(yα), where x ·y denotes the dot product x1y1 + · · ·+xnyn.

23. [M18 ] Let α be an n-network. Prove that there is a permutation p ∈ Pn such
that (pα)i = j if and only if there are vectors x and y in Dn such that x covers y,
(xα)i = 1, (yα)i = 0, and ζ(y) = j.

x 24. [M21 ] (V. E. Alekseev.) Let α be an n-network, and for 1 ≤ k ≤ n let

lk = min{(pα)k | p ∈ Pn}, uk = max{(pα)k | p ∈ Pn}

denote the lower and upper bounds on the range of values that may appear in line k of
the output. Let l′k and u′

k be defined similarly for the network α′ = α[i :j]. Prove that

l′i = li ∧ lj , l′j ≤ li + lj , u′
i ≥ ui + uj − (n+ 1), u′

j = ui ∨ uj .

[Hint: Given vectors x and y in Dn with (xα)i = (yα)j = 0, ζ(x) = li, and ζ(y) = lj ,
find a vector z in Dn with (zα′)j = 0, ζ(z) ≤ li + lj .]
25. [M30 ] Let lk and uk be as defined in exercise 24. Prove that all integers between
lk and uk inclusive are in the set {(pα)k | p in Pn}.
26. [M24 ] (R. W. Floyd.) Let α be an n-network. Prove that one can determine the
set Dnα = {xα | x in Dn} from the set Pnα = {pα | p in Pn}; conversely, Pnα can be
determined from Dnα.

x 27. [M20 ] Let x and y be vectors, and let xα and yα be sorted. Prove that (xα)i ≤
(yα)j if and only if, for every choice of j elements from y, we can choose i elements
from x such that every chosen x element is ≤ some chosen y element. Use this principle
to prove that if we sort the rows of any matrix, then sort the columns, the rows will
remain in order.
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x 28. [M20 ] The following diagram illustrates the fact that we can systematically write
down formulas for the contents of all lines in a sorting network in terms of the inputs:

a

b

c

d

a ∧ b

a ∨ b

c ∧ d

c ∨ d

(a ∧ b) ∧ (c ∧ d)

(a ∨ b) ∧ (c ∨ d)

(a ∧ b) ∨ (c ∧ d)

(a ∨ b) ∨ (c ∨ d)

(a ∧ b) ∧ (c ∧ d)

((a ∨ b) ∧ (c ∨ d)) ∧ ((a ∧ b) ∨ (c ∧ d))

((a ∨ b) ∧ (c ∨ d)) ∨ ((a ∧ b) ∨ (c ∧ d))

(a ∨ b) ∨ (c ∨ d)

Using the commutative laws x∧y = y∧x, x∨y = y∨x, the associative laws x∧(y∧z) =
(x∧ y)∧ z, x∨ (y ∨ z) = (x∨ y)∨ z, the distributive laws x∧ (y ∨ z) = (x∧ y)∨ (x∧ z),
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), the absorption laws x ∧ (x ∨ y) = x ∨ (x ∧ y) = x,
and the idempotent laws x ∧ x = x ∨ x = x, we can reduce the formulas at the right
of this network to (a ∧ b ∧ c ∧ d), (a ∧ b ∧ c) ∨ (a ∧ b ∧ d) ∨ (a ∧ c ∧ d) ∨ (b ∧ c ∧ d),
(a ∧ b) ∨ (a ∧ c) ∨ (a ∧ d) ∨ (b ∧ c) ∨ (b ∧ d) ∨ (c ∧ d), and a ∨ b ∨ c ∨ d, respectively.

Prove that, in general, the tth largest element of {x1, . . . , xn} is given by the
“elementary symmetric function”

σt(x1, . . . , xn) =

{xi1 ∧ xi2 ∧ · · · ∧ xit | 1 ≤ i1 < i2 < · · · < it ≤ n}.

[There are


n
t


terms being ∨’d together. Thus the problem of finding minimum-cost

sorting networks is equivalent to the problem of computing the elementary symmetric
functions with a minimum of “and/or” circuits, where at every stage we are required
to replace two quantities ϕ and ψ by ϕ ∧ ψ and ϕ ∨ ψ.]
29. [M20 ] Given that x1 ≤ x2 ≤ x3 and y1 ≤ y2 ≤ y3 ≤ y4 ≤ y5, and that z1 ≤ z2 ≤
· · · ≤ z8 is the result of merging the x’s with the y’s, find formulas for each of the z’s
in terms of the x’s and the y’s, using the operators ∧ and ∨.
30. [HM24 ] Prove that any formula involving ∧ and ∨ and the independent variables
{x1, . . . , xn} can be reduced using the identities in exercise 28 to a “canonical” form
τ1 ∨ τ2 ∨ · · · ∨ τk, where k ≥ 1, each τi has the form


{xj | j in Si} where Si is a

subset of {1, 2, . . . , n}, and no set Si is included in Sj for i ̸= j. Prove also that two
such canonical forms are equal for all x1, . . . , xn if and only if they are identical (up to
order).
31. [M24 ] (R. Dedekind, 1897.) Let δn be the number of distinct canonical forms on
x1, . . . , xn in the sense of exercise 30. Thus δ1 = 1, δ2 = 4, and δ3 = 18. What is δ4?
32. [M28 ] (M. W. Green.) Let G1 = {00, 01, 11}, and let Gt+1 be the set of all strings
θϕψω such that θ, ϕ, ψ, ω have length 2t−1 and θϕ, ψω, θψ, and ϕω are in Gt. Let
α be the network consisting of the first four levels of the 16-sorter shown in Fig. 49.
Show that D16α = G4, and prove that it has exactly δ4 +2 elements. (See exercise 31.)

x 33. [M22 ] Not all δn of the functions of ⟨x1, . . . , xn⟩ in exercise 31 can appear in
comparator networks. In fact, prove that the function (x1 ∧ x2)∨ (x2 ∧ x3)∨ (x3 ∧ x4)
cannot appear as an output of any comparator network on ⟨x1, . . . , xn⟩.
34. [23 ] Is the following a sorting network?
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35. [20 ] Prove that any standard sorting network must contain each of the adjacent
comparators [i : i+1], for 1 ≤ i < n, at least once.

x 36. [22 ] The network of Fig. 47 involves only adjacent comparisons [i :i+1]; let us call
such a network primitive.

a) Prove that a primitive sorting network for n elements must have at least


n
2


comparators. [Hint: Consider the inversions of a permutation.]
b) (R. W. Floyd, 1964.) Let α be a primitive network for n elements, and let x be a

vector such that (xα)i > (xα)j for some i < j. Prove that (yα)i > (yα)j , where
y is the vector ⟨n, n−1, . . . , 1⟩.

c) As a consequence of (b), a primitive network is a sorting network if and only if it
sorts the single vector ⟨n, n−1, . . . , 1⟩.

37. [M22 ] The odd-even transposition sort for n numbers, n ≥ 3, is a network n levels
deep with 1

2n(n− 1) comparators, arranged in a brick-like pattern as shown in Fig. 58.
(When n is even, there are two possibilities.) Such a sort is especially easy to implement
in hardware, since only two kinds of actions are performed alternatively. Prove that
such a network is, in fact, a valid sorting network. [Hint: See exercise 36.]

n=5 n=6 n=6

Fig. 58. The odd-even transposition sort.

x 38. [43 ] Let N =


n
2

. Find a one-to-one correspondence between Young tableaux of

shape (n−1, n−2, . . . , 1) and primitive sorting networks [i1 : i1+1] . . . [iN : iN +1]. [Con-
sequently by Theorem 5.1.4H there are exactly

N !
1n−1 3n−2 5n−3 . . . (2n− 3)1

such sorting networks.] Hint: Exercise 36(c) shows that primitive networks without
redundant comparators correspond to paths from 1 2 . . . n to n . . . 2 1 in polyhedra like
Fig. 1 in Section 5.1.1.
39. [25 ] Suppose that a primitive comparator network on n lines is known to sort the
single input 1 0 1 0 . . . 1 0 correctly. (See exercise 36; assume that n is even.) Show that
its “middle third,” consisting of all comparators that involve only lines ⌈n/3⌉ through
⌈2n/3⌉ inclusive, will sort all inputs.
40. [HM44 ] Comparators [i1 : i1+1][i2 : i2+1] . . . [ir : ir+1] are chosen at random, with
each value of ik ∈ {1, 2, . . . , n − 1} equally likely; the process stops when the network
contains a bubble sort configuration like that of Fig. 47 as a subnetwork. Prove that
r ≤ 4n2 +O(n3/2 logn), except with probability O(n−1000).
41. [M47 ] Comparators [i1 :j1][i2 :j2] . . . [ir :jr] are chosen at random, with each irre-
dundant choice 1 ≤ ik < jk ≤ n equally likely; the process stops when a sorting network
has been obtained. Estimate the expected value of r ; is it O(n1+ϵ) for all ϵ > 0?

x 42. [25 ] (D. Van Voorhis.) Prove that Ŝ(n) ≥ Ŝ(n− 1) + ⌈lgn⌉.
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43. [48 ] Find an (m,n)-merging network with fewer than C(m,n) comparators, or
prove that no such network exists.
44. [50 ] Find the exact value of Ŝ(n) for some n > 8.
45. [M20 ] Prove that any (1, n)-merging network without multiple fanout must have
at least ⌈lg(n+ 1)⌉ levels of delay.

x 46. [30 ] (M. Aigner.) Show that the minimum number of stages needed to merge m
elements with n, using any algorithm that does simultaneous disjoint comparisons as in
exercise 6, is at least ⌈lg(m+n)⌉; hence the bitonic merging network has optimum delay.
47. [47 ] Is the function T (n) of exercise 6 strictly less than T̂ (n) for some n?

x 48. [26 ] We can interpret sorting networks in another way, letting each line carry
a multiset of m numbers instead of a single number; under this interpretation, the
operation [i :j] replaces xi and xj , respectively, by xi ∧∧ xj and xi ∨∨ xj , the least m and
the greatest m of the 2m numbers xi ⊎ xj . (For example, the diagram

{3, 5}

{1, 8}

{2, 9}

{2, 7}

{1, 3}

{5, 8}

{2, 9}

{2, 7}

{1, 3}

{5, 8}

{2, 2}

{7, 9}

{1, 2}

{5, 8}

{2, 3}

{7, 9}

{1, 2}

{5, 7}

{2, 3}

{8, 9}

{1, 2}

{2, 3}

{5, 7}

{8, 9}

illustrates this interpretation when m = 2; each comparator merges its inputs and
separates the lower half from the upper half.)

If a and b are multisets of m numbers each, we say that a ≪ b if and only if
a ∧∧ b = a (equivalently, a ∨∨ b = b; the largest element of a is less than or equal to the
smallest of b). Thus a ∧∧ b≪ a ∨∨ b.

Let α be an n-network, and let x = ⟨x1, . . . , xn⟩ be a vector in which each xi is a
multiset of m elements. Prove that if (xα)i is not≪ (xα)j in the interpretation above,
there is a vector y in Dn such that (yα)i = 1 and (yα)j = 0. [Consequently, a sorting
network for n elements becomes a sorting network for mn elements if we replace each
comparison by a merge network with M̂(m,m) modules. Figure 59 shows an 8-element
sorter constructed from a 4-element sorter by using this observation.]

Fig. 59. An 8-sorter constructed from a 4-sorter, by using the merging interpretation.

49. [M23 ] Show that, in the notation of exercise 48, (x ∧∧ y) ∧∧ z = x ∧∧ (y ∧∧ z) and
(x ∨∨ y) ∨∨ z = x ∨∨ (y ∨∨ z); however (x ∨∨ y) ∧∧ z is not always equal to (x ∧∧ z) ∨∨ (y ∧∧ z),
and (x∧∧ y)∨∨ (x∧∧ z)∨∨ (y∧∧ z) does not always equal the middle m elements of x⊎ y⊎ z.
Find a correct formula, in terms of x, y, z and the ∧∧ and ∨∨ operations, for those middle
elements.
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50. [HM46 ] Explore the properties of the ∧∧ and ∨∨ operations defined in exercise 48.
Is it possible to characterize all of the identities in this algebra in some nice way, or
to derive them all from a finite set of identities? In this regard, identities such as
x ∧∧ x ∧∧ x = x ∧∧ x, or x ∧∧ (x ∨∨ (x ∧∧ (x ∨∨ y))) = x ∧∧ (x ∨∨ y), which hold only for m ≤ 2,
are of comparatively little interest; consider only the identities that are true for all m.

x 51. [M25 ] (R. L. Graham.) The comparator [i :j] is called redundant in the network
α1 [i :j]α2 if either (xα1)i ≤ (xα1)j for all vectors x, or (xα1)i ≥ (xα1)j for all
vectors x. Prove that if α is a network with r irredundant comparators, there are
at least r distinct ordered pairs (i, j) of distinct indices such that (xα)i ≤ (xα)j for all
vectors x. (Consequently, a network with no redundant comparators contains at most

n
2


modules.)

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
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23 23
24 24
25 25
26 26
27 27
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30 30
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33 33
34 34
35 35
36 36
37 37
38 38
39 39
40 40
41 41
42 42
43 43
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Fig. 60. A family of networks whose ability to sort is difficult to verify, illustrated for
m = 3 and n = 5. (See exercise 52.)

x 52. [32 ] (M. O. Rabin, 1980.) Prove that it is intrinsically difficult to decide in
general whether a sequence of comparators defines a sorting network, by considering
networks of the form sketched in Fig. 60. It is convenient to number the inputs x0 to
xN , where N = 2mn + m + 2n; the positive integers m and n are parameters. The
first comparators are [j :j + 2nk] for 1 ≤ j ≤ 2n and 1 ≤ k ≤ m. Then we have
[2j−1:2j][0 :2j] for 1 ≤ j ≤ n, in parallel with a special subnetwork that uses only
indices > 2n. Next we compare [0 :2mn+2n+j] for 1 ≤ j ≤ m. And finally there is
a complete sorting network for ⟨x1, . . . , xN ⟩, followed by [0:1][1 :2] . . . [N−t−1:N−t],
where t = mn+ n+ 1.

a) Describe all inputs ⟨x0, x1, . . . , xN ⟩ that are not sorted by such a network, in terms
of the behavior of the special subnetwork.

b) Given a set of clauses such as (y1 ∨ y2 ∨ ȳ3) ∧ (ȳ2 ∨ y3 ∨ ȳ4) ∧ . . . , explain how
to construct a special subnetwork such that Fig. 60 sorts all inputs if and only if
the clauses are unsatisfiable. [Hence the task of deciding whether a comparator
sequence forms a sorting network is co-NP-complete, in the sense of Section 7.9.]
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53. [30 ] (Periodic sorting networks.) The following two 16-networks illustrate general
recursive constructions of t-level networks for n = 2t in the case t = 4:

(a) (b)

If we number the input lines from 0 to 2t− 1, the lth level in case (a) has comparators
[i :j] where imod 2t+1−l < 2t−l and j = i⊕ (2t+1−l − 1); there are t2t−1 comparators
altogether, as in the bitonic merge. In case (b) the first-level comparators are [2j :2j+1]
for 0 ≤ j < 2t−1, and the lth-level comparators for 2 ≤ l ≤ t are [2j + 1:2j + 2t+1−l]
for 0 ≤ j < 2t−1 − 2t−l; there are (t − 1)2t−1 + 1 comparators altogether, as in the
odd-even merge.

If the input numbers are 2k-ordered in the sense of Theorem 5.2.1H, for some
k ≥ 1, prove that both networks yield outputs that are 2k−1-ordered. Therefore we
can sort 2t numbers by passing them through either network t times. [When t is large,
these sorting networks use roughly twice as many comparisons as Algorithm 5.2.2M;
but the total delay time is the same as in Fig. 57, and the implementation is simpler
because the same network is used repeatedly.]
54. [42 ] Study the properties of sorting networks made from m-sorter modules instead
of 2-sorters. (For example, G. Shapiro has constructed the network

which sorts 16 elements using fourteen 4-sorters. Is this the best possible? Prove that
m2 elements can be sorted with at most 16 levels of m-sorters, when m is sufficiently
large.)
55. [23 ] A permutation network is a sequence of modules [i1 :j1] . . . [ir :jr] where each
module [i :j] can be set by external controls to pass its inputs unchanged or to switch
xi and xj (irrespective of the values of xi and xj), and such that each permutation
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of the inputs is achievable on the output lines by some setting of the modules. Every
sorting network is clearly a permutation network, but the converse is not true: Find a
permutation network for five elements that has only eight modules.

x 56. [25 ] Suppose the bit vector x ∈ Dn is not sorted. Show that there is a standard
n-network αx that fails to sort x, although it sorts all other elements of Dn.

57. [M35 ] The even-odd merge is similar to Batcher’s odd-even merge, except that
when mn > 2 it recursively merges the sequence ⟨xm mod 2+1, . . . , xm−3, xm−1⟩ with
⟨y1, y3, . . . , y2⌈n/2⌉−1⟩ and ⟨x(m+1) mod 2+1, . . . , xm−2, xm⟩ with ⟨y2, y4, . . . , y2⌊n/2⌋⟩ be-
fore making a set of ⌈m/2⌉ + ⌈n/2⌉ − 1 comparison-interchanges analogous to (1).
Show that the even-odd merge achieves the optimum delay time ⌈lg(m+n)⌉ of bitonic
merging, without making more comparisons than the bitonic method. In fact, prove
that the number of comparisons A(m,n) made by even-odd merging satisfies C(m,n) ≤
A(m,n) < 1

2 (m+ n) lg min(m,n) +m+ 3
2n.

EXERCISES — Second Set
The following exercises deal with several different types of optimality questions related
to sorting. The first few problems are based on an interesting “multihead” general-
ization of the bubble sort, investigated by P. N. Armstrong and R. J. Nelson as early
as 1954. [See U.S. Patents 3029413, 3034102.] Let 1 = h1 < h2 < · · · < hm = n be
an increasing sequence of integers; we shall call it a “head sequence” of length m and
span n, and we shall use it to define a special kind of sorting method. The sorting of
records R1 . . . RN proceeds in several passes, and each pass consists of N +n− 1 steps.
On step j, for j = 1 − n, 2 − n, . . . , N − 1, the records Rj+h[1], Rj+h[2], . . . , Rj+h[m]
are examined and rearranged if necessary so that their keys are in order. (We say
that Rj+h[1], . . . , Rj+h[m] are “under the read-write heads.” When j + h[k] is < 1 or
> N , record Rj+h[k] is left out of consideration; in effect, the keys K0,K−1,K−2, . . . are
treated as −∞ and KN+1,KN+2, . . . are treated as +∞. Therefore step j is actually
trivial when j ≤ −h[m− 1] or j > N − h[2].)

For example, the following table shows one pass of a sort when m = 3, N = 9,
and h1 = 1, h2 = 2, h3 = 4:

K−2 K−1 K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12

j = −3 3 1 4 5 9 2 6 8 7
j = −2 3 1 4 5 9 2 6 8 7
j = −1 3 1 4 5 9 2 6 8 7
j = 0 1 3 4 5 9 2 6 8 7
j = 1 1 3 4 5 9 2 6 8 7
j = 2 1 3 2 4 9 5 6 8 7
j = 3 1 3 2 4 6 5 9 8 7
j = 4 1 3 2 4 5 6 9 8 7
j = 5 1 3 2 4 5 6 7 8 9
j = 6 1 3 2 4 5 6 7 8 9
j = 7 1 3 2 4 5 6 7 8 9
j = 8 1 3 2 4 5 6 7 8 9

When m = 2, h1 = 1, and h2 = 2, this multihead method reduces to the bubble sort
(Algorithm 5.2.2B).
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58. [21 ] (James Dugundji.) Prove that if h[k + 1] = h[k] + 1 for some k, 1 ≤ k < m,
the multihead sorter defined above will eventually sort any input file in a finite number
of passes. But if h[k + 1] ≥ h[k] + 2 for 1 ≤ k < m, the input might never become
sorted.

x 59. [30 ] (Armstrong and Nelson.) Given that h[k + 1] ≤ h[k] + k for 1 ≤ k < m, and
N ≥ n− 1, prove that the largest n− 1 elements always move to their final destination
on the first pass. [Hint: Use the zero-one principle; when sorting 0s and 1s, with fewer
than n 1s, prove that it is impossible to have all heads sensing a 1 unless all 0s lie to
the left of the heads.]

Prove that sorting will be complete in at most ⌈(N − 1)/(n− 1)⌉ passes when the
heads satisfy the given conditions. Is there an input file that requires this many passes?
60. [26 ] If n = N, prove that the first pass can be guaranteed to place the smallest
key into position R1 if and only if h[k + 1] ≤ 2h[k] for 1 ≤ k < m.
61. [34 ] (J. Hopcroft.) A “perfect sorter” for N elements is a multihead sorter
with N = n that always finishes in one pass. Exercise 59 proves that the sequence
⟨h1, h2, h3, h4, . . . , hm⟩ = ⟨1, 2, 4, 7, . . . , 1 +


m
2

⟩ gives a perfect sorter for N =


m
2


+ 1
elements, using m = (

√
8N − 7+1)/2 heads. For example, the head sequence ⟨1, 2, 4, 7,

11, 16, 22⟩ is a perfect sorter for 22 elements.
Prove that, in fact, the head sequence ⟨1, 2, 4, 7, 11, 16, 23⟩ is a perfect sorter for

23 elements.
62. [49 ] Study the largest N for which m-head perfect sorters exist, given m. Is
N = O(m2)?
63. [23 ] (V. Pratt.) When each head hk is in position 2k−1 for 1 ≤ k ≤ m, how many
passes are necessary to sort the sequence z1 z2 . . . z2m−1 of 0s and 1s where zj = 0 if
and only if j is a power of 2?
64. [24 ] (Uniform sorting.) The tree of Fig. 34 in Section 5.3.1 makes the comparison
2:3 in both branches on level 1, and on level 2 it compares 1:3 in each branch unless
that comparison would be redundant. In general, we can consider the class of all sorting
algorithms whose comparisons are uniform in that way; assuming that the M =


N
2


pairs {(a, b) | 1 ≤ a < b ≤ N} have been arranged into a sequence

(a1, b1), (a2, b2), . . . , (aM , bM ),

we can successively make each of the comparisons Ka1 :Kb1 , Ka2 :Kb2 , . . . whose
outcome is not already known. Each of the M ! arrangements of the (a, b) pairs defines a
uniform sorting algorithm. The concept of uniform sorting is due to H. L. Beus [JACM
17 (1970), 482–495], whose work has suggested the next few exercises.

It is convenient to define uniform sorting formally by means of graph theory. Let
G be the directed graph on the vertices {1, 2, . . . , N} having no arcs. For i = 1, 2,
. . . , M we add arcs to G as follows:

Case 1. G contains a path from ai to bi. Add the arc ai → bi to G.
Case 2. G contains a path from bi to ai. Add the arc bi → ai to G.
Case 3. G contains no path from ai to bi or bi to ai. Compare Kai :Kbi ; then add
the arc ai → bi to G if Kai ≤ Kbi , the arc bi → ai if Kai > Kbi .

We are concerned primarily with the number of key comparisons made by a uniform
sorting algorithm, not with the mechanism by which redundant comparisons are ac-
tually avoided. Thus the graph G need not be constructed explicitly; it is used here
merely to help define the concept of uniform sorting.



246 SORTING 5.3.4

We shall also consider restricted uniform sorting, in which only paths of length 2
are counted in cases 1, 2, and 3 above. (A restricted uniform sorting algorithm may
make some redundant comparisons, but exercise 65 shows that the analysis is somewhat
simpler in the restricted case.)

Prove that the restricted uniform algorithm is the same as the uniform algorithm
when the sequence of pairs is taken in lexicographic order

(1, 2)(1, 3)(1, 4) . . . (1, N)(2, 3)(2, 4) . . . (2, N) . . . (N−1, N).

Show in fact that both algorithms are equivalent to quicksort (Algorithm 5.2.2Q) when
the keys are distinct and when quicksort’s redundant comparisons are removed as in
exercise 5.2.2–24. (Disregard the order in which the comparisons are actually made in
quicksort; consider only which pairs of keys are compared.)
65. [M38 ] Given a pair sequence (a1, b1) . . . (aM , bM ) as in exercise 64, let ci be the
number of pairs (j, k) such that j < k < i and (ai, bi), (aj , bj), (ak, bk) forms a triangle.

a) Prove that the average number of comparisons made by the restricted uniform
sorting algorithm is

M
i=1 2/(ci + 2).

b) Use the results of (a) and exercise 64 to determine the average number of irredun-
dant comparisons performed by quicksort.

c) The following pair sequence is inspired by (but not equivalent to) merge sorting:

(1, 2)(3, 4)(5, 6) . . . (1, 3)(1, 4)(2, 3)(2, 4)(5, 7) . . . (1, 5)(1, 6)(1, 7)(1, 8)(2, 5) . . .

Does the uniform method based on this sequence do more or fewer comparisons
than quicksort, on the average?

66. [M29 ] In the worst case, quicksort does


N
2


comparisons. Do all restricted
uniform sorting algorithms (in the sense of exercise 64) perform


N
2


comparisons in
their worst case?
67. [M48 ] (H. L. Beus.) Does quicksort have the minimum average number of com-
parisons, over all (restricted) uniform sorting algorithms?
68. [25 ] The Ph.D. thesis “Electronic Data Sorting” by Howard B. Demuth (Stanford
University, October 1956) was perhaps the first publication to deal in any detail with
questions of computational complexity. Demuth considered several abstract models
for sorting devices, and established lower and upper bounds on the mean and maxi-
mum execution times achievable with each model. His simplest model, the “circular
nonreversible memory” (Fig. 61), is the subject of this exercise.
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Fig. 61. A device for which the bubble-sort strategy is optimum.
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Consider a machine that sorts R1 R2 . . . RN in a number of passes, where each
pass contains the following N + 1 steps:

Step 1. Set R← R1. (R is an internal machine register.)
Step i, for 1 < i ≤ N. Either (i) set Ri−1 ← R, R ← Ri, or (ii) set Ri−1 ← Ri,
leaving R unchanged.
Step N+1. Set RN ← R.

The problem is to find a way to choose between alternatives (i) and (ii) each time, in
order to minimize the number of passes required to sort.

Prove that the “bubble sort” technique is optimum for this model. In other words,
show that the strategy that selects alternative (i) whenever R ≤ Ri and alternative (ii)
whenever R > Ri will achieve the minimum number of passes.

They that weave networks shall be confounded.
— Isaiah 19:9
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5.4. EXTERNAL SORTING
Now it is time for us to study the interesting problems that arise when the
number of records to be sorted is larger than our computer can hold in its
high-speed internal memory. External sorting is quite different from internal
sorting, even though the problem in both cases is to sort a given file into
nondecreasing order, since efficient storage accessing on external files is rather
severely limited. The data structures must be arranged so that comparatively
slow peripheral memory devices (tapes, disks, drums, etc.) can quickly cope with
the requirements of the sorting algorithm. Consequently most of the internal
sorting techniques we have studied (insertion, exchange, selection) are virtually
useless for external sorting, and it is necessary to reconsider the whole question.

Suppose, for example, that we are supposed to sort a file of five million
records R1 R2 . . . R5000000, and that each record Ri is 20 words long (although
the keys Ki are not necessarily this long). If only one million of these records
will fit in the internal memory of our computer at one time, what shall we do?

One fairly obvious solution is to start by sorting each of the five subfiles
R1 . . . R1000000, R1000001 . . . R2000000, . . . , R4000001 . . . R5000000 independently,
then to merge the resulting subfiles together. Fortunately the process of merging
uses only very simple data structures, namely linear lists that are traversed in
a sequential manner as stacks or as queues; hence merging can be done without
difficulty on the least expensive external memory devices.

The process just described — internal sorting followed by external merging —
is very commonly used, and we shall devote most of our study of external sorting
to variations on this theme.

The ascending sequences of records that are produced by the initial internal
sorting phase are often called strings in the published literature about sorting;
this terminology is fairly widespread, but it unfortunately conflicts with even
more widespread usage in other branches of computer science, where “strings” are
arbitrary sequences of symbols. Our study of permutations has already given us
a perfectly good name for the sorted segments of a file, which are conventionally
called ascending runs or simply runs. Therefore we shall consistently use the
word “runs” to describe sorted portions of a file. In this way it is possible to
distinguish between “strings of runs” and “runs of strings” without ambiguity.
(Of course, “runs of a program” means something else again; we can’t have
everything.)

Let us consider first the process of external sorting when magnetic tapes
are used for auxiliary storage. Perhaps the simplest and most appealing way to
merge with tapes is the balanced two-way merge following the central idea that
was used in Algorithms 5.2.4N, S, and L. We use four “working tapes” in this
process. During the first phase, ascending runs produced by internal sorting are
placed alternately on Tapes 1 and 2, until the input is exhausted. Then Tapes 1
and 2 are rewound to their beginnings, and we merge the runs from these tapes,
obtaining new runs that are twice as long as the original ones; the new runs
are written alternately on Tapes 3 and 4 as they are being formed. (If Tape
1 contains one more run than Tape 2, an extra “dummy” run of length 0 is
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assumed to be present on Tape 2.) Then all tapes are rewound, and the contents
of Tapes 3 and 4 are merged into quadruple-length runs recorded alternately on
Tapes 1 and 2. The process continues, doubling the length of runs each time,
until only one run is left (namely the entire sorted file). If S runs were produced
during the internal sorting phase, and if 2k−1 < S ≤ 2k, this balanced two-way
merge procedure makes exactly k = ⌈lg S⌉ merging passes over all the data.

For example, in the situation above where 5000000 records are to be sorted
with an internal memory capacity of 1000000, we have S = 5. The initial
distribution phase of the sorting process places five runs on tape as follows:

Tape 1 R1 . . . R1000000; R2000001 . . . R3000000; R4000001 . . . R5000000.
Tape 2 R1000001 . . . R2000000; R3000001 . . . R4000000.
Tape 3 (empty)
Tape 4 (empty)

(1)

The first pass of merging then produces longer runs on Tapes 3 and 4, as it reads
Tapes 1 and 2, as follows:

Tape 3 R1 . . . R2000000; R4000001 . . . R5000000.
Tape 4 R2000001 . . . R4000000.

(2)

(A dummy run has implicitly been added at the end of Tape 2, so that the last
run R4000001 . . . R5000000 on Tape 1 is merely copied onto Tape 3.) After all tapes
are rewound, the next pass over the data produces

Tape 1 R1 . . . R4000000.
Tape 2 R4000001 . . . R5000000.

(3)

(Again that run R4000001 . . . R5000000 was simply copied; but if we had started
with 8000000 records, Tape 2 would have contained R4000001 . . . R8000000 at this
point.) Finally, after another spell of rewinding, R1 . . . R5000000 is produced on
Tape 3, and the sorting is complete.

Balanced merging can easily be generalized to the case of T tapes, for any
T ≥ 3. Choose any number P with 1 ≤ P < T, and divide the T tapes into two
“banks,” with P tapes on the left bank and T − P on the right. Distribute the
initial runs as evenly as possible onto the P tapes in the left bank; then do a
P -way merge from the left to the right, followed by a (T − P )-way merge from
the right to the left, etc., until sorting is complete. The best choice of P usually
turns out to be ⌈T/2⌉ (see exercises 3 and 4).

Balanced two-way merging is the special case T = 4, P = 2. Let us
reconsider the example above using more tapes, taking T = 6 and P = 3. The
initial distribution now gives us

Tape 1 R1 . . . R1000000; R3000001 . . . R4000000.
Tape 2 R1000001 . . . R2000000; R4000001 . . . R5000000.
Tape 3 R2000001 . . . R3000000.

(4)
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And the first merging pass produces
Tape 4 R1 . . . R3000000.
Tape 5 R3000001 . . . R5000000.
Tape 6 (empty)

(5)

(A dummy run has been assumed on Tape 3.) The second merging pass completes
the job, placing R1 . . . R5000000 on Tape 1. In this special case T = 6 is essentially
the same as T = 5, since the sixth tape is used only when S ≥ 7.

Three-way merging requires more computer processing than two-way merg-
ing; but this is generally negligible compared to the cost of reading, writing,
and rewinding the tapes. We can get a fairly good estimate of the running time
by considering only the amount of tape motion. The example in (4) and (5)
required only two passes over the data, compared to three passes when T = 4,
so the merging takes only about two-thirds as long when T = 6.

Balanced merging is quite simple, but if we look more closely, we find
immediately that it isn’t the best way to handle the particular cases treated
above. Instead of going from (1) to (2) and rewinding all of the tapes, we should
have stopped the first merging pass after Tapes 3 and 4 contained R1 . . . R2000000
and R2000001 . . . R4000000, respectively, with Tape 1 poised ready to read the
records R4000001 . . . R5000000. Then Tapes 2, 3, 4 could be rewound and we could
complete the sort by doing a three-way merge onto Tape 2. The total number of
records read from tape during this procedure would be only 4000000+5000000 =
9000000, compared to 5000000 + 5000000 + 5000000 = 15000000 in the balanced
scheme. A smart computer would be able to figure this out.

Indeed, when we have five runs and four tapes we can do even better by
distributing them as follows:

Tape 1 R1 . . . R1000000; R3000001 . . . R4000000.
Tape 2 R1000001 . . . R2000000; R4000001 . . . R5000000.
Tape 3 R2000001 . . . R3000000.
Tape 4 (empty)

Then a three-way merge to Tape 4, followed by a rewind of Tapes 3 and 4,
followed by a three-way merge to Tape 3, would complete the sort with only
3000000 + 5000000 = 8000000 records read.

And, of course, if we had six tapes we could put the initial runs on Tapes 1
through 5 and complete the sort in one pass by doing a five-way merge to Tape 6.
These considerations indicate that simple balanced merging isn’t the best, and
it is interesting to look for improved merging patterns.

Subsequent portions of this chapter investigate external sorting more deeply.
In Section 5.4.1, we will consider the internal sorting phase that produces the
initial runs; of particular interest is the technique of “replacement selection,”
which takes advantage of the order present in most data to produce long initial
runs that actually exceed the internal memory capacity by a significant amount.
Section 5.4.1 also discusses a suitable data structure for multiway merging.



5.4 EXTERNAL SORTING 251

The most important merging patterns are discussed in Sections 5.4.2 through
5.4.5. It is convenient to have a rather naïve conception of tape sorting as we
learn the characteristics of these patterns, before we come to grips with the
harsh realities of real tape drives and real data to be sorted. For example, we
may blithely assume (as we did above) that the original input records appear
magically during the initial distribution phase; in fact, these input records might
well occupy one of our tapes, and they may even fill several tape reels since
tapes aren’t of infinite length! It is best to ignore such mundane considerations
until after an academic understanding of the classical merging patterns has been
gained. Then Section 5.4.6 brings the discussion down to earth by discussing
real-life constraints that strongly influence the choice of a pattern. Section 5.4.6
compares the basic merging patterns of Sections 5.4.2 through 5.4.5, using a
variety of assumptions that arise in practice.

Some other approaches to external sorting, not based on merging, are dis-
cussed in Sections 5.4.7 and 5.4.8. Finally Section 5.4.9 completes our survey of
external sorting by treating the important problem of sorting on bulk memories
such as disks and drums.

When this book was first written, magnetic tapes were abundant and disk
drives were expensive. But disks became enormously better during the 1980s,
and by the late 1990s they had almost completely replaced magnetic tape units
on most of the world’s computer systems. Therefore the once-crucial topic of
patterns for tape merging has become of limited relevance to current needs.

Yet many of the patterns are quite beautiful, and the associated algorithms
reflect some of the best research done in computer science during its early years;
the techniques are just too nice to be discarded abruptly onto the rubbish heap
of history. Indeed, the ways in which these methods blend theory with practice
are especially instructive. Therefore merging patterns are discussed carefully
and completely below, in what may be their last grand appearance before they
accept a final curtain call.

For all we know now,
these techniques may well become crucial once again.

— PAVEL CURTIS (1997)
EXERCISES

1. [15 ] The text suggests internal sorting first, followed by external merging. Why
don’t we do away with the internal sorting phase, simply merging the records into
longer and longer runs right from the start?

2. [10 ] What will the sequence of tape contents be, analogous to (1) through (3),
when the example records R1 R2 . . . R5000000 are sorted using a 3-tape balanced method
with P = 2? Compare this to the 4-tape merge; how many passes are made over all
the data, after the initial distribution of runs?

3. [20 ] Show that the balanced (P, T−P )-way merge applied to S initial runs takes
2k passes, when P k(T − P )k−1 < S ≤ P k(T − P )k; and it takes 2k + 1 passes, when
P k(T − P )k < S ≤ P k+1(T − P )k.

Give simple formulas for (a) the exact number of passes, as a function of S, when
T = 2P ; and (b) the approximate number of passes, as S →∞, for general P and T.

4. [HM15 ] What value of P , for 1 ≤ P < T, makes P (T − P ) a maximum?
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5.4.1. Multiway Merging and Replacement Selection

In Section 5.2.4, we studied internal sorting methods based on two-way merging,
the process of combining two ordered sequences into a single ordered sequence.
It is not difficult to extend this to the notion of P -way merging, where P runs
of input are combined into a single run of output.

Let’s assume that we have been given P ascending runs, that is, sequences
of records whose keys are in nondecreasing order. The obvious way to merge
them is to look at the first record of each run and to select the record whose
key is smallest; this record is transferred to the output and removed from the
input, and the process is repeated. At any given time we need to look at only P
keys (one from each input run) and select the smallest. If two or more keys are
smallest, an arbitrary one is selected.

When P isn’t too large, it is convenient to make this selection by simply
doing P − 1 comparisons to find the smallest of the current keys. But when
P is, say, 8 or more, we can save work by using a selection tree as described in
Section 5.2.3; then only about lg P comparisons are needed each time, once the
tree has been set up.

Consider, for example, the case of four-way merging, with a two-level selec-
tion tree:

Step 1. 087


087

 087 503 ∞
170 908 ∞

154
 154 426 653 ∞

612 ∞

Step 2. 087 154


170

 503 ∞
170 908 ∞

154
 154 426 653 ∞

612 ∞

Step 3. 087 154 170


170

 503 ∞
170 908 ∞

426
 426 653 ∞

612 ∞...

Step 9. 087 154 170 426 503 612 653 908 ∞


∞

 ∞
∞

∞
 ∞
∞

An additional key “∞” has been placed at the end of each run in this example,
so that the merging terminates gracefully. Since external merging generally
deals with very long runs, the addition of records with ∞ keys does not add
substantially to the length of the data or to the amount of work involved in
merging, and such sentinel records frequently serve as a useful way to delimit
the runs on a file.
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061

154 061

170 154 087 061

170 275 426 154 503 087 512 061

908 170 897 275 653 426 154 509

1

2 3

4 5 6 7

8 9 10 11
12 13 14 15

16 17 18 19 20 21 22 23

Fig. 62. A tournament to select the smallest key, using a complete binary tree
whose nodes are numbered from 1 to 23. There are P = 12 external nodes.

Each step after the first in this process consists of replacing the smallest
element by the succeeding element in its run, and changing the corresponding
path in the selection tree. Thus the three positions of the tree that contain 087
in Step 1 are changed in Step 2; the three positions containing 154 in Step 2 are
changed in Step 3; and so on. The process of replacing one key by another in
the selection tree is called replacement selection.

We can look at this four-way merge in several ways. From one standpoint it
is equivalent to three two-way merges performed concurrently as coroutines; each
node in the selection tree represents one of the sequences involved in concurrent
merging processes. The selection tree is also essentially operating as a priority
queue, with a smallest-in-first-out discipline.

As in Section 5.2.3 we could implement the priority queue by using a heap
instead of a selection tree. (The heap would, of course, be arranged so that the
smallest element appears at the top, instead of the largest, reversing the order of
Eq. 5.2.3–(3).) Since a heap does not have a fixed size, we could therefore avoid
the use of ∞ keys; merging would be complete when the heap becomes empty.
On the other hand, external sorting applications usually deal with comparatively
long records and keys, so that the heap is filled with pointers to keys instead of
the keys themselves; we shall see below that selection trees can be represented by
pointers in such a convenient manner that they are probably superior to heaps
in this situation.

A tree of losers. Figure 62 shows the complete binary tree with 12 external
(rectangular) nodes and 11 internal (circular) nodes. The external nodes have
been filled with keys, and the internal nodes have been filled with the “winners,”
if the tree is regarded as a tournament to select the smallest key. The smaller
numbers above each node show the traditional way to allocate consecutive stor-
age positions for complete binary trees.
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061

154

170 087

275 426 503 512

908 897 653 509 503 087 512 061

908 170 897 275 653 426 154 509

0

1

2 3

4 5 6 7

8 9 10 11
12 13 14 15

16 17 18 19 20 21 22 23

Fig. 63. The same tournament as Fig. 62, but showing the losers instead of the
winners; the champion appears at the very top.

When the smallest key, 061, is to be replaced by another key in the selection
tree of Fig. 62, we will have to look at the keys 512, 087, and 154, and no
other existing keys, in order to determine the new state of the selection tree.
Considering the tree as a tournament, these three keys are the losers in the
matches played by 061. This suggests that the loser of a match should actually
be stored in each internal node of the tree, instead of the winner; then the
information required for updating the tree will be readily available.

Figure 63 shows the same tree as Fig. 62, but with the losers represented
instead of the winners. An extra node number 0 has been appended at the top
of the tree, to indicate the champion of the tournament. Each key except the
champion is a loser exactly once (see Section 5.3.3), so each key appears just
once in an external node and once in an internal node.

In practice, the external nodes at the bottom of Fig. 63 will represent fairly
long records stored in computer memory, and the internal nodes will represent
pointers to those records. Note that P -way merging calls for exactly P external
nodes and P internal nodes, each in consecutive positions of memory, hence
several efficient methods of storage allocation suggest themselves. It is not
difficult to see how to use a loser-oriented tree for replacement selection; we
shall discuss the details later.

Initial runs by replacement selection. The technique of replacement se-
lection can be used also in the first phase of external sorting, if we essentially
do a P -way merge of the input data with itself! In this case we take P to be
quite large, so that the internal memory is essentially filled. When a record is
output, it is replaced by the next record from the input. If the new record has a
smaller key than the one just output, we cannot include it in the current run; but
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Table 1
EXAMPLE OF FOUR-WAY REPLACEMENT SELECTION

Memory contents Output

503 087 512 061 061
503 087 512 908 087
503 170 512 908 170
503 897 512 908 503

(275) 897 512 908 512
(275) 897 653 908 653
(275) 897 (426) 908 897
(275) (154) (426) 908 908
(275) (154) (426) (509) (end of run)
275 154 426 509 154
275 612 426 509 275

etc.

otherwise we can enter it into the selection tree in the usual way and it will form
part of the run currently being produced. Thus the runs can contain more than
P records each, even though we never have more than P in the selection tree at
any time. Table 1 illustrates this process for P = 4; parenthesized numbers are
waiting for inclusion in the following run.

This important method of forming initial runs was first described by Har-
old H. Seward [Master’s Thesis, Digital Computer Laboratory Report R-232
(Mass. Inst. of Technology, 1954), 29–30], who gave reason to believe that the
runs would contain more than 1.5P records when applied to random data. A. I.
Dumey had also suggested the idea about 1950 in connection with a special sort-
ing device planned by Engineering Research Associates, but he did not publish it.
The name “replacement selecting” was coined by E. H. Friend [JACM 3 (1956),
154], who remarked that “the expected length of the sequences produced eludes
formulation but experiment suggests that 2P is a reasonable expectation.”

A clever way to show that 2P is indeed the expected run length was discov-
ered by E. F. Moore, who compared the situation to a snowplow on a circular
track [U.S. Patent 2983904 (1961), columns 3–4]. Consider the situation shown
in Fig. 64: Flakes of snow are falling uniformly on a circular road, and a lone
snowplow is continually clearing the snow. Once the snow has been plowed off
the road, it disappears from the system. Points on the road may be designated by
real numbers x, 0 ≤ x < 1; a flake of snow falling at position x represents an input
record whose key is x, and the snowplow represents the output of replacement
selection. The ground speed of the snowplow is inversely proportional to the
height of snow it encounters, and the situation is perfectly balanced so that the
total amount of snow on the road at all times is exactly P . A new run is formed
in the output whenever the plow passes point 0.

After this system has been in operation for awhile, it is intuitively clear that
it will approach a stable situation in which the snowplow runs at constant speed
(because of the circular symmetry of the track). This means that the snow is at
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Fig. 64. The perpetual plow on its ceaseless cycle.

constant height when it meets the plow, and the height drops off linearly in front
of the plow as shown in Fig. 65. It follows that the volume of snow removed in
one revolution (namely the run length) is twice the amount present at any one
time (namely P ).

Fig. 65. Cross-section, showing the varying height of snow in front of the plow when
the system is in its steady state.

In many commercial applications the input data is not completely random;
it already has a certain amount of existing order. Therefore the runs produced by
replacement selection will tend to contain even more than 2P records. We shall
see that the time required for external merge sorting is largely governed by the
number of runs produced by the initial distribution phase, so that replacement
selection becomes especially desirable; other types of internal sorting would pro-
duce about twice as many initial runs because of the limitations on memory size.

Let us now consider the process of creating initial runs by replacement
selection in detail. The following algorithm is due to John R. Walters, James
Painter, and Martin Zalk, who used it in a merge-sort program for the Philco
2000 in 1958. It incorporates a rather nice way to initialize the selection tree
and to distinguish records belonging to different runs, as well as to flush out the
last run, with comparatively simple and uniform logic. (The proper handling
of the last run produced by replacement selection turns out to be a bit tricky,
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R1. Initialize

R2. End of run?

R3. Output
top of tree

R4. Input
new record

R5. Prepare
to update

R6. Set new loserR7. Move upEnd
of
file

T=root

Fig. 66. Making initial runs by replacement selection.

and it has tended to be a stumbling block for programmers.) The principal idea
is to consider each key as a pair (S, K), where K is the original key and S is
the run number to which this record belongs. When such extended keys are
lexicographically ordered, with S as major key and K as minor key, we obtain
the output sequence produced by replacement selection.

The algorithm below uses a data structure containing P nodes to represent
the selection tree; the jth node X[j] is assumed to contain c words beginning
in LOC(X[j]) = L0 + cj, for 0 ≤ j < P , and it represents both internal node
number j and external node number P + j in Fig. 63. There are several named
fields in each node:

KEY = the key stored in this external node;
RECORD = the record stored in this external node (including KEY as a subfield);
LOSER = pointer to the “loser” stored in this internal node;

RN = run number of the record stored in this external node;
PE = pointer to internal node above this external node in the tree;
PI = pointer to internal node above this internal node in the tree.

For example, when P = 12, internal node number 5 and external node number 17
of Fig. 63 would both be represented in X[5], by the fields KEY = 170, LOSER =
L0 + 9c (the address of external node number 21), PE = L0 + 8c, PI = L0 + 2c.

The PE and PI fields have constant values, so they need not appear explicitly
in memory; however, the initial phase of external sorting sometimes has trouble
keeping up with the I/O devices, and it might be worthwhile to store these
redundant values with the data instead of recomputing them each time.
Algorithm R (Replacement selection). This algorithm reads records sequen-
tially from an input file and writes them sequentially onto an output file, pro-
ducing RMAX runs whose length is P or more (except for the final run). There
are P ≥ 2 nodes, X[0], . . . , X[P − 1], having fields as described above.
R1. [Initialize.] Set RMAX ← 0, RC ← 0, LASTKEY ← ∞, and Q ← LOC(X[0]).

(Here RC is the number of the current run and LASTKEY is the key of the
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last record output. The initial setting of LASTKEY should be larger than any
possible key; see exercise 8.) For 0 ≤ j < P , set the initial contents of X[j]
as follows:

J← LOC(X[j]); LOSER(J)← J; RN(J)← 0;
PE(J)← LOC(X[⌊(P + j)/2⌋]); PI(J)← LOC(X[⌊j/2⌋]).

(The settings of LOSER(J) and RN(J) are artificial ways to get the tree
initialized by considering a fictitious run number 0 that is never output.
This is tricky; see exercise 10.)

R2. [End of run?] If RN(Q) = RC, go on to step R3. (Otherwise RN(Q) = RC + 1
and we have just completed run number RC; any special actions required by
a merging pattern for subsequent passes of the sort would be done at this
point.) If RC = RMAX, stop; otherwise set RC← RC + 1.

R3. [Output top of tree.] (Now Q points to the “champion,” and RN(Q) = RC.)
If RC ̸= 0, output RECORD(Q) and set LASTKEY← KEY(Q).

R4. [Input new record.] If the input file is exhausted, set RN(Q) ← RMAX + 1
and go on to step R5. Otherwise set RECORD(Q) to the next record from the
input file. If KEY(Q) < LASTKEY (so that this new record does not belong to
the current run), set RMAX← RN(Q)← RC + 1.

R5. [Prepare to update.] (Now Q points to a new record.) Set T ← PE(Q).
(Variable T is a pointer that will move up the tree.)

R6. [Set new loser.] Set L ← LOSER(T). If RN(L) < RN(Q) or if RN(L) = RN(Q)
and KEY(L) < KEY(Q), then set LOSER(T) ← Q and Q ← L. (Variable Q
keeps track of the current winner.)

R7. [Move up.] If T = LOC(X[1]) then go back to R2, otherwise set T← PI(T)
and return to R6.

Algorithm R speaks of input and output of records one at a time, while in
practice it is best to read and write relatively large blocks of records. Therefore
some input and output buffers are actually present in memory, behind the scenes,
effectively lowering the size of P . We shall illustrate this in Section 5.4.6.

*Delayed reconstitution of runs. A very interesting way to improve on
replacement selection has been suggested by R. J. Dinsmore [CACM 8 (1965),
48] using a concept that we shall call degrees of freedom. As we have seen,
each block of records on tape within a run is in nondecreasing order, so that its
first element is the lowest and its last element is the highest. In the ordinary
process of replacement selection, the lowest element of each block within a run
is never less than the highest element of the preceding block in that run; this is
“1 degree of freedom.” Dinsmore suggests relaxing this condition to “m degrees
of freedom,” where the lowest element of each block may be less than the highest
element of the preceding block so long as it is not less than the highest elements
in m different preceding blocks of the same run. Records within individual blocks
are ordered, as before, but adjacent blocks need not be in order.



5.4.1 MULTIWAY MERGING AND REPLACEMENT SELECTION 259

For example, suppose that there are just two records per block; the following
sequence of blocks is a run with three degrees of freedom:

| 08 50 | 06 90 | 17 27 | 42 67 | 51 89 | (1)

A subsequent block that is to be part of the same run must begin with an
element not less than the third largest element of {50, 90, 27, 67, 89}, namely 67.
The sequence (1) would not be a run if there were only two degrees of freedom,
since 17 is less than both 50 and 90.

A run with m degrees of freedom can be “reconstituted” while it is being
read during the next phase of sorting, so that for all practical purposes it is a run
in the ordinary sense. We start by reading the first m blocks into m buffers, and
doing an m-way merge on them; when one buffer is exhausted, we replace it with
the (m + 1)st block, and so on. In this way we can recover the run as a single
sequence, for the first word of every newly read block must be greater than or
equal to the last word of the just-exhausted block (lest it be less than the highest
elements in m different blocks that precede it). This method of reconstituting
the run is essentially like an m-way merge using a single tape unit for all the
input blocks! The reconstitution procedure acts as a coroutine that is called
upon to deliver one record of the run at a time. We could be reconstituting
different runs from different tape units with different degrees of freedom, and
merging the resulting runs, all at the same time, in essentially the same way as
the four-way merge illustrated at the beginning of this section may be thought
of as several two-way merges going on at once.

This ingenious idea is difficult to analyze precisely, but T. O. Espelid has
shown how to extend the snowplow analogy to obtain an approximate formula
for the behavior [BIT 16 (1976), 133–142]. According to his approximation,
which agrees well with empirical tests, the run length will be about

2P + (m− 1.5)


2P + (m− 2)b
2P + (2m− 3)b


b,

when b is the block size and m ≥ 2. Such an increase may not be enough to
justify the added complication; on the other hand, it may be advantageous when
there is room for a rather large number of buffers during the second phase of
sorting.

*Natural selection. Another way to increase the run lengths produced by
replacement selection has been explored by W. D. Frazer and C. K. Wong [CACM
15 (1972), 910–913]. Their idea is to proceed as in Algorithm R, except that
a new record is not placed in the tree when its key is less than LASTKEY; it is
output into an external reservoir instead, and another new record is read in. This
process continues until the reservoir is filled with a certain number of records, P ′;
then the remainder of the current run is output from the tree, and the reservoir
items are used as input for the next run.

The use of a reservoir tends to produce longer runs than replacement selec-
tion, because it reroutes the “dead” records that belong to the next run instead
of letting them clutter up the tree; but it requires extra time for input and output
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Fig. 67. Equal amounts of snow are input and output; the plow moves dx in time dt.

to and from the reservoir. When P ′ > P it is possible that some records will be
placed into the reservoir twice, but when P ′ ≤ P this will never happen.

Frazer and Wong made extensive empirical tests of their method, noticing
that when P is reasonably large (say P ≥ 32) and P ′ = P the average run
length for random data is approximately given by eP , where e ≈ 2.718 is the
base of natural logarithms. This phenomenon, and the fact that the method
is an evolutionary improvement over simple replacement selection, naturally led
them to call their method natural selection.

The “natural” law for run lengths can be proved by considering the snowplow
of Fig. 64 again, and applying elementary calculus. Let L be the length of the
track, and let x(t) be the position of the snowplow at time t, for 0 ≤ t ≤ T.
The reservoir is assumed to be full at time T, when the snow stops temporarily
while the plow returns to its starting position (clearing the P units of snow
remaining in its path). The situation is the same as before except that the
“balance condition” is different; instead of P units of snow on the road at all
times, we have P units of snow in front of the plow, and the reservoir (behind
the plow) gets up to P ′ = P units. The snowplow advances by dx during a
time interval dt if h(x, t) dx records are output, where h(x, t) is the height of
the snow at time t and position x = x(t), measured in suitable units; hence
h(x, t) = h(x, 0) + Kt for all x, where K is the rate of snowfall. Since the
number of records in memory stays constant, h(x, t) dx is also the number of
records that are input ahead of the plow, namely K dt(L − x) (see Fig. 67).
Thus

dx

dt
= K(L− x)

h(x, t) . (2)

Fortunately, it turns out that h(x, t) is constant, equal to KT, whenever x = x(t)
and 0 ≤ t ≤ T, since the snow falls steadily at position x(t) for T−t units of time
after the plow passes that point, plus t units of time before it comes back. In
other words, the plow sees all snow at the same height on its journey, assuming
that a steady state has been reached where each journey is the same. Hence
the total amount of snow cleared (the run length) is LKT ; and the amount of
snow in memory is the amount cleared after time T, namely KT


L−x(T )


. The

solution to (2) such that x(0) = 0 is

x(t) = L(1− e−t/T ); (3)

hence P = LKTe−1 = (run length)/e; and this is what we set out to prove.
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Exercises 21 through 23 show that this analysis can be extended to the case
of general P ′; for example, when P ′ = 2P the average run length turns out to
be eθ(e− θ)P , where θ =


e−
√

e2 − 4


2, a result that probably wouldn’t have
been guessed offhand! Table 2 shows the dependence of run length on reservoir
size; the usefulness of natural selection in a given computer environment can be
estimated by referring to this table. The table entries for reservoir size < P use
an improved technique that is discussed in exercise 27.

The ideas of delayed run reconstitution and natural selection can be com-
bined, as discussed by T. C. Ting and Y. W. Wang in Comp. J. 20 (1977),
298–301.

Table 2
RUN LENGTHS BY NATURAL SELECTION

Reservoir size Run length k + θ Reservoir size Run length k + θ

0.10000P 2.15780P 0.32071 0.00000P 2.00000P 0.00000
0.50000P 2.54658P 0.69952 0.43428P 2.50000P 0.65348
1.00000P 2.71828P 1.00000 1.30432P 3.00000P 1.15881
2.00000P 3.53487P 1.43867 1.95014P 3.50000P 1.42106
3.00000P 4.16220P 1.74773 2.72294P 4.00000P 1.66862
4.00000P 4.69446P 2.01212 4.63853P 5.00000P 2.16714
5.00000P 5.16369P 2.24938 21.72222P 10.00000P 4.66667

10.00000P 7.00877P 3.17122 5.29143P 5.29143P 2.31329

The quantity k + θ is defined in exercise 22, or (when k = 0) in exercise 27.

*Analysis of replacement selection. Let us now return to the case of replace-
ment selection without an auxiliary reservoir. The snowplow analogy gives us
a fairly good indication of the average length of runs obtained by replacement
selection in the steady-state limit, but it is possible to get much more precise
information about Algorithm R by applying the facts about runs in permutations
that we have studied in Section 5.1.3. For this purpose it is convenient to assume
that the input file is an arbitrarily long sequence of independent random real
numbers between 0 and 1.

Let

gP (z1, z2, . . . , zk) =


l1,l2,...,lk≥0
aP (l1, l2, . . . , lk)zl1

1 zl2
2 . . . zlk

k

be the generating function for run lengths produced by P -way replacement
selection on such a file, where aP (l1, l2, . . . , lk) is the probability that the first
run has length l1, the second has length l2, . . . , the kth has length lk. The
following “independence theorem” is basic, since it reduces the analysis to the
case P = 1:

Theorem K. gP (z1, z2, . . . , zk) = g1(z1, z2, . . . , zk)P.

Proof. Let the input keys be K1, K2, K3, . . . . Algorithm R partitions them into
P subsequences, according to which external node position they occupy in the
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tree; the subsequence containing Kn is determined by the values of K1, . . . , Kn−1.
Each of these subsequences is therefore an independent sequence of independent
random numbers between 0 and 1. Furthermore, the output of replacement
selection is precisely what would be obtained by doing a P -way merge on these
subsequences; an element belongs to the jth run of a subsequence if and only if
it belongs to the jth run produced by replacement selection (since LASTKEY and
KEY(Q) belong to the same subsequence in step R4).

In other words, we might just as well assume that Algorithm R is being
applied to P independent random input files, and that step R4 reads the next
record from the file corresponding to external node Q; in this sense, the algorithm
is equivalent to a P -way merge, with “stepdowns” marking the ends of the runs.

Thus the output has runs of lengths (l1, . . . , lk) if and only if the sub-
sequences have runs of respective lengths (l11, . . . , l1k), . . . , (lP1, . . . , lPk), where
the lij are some nonnegative integers satisfying


1≤i≤P lij = lj for 1 ≤ j ≤ k.

It follows that

aP (l1, . . . , lk) =


l11+···+lP1=l1···
l1k+···+lPk=lk

a1(l11, . . . , l1k) . . . a1(lP1, . . . , lPk),

and this is equivalent to the desired result.

We have discussed the average length Lk of the kth run, when P = 1,
in Section 5.1.3, where the values are tabulated in Table 5.1.3–2. Theorem K
implies that the average length of the kth run for general P is P times as long
as the average when P = 1, namely LkP ; and the variance is also P times as
large, so the standard deviation of the run length is proportional to

√
P . These

results were first derived by B. J. Gassner about 1958.
Thus the first run produced by Algorithm R will be about (e−1)P ≈ 1.718P

records long, for random data; the second run will be about (e2−2e)P ≈ 1.952P
records long; the third, about 1.996P ; and subsequent runs will be very close
to 2P records long until we get to the last two runs (see exercise 14). The
standard deviation of most of these run lengths is approximately


(4e− 10)P ≈

0.934
√

P [CACM 6 (1963), 685–688]. Furthermore, exercise 5.1.3–10 shows that
the total length of the first k runs will be fairly close to


2k − 1

3

P , with a

standard deviation of
 2

3 k + 2
9

P
1/2. The generating functions g1(z, z, . . . , z)

and g1(1, . . . , 1, z) are derived in exercises 5.1.3–9 and 11.
The analysis above has assumed that the input file is infinitely long, but

the proof of Theorem K shows that the same probability ap(l1, . . . , lk) would
be obtained in any random input sequence containing at least l1 + · · ·+ lk + P
elements. So the results above are applicable for, say, files of size N > (2k +1)P ,
in view of the small standard deviation.

We will be seeing some applications in which the merging pattern wants
some of the runs to be ascending and some to be descending. Since the residue
accumulated in memory at the end of an ascending run tends to contain numbers
somewhat smaller on the average than random data, a change in the direction
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of ordering decreases the average length of the runs. Consider, for example, a
snowplow that must make a U-turn every time it reaches an end of a straight
road; it will go very speedily over the area just plowed. The run lengths
when directions are reversed vary between 1.5P and 2P for random data (see
exercise 24).

EXERCISES
1. [10 ] What is Step 4, in the example of four-way merging at the beginning of this

section?
2. [12 ] What changes would be made to the tree of Fig. 63 if the key 061 were

replaced by 612?
3. [16 ] (E. F. Moore.) What output is produced by four-way replacement selection

when it is applied to successive words of the following sentence:

fourscore and seven years ago our fathers brought forth
on this continent a new nation conceived in liberty and
dedicated to the proposition that all men are created equal.

(Use ordinary alphabetic order, treating each word as one key.)
4. [16 ] Apply four-way natural selection to the sentence in exercise 3, using a reser-

voir of capacity 4.
5. [00 ] True or false: Replacement selection using a tree works only when P is a

power of 2 or the sum of two powers of 2.
6. [15 ] Algorithm R specifies that P must be ≥ 2; what comparatively small changes

to the algorithm would make it valid for all P ≥ 1?
7. [17 ] What does Algorithm R do when there is no input at all?
8. [20 ] Algorithm R makes use of an artificial key “∞” that must be larger than

any possible key. Show that the algorithm might fail if an actual key were equal to ∞,
and explain how to modify the algorithm in case the implementation of a true ∞ is
inconvenient.

x 9. [23 ] How would you modify Algorithm R so that it causes certain specified runs
(depending on RC) to be output in ascending order, and others in descending order?
10. [26 ] The initial setting of the LOSER pointers in step R1 usually doesn’t correspond
to any actual tournament, since external node P + j may not lie in the subtree below
internal node j. Explain why Algorithm R works anyway. [Hint: Would the algorithm
work if {LOSER(LOC(X[0])), . . . , LOSER(LOC(X[P − 1]))} were set to an arbitrary per-
mutation of {LOC(X[0]), . . . , LOC(X[P − 1])} in step R1?]
11. [M20 ] True or false: The probability that KEY(Q) < LASTKEY in step R4 is
approximately 50%, assuming random input.
12. [M46 ] Carry out a detailed analysis of the number of times each portion of
Algorithm R is executed; for example, how often does step R6 set LOSER← Q?
13. [13 ] Why is the second run produced by replacement selection usually longer than
the first run?

x 14. [HM25 ] Use the snowplow analogy to estimate the average length of the last two
runs produced by replacement selection on a long sequence of input data.
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15. [20 ] True or false: The final run produced by replacement selection never contains
more than P records. Discuss your answer.
16. [M26 ] Find a “simple” necessary and sufficient condition that a file R1 R2 . . . RN

will be completely sorted in one pass by P -way replacement selection. What is the
probability that this happens, as a function of P and N, when the input is a random
permutation of {1, 2, . . . , N}?
17. [20 ] What is output by Algorithm R when the input keys are in decreasing order,
K1 > K2 > · · · > KN ?

x 18. [22 ] What happens if Algorithm R is applied again to an output file that was
produced by Algorithm R?
19. [HM22 ] Use the snowplow analogy to prove that the first run produced by re-
placement selection is approximately (e− 1)P records long.
20. [HM24 ] Approximately how long is the first run produced by natural selection,
when P = P ′?

x 21. [HM23 ] Determine the approximate length of runs produced by natural selection
when P ′ < P .
22. [HM40 ] The purpose of this exercise is to determine the average run length
obtained in natural selection, when P ′ > P . Let κ = k + θ be a real number ≥ 1,
where k = ⌊κ⌋ and θ = κmod 1, and consider the function F (κ) = Fk(θ), where Fk(θ)
is the polynomial defined by the generating function

k≥0

Fk(θ)zk = e−θz/(1− ze1−z).

Thus, F0(θ) = 1, F1(θ) = e− θ, F2(θ) = e2 − e− eθ + 1
2θ

2, etc.
Suppose that a snowplow starts out at time 0 to simulate the process of natural

selection, and suppose that after T units of time exactly P snowflakes have fallen behind
it. At this point a second snowplow begins on the same journey, occupying the same
position at time t+ T as the first snowplow did at time t. Finally, at time κT, exactly
P ′ snowflakes have fallen behind the first snowplow; it instantaneously plows the rest
of the road and disappears.

Using this model to represent the process of natural selection, show that a run
length equal to eθF (κ)P is obtained when

P ′/P = k + 1 + eθ


κF (κ)−

k
j=0

F (κ− j)

.

23. [HM35 ] The preceding exercise analyzes natural selection when the records from
the reservoir are always read in the same order as they were written, first-in-first-
out. Find the approximate run length that would be obtained if the reservoir contents
from the preceding run were read in completely random order, as if the records in the
reservoir had been thoroughly shuffled between runs.
24. [HM39 ] The purpose of this exercise is to analyze the effect caused by haphazardly
changing the direction of runs in replacement selection.

a) Let gP (z1, z2, . . . , zk) be a generating function defined as in Theorem K, but with
each of the k runs specified as to whether it is to be ascending or descending.
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For example, we might say that all odd-numbered runs are ascending, all even-
numbered runs are descending. Show that Theorem K is valid for each of the 2k

generating functions of this type.
b) As a consequence of (a), we may assume that P = 1. We may also assume that the

input is a uniformly distributed sequence of independent random numbers between
0 and 1. Let

a(x, y) =

e1−x − ey−x, if x ≤ y;
e1−x, if x > y.

Given that f(x) dx is the probability that a certain ascending run begins with x,
prove that (

 1
0 a(x, y)f(x) dx) dy is the probability that the following run begins

with y. [Hint: Consider, for each n ≥ 0, the probability that x ≤ X1 ≤ · · · ≤
Xn > y, when x and y are given.]

c) Consider runs that change direction with probability p; in other words, the direc-
tion of each run after the first is randomly chosen to be the same as that of the
previous run, q = (1− p) of the time, but it is to be in the opposite direction p of
the time. (Thus when p = 0, all runs have the same direction; when p = 1, the
runs alternate in direction; and when p = 1

2 , the runs are independently random.)
Let

f1(x) = 1, fn+1(y) = p

 1

0
a(x, y)fn(1− x) dx+ q

 1

0
a(x, y)fn(x) dx.

Show that the probability that the nth run begins with x is fn(x) dx when the
(n− 1)st run is ascending, fn(1− x) dx when the (n− 1)st run is descending.

d) Find a solution f to the steady-state equations

f(y) = p

 1

0
a(x, y)f(1− x) dx+ q

 1

0
a(x, y)f(x) dx,

 1

0
f(x) dx = 1.

[Hint: Show that f ′′(x) is independent of x.]
e) Show that the sequence fn(x) in part (c) converges rather rapidly to the function

f(x) in part (d).
f) Show that the average length of an ascending run starting with x is e1−x.
g) Finally, put all these results together to prove the following theorem: If the

directions of consecutive runs are independently reversed with probability p in
replacement selection, the average run length approaches (6/(3 + p))P .
(The case p = 1 of this theorem was first derived by Knuth [CACM 6 (1963),

685–688]; the case p = 1
2 was first proved by A. G. Konheim in 1970.)

25. [HM40 ] Consider the following procedure:
N1. Read a record into a one-word “reservoir.” Then read another record, R, and

let K be its key.
N2. Output the reservoir, set LASTKEY to its key, and set the reservoir empty.
N3. If K < LASTKEY then output R and set LASTKEY← K and go to N5.
N4. If the reservoir is nonempty, return to N2; otherwise enter R into the reservoir.
N5. Read in a new record, R, and let K be its key. Go to N3.

This is essentially equivalent to natural selection with P = 1 and with P ′ = 1 or 2
(depending on whether you choose to empty the reservoir at the moment it fills or at
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the moment it is about to overfill), except that it produces descending runs, and it
never stops. The latter anomalies are convenient and harmless assumptions for the
purposes of this problem.

Proceeding as in exercise 24, let fn(x, y) dy dx be the probability that x and y are
the respective values of LASTKEY and K just after the nth time step N2 is performed.
Prove that there is a function gn(x) of one variable such that fn(x, y) = gn(x) when
x < y, and fn(x, y) = gn(x)− e−y(gn(x)− gn(y)) when x > y. This function gn(x) is
defined by the relations g1(x) = 1,

gn+1(x) =
 x

0
eugn(u) du+

 x

0
dv (v + 1)

 1

v

du ((ev − 1)gn(u) + gn(v))

+ x

 1

x

dv

 1

v

du ((ev − 1)gn(u) + gn(v)).

Show further that the expected length of the nth run is 1

0
dx

 x

0
dy (gn(x)(ey − 1) + gn(y))(2− 1

2y
2) +

 1

0
dx (1− x)gn(x)ex.

[Note: The steady-state solution to these equations appears to be very complicated;
it has been obtained numerically by J. McKenna, who showed that the run lengths
approach a limiting value≈ 2.61307209. Theorem K does not apply to natural selection,
so the case P = 1 does not carry over to other P .]
26. [M33 ] Considering the algorithm in exercise 25 as a definition of natural selection
when P ′ = 1, find the expected length of the first run when P ′ = r, for any r ≥ 0, as
follows.

a) Show that the first run has length n with probability

(n+ r)

n+ r

n


(n+ r + 1)!.

b) Define “associated Stirling numbers” [[ n
m

]] by the rules 0
m


= δm0,


n

m


= (n+m−1)


n− 1
m


+

n− 1
m− 1


for n > 0.

Prove that 
n+ r

n


=

r
k=0


n+ r

k + r


r

k


.

c) Prove that the average length of the first run is therefore cre− r − 1, where

cr =
r

k=0


r

k


r + k + 1
(r + k)! .

x 27. [HM30 ] (W. Dobosiewicz.) When natural selection is used with P ′ < P , we need
not stop forming a run when the reservoir becomes full; we can store records that do
not belong to the current run in the main priority queue, as in replacement selection,
until only P ′ records of the current run are left. Then we can flush them to the output
and replace them with the reservoir contents.

How much better is this method than the simpler approach analyzed in exercise 21?
28. [25 ] The text considers only the case that all records to be sorted have a fixed size.
How can replacement selection be done reasonably well on variable-length records?
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29. [22 ] Consider the 2k nodes of a complete binary tree that has been right-threaded,
illustrated here when k = 3:

(Compare with 2.3.1–(10); the top node is the list head, and the dotted lines are thread
links. In this exercise we are not concerned with sorting but rather with the structure
of complete binary trees when a list-head-like node 0 has been added above node 1, as
in the “tree of losers,” Fig. 63.)

Show how to assign the 2n+k internal nodes of a large tree of losers onto these
2k host nodes so that (i) every host node holds exactly 2n nodes of the large tree;
(ii) adjacent nodes in the large tree either are assigned to the same host node or to
host nodes that are adjacent (linked); and (iii) no two pairs of adjacent nodes in the
large tree are separated by the same link in the host tree. [Multiple virtual processors
in a large binary tree network can thereby be mapped to actual processors without
undue congestion in the communication links.]
30. [M29 ] Prove that if n ≥ k ≥ 1, the construction in the preceding exercise is
optimum, in the sense that any 2k-node host graph satisfying (i), (ii), and (iii) must
have at least 2k + 2k−1 − 1 edges (links) between nodes.

*5.4.2. The Polyphase Merge
Now that we have seen how initial runs can be built up, we shall consider various
patterns that can be used to distribute them onto tapes and to merge them
together until only a single run remains.

Let us begin by assuming that there are three tape units, T1, T2, and T3,
available; the technique of “balanced merging,” described near the beginning of
Section 5.4, can be used with P = 2 and T = 3, when it takes the following form:
B1. Distribute initial runs alternately on tapes T1 and T2.
B2. Merge runs from T1 and T2 onto T3; then stop if T3 contains only one run.
B3. Copy the runs of T3 alternately onto T1 and T2, then return to B2.
If the initial distribution pass produces S runs, the first merge pass will produce
⌈S/2⌉ runs on T3, the second will produce ⌈S/4⌉, etc. Thus if, say, 17 ≤ S ≤ 32,
we will have 1 distribution pass, 5 merge passes, and 4 copy passes; in general,
if S > 1, the number of passes over all the data is 2⌈lg S⌉.

The copying passes in this procedure are undesirable, since they do not
reduce the number of runs. Half of the copying can be avoided if we use a
two-phase procedure:
A1. Distribute initial runs alternately on tapes T1 and T2.
A2. Merge runs from T1 and T2 onto T3; then stop if T3 contains only one run.
A3. Copy half of the runs from T3 onto T1.
A4. Merge runs from T1 and T3 onto T2; then stop if T2 contains only one run.
A5. Copy half of the runs from T2 onto T1. Return to A2.
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The number of passes over the data has been reduced to 3
2⌈lg S⌉+ 1

2 , since steps
A3 and A5 do only “half a pass”; about 25 percent of the time has therefore
been saved.

The copying can actually be eliminated entirely, if we start with Fn runs
on T1 and Fn−1 runs on T2, where Fn and Fn−1 are consecutive Fibonacci
numbers. Consider, for example, the case n = 7, S = Fn + Fn−1 = 13 + 8 = 21:
Phase Contents of T1 Contents of T2 Contents of T3 Remarks

1 1,1,1,1,1,1,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1 Initial distribution
2 1,1,1,1,1 — 2,2,2,2,2,2,2,2 Merge 8 runs to T3
3 — 3,3,3,3,3 2,2,2 Merge 5 runs to T2
4 5,5,5 3,3 — Merge 3 runs to T1
5 5 — 8,8 Merge 2 runs to T3
6 — 13 8 Merge 1 run to T2
7 21 — — Merge 1 run to T1

Here, for example, “2,2,2,2,2,2,2,2” denotes eight runs of relative length 2, con-
sidering each initial run to be of relative length 1. Fibonacci numbers are
omnipresent in this chart!

Only phases 1 and 7 are complete passes over the data; phase 2 processes
only 16/21 of the initial runs, phase 3 only 15/21, etc., and so the total number
of “passes” comes to (21 + 16 + 15 + 15 + 16 + 13 + 21)/21 = 5 4

7 if we assume
that the initial runs have approximately equal length. By comparison, the two-
phase procedure above would have required 8 passes to sort these 21 initial runs.
We shall see that in general this “Fibonacci” pattern requires approximately
1.04 lg S + 0.99 passes, making it competitive with a four-tape balanced merge
although it requires only three tapes.

The same idea can be generalized to T tapes, for any T ≥ 3, using (T − 1)-
way merging. We shall see, for example, that the four-tape case requires only
about .703 lg S + 0.96 passes over the data. The generalized pattern involves
generalized Fibonacci numbers. Consider the following six-tape example:

Phase T1 T2 T3 T4 T5 T6 Initial runs processed
1 131 130 128 124 116 — 31 + 30 + 28 + 24 + 16 = 129
2 115 114 112 18 — 516 16× 5 = 80
3 17 16 14 — 98 58 8× 9 = 72
4 13 12 — 174 94 54 4× 17 = 68
5 11 — 332 172 92 52 2× 33 = 66
6 — 651 331 171 91 51 1× 65 = 65
7 1291 — — — — — 1× 129 = 129

Here 131 stands for 31 runs of relative length 1, etc.; five-way merges have
been used throughout. This general pattern was developed by R. L. Gilstad
[Proc. Eastern Joint Computer Conf. 18 (1960), 143–148], who called it the
polyphase merge. The three-tape case had been discovered earlier by B. K. Betz
[unpublished memorandum, Minneapolis–Honeywell Regulator Co. (1956)].

In order to make polyphase merging work as in the examples above, we
need to have a “perfect Fibonacci distribution” of runs on the tapes after each
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phase. By reading the table above from bottom to top, we can see that the first
seven perfect Fibonacci distributions when T = 6 are {1, 0, 0, 0, 0}, {1, 1, 1, 1, 1},
{2, 2, 2, 2, 1}, {4, 4, 4, 3, 2}, {8,8,7, 6, 4}, {16,15, 14, 12, 8}, and {31, 30,28, 24, 16}.
The big questions now facing us are

1. What is the rule underlying these perfect Fibonacci distributions?
2. What do we do if S does not correspond to a perfect Fibonacci distribution?
3. How should we design the initial distribution pass so that it produces the

desired configuration on the tapes?
4. How many “passes” over the data will a T -tape polyphase merge require, as

a function of S (the number of initial runs)?
We shall discuss these four questions in turn, first giving “easy answers” and
then making a more intensive analysis.

The perfect Fibonacci distributions can be obtained by running the pattern
backwards, cyclically rotating the tape contents. For example, when T = 6 we
have the following distribution of runs:

Final output
Level T1 T2 T3 T4 T5 Total will be on

0 1 0 0 0 0 1 T1
1 1 1 1 1 1 5 T6
2 2 2 2 2 1 9 T5
3 4 4 4 3 2 17 T4
4 8 8 7 6 4 33 T3
5 16 15 14 12 8 65 T2
6 31 30 28 24 16 129 T1
7 61 59 55 47 31 253 T6
8 120 116 108 92 61 497 T5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n an bn cn dn en tn T(k)

n+ 1 an + bn an + cn an + dn an + en an tn + 4an T(k − 1) (1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Tape T6 will always be empty after the initial distribution.)
The rule for going from level n to level n + 1 shows that the condition

an ≥ bn ≥ cn ≥ dn ≥ en (2)

will hold in every level. In fact, it is easy to see from (1) that

en = an−1,

dn = an−1 + en−1 = an−1 + an−2,

cn = an−1 + dn−1 = an−1 + an−2 + an−3,

bn = an−1 + cn−1 = an−1 + an−2 + an−3 + an−4,

an = an−1 + bn−1 = an−1 + an−2 + an−3 + an−4 + an−5,

(3)

where a0 = 1 and where we let an = 0 for n = −1, −2, −3, −4.
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The pth-order Fibonacci numbers F
(p)
n are defined by the rules

F (p)
n = F

(p)
n−1 + F

(p)
n−2 + · · ·+ F

(p)
n−p, for n ≥ p;

F (p)
n = 0, for 0 ≤ n ≤ p − 2; F

(p)
p−1 = 1.

(4)

In other words, we start with p− 1 0s, then 1, and then each number is the sum
of the preceding p values. When p = 2, this is the usual Fibonacci sequence,
and when p = 3 it has been called the Tribonacci sequence. Such sequences were
apparently first studied for p > 2 by Nārāyan. a Pan.d. ita in 1356 [see P. Singh,
Historia Mathematica 12 (1985), 229–244], then many years later by V. Schlegel
in El Progreso Matemático 4 (1894), 173–174. Schlegel derived the generating
function 

n≥0
F (p)
n zn = zp−1

1− z − z2 − · · · − zp
= zp−1 − zp

1− 2z + zp+1 . (5)

The last equation of (3) shows that the number of runs on T1 during a six-tape
polyphase merge is a fifth-order Fibonacci number: an = F

(5)
n+4.

In general, if we set P = T−1, the polyphase merge distributions for T tapes
will correspond to P th order Fibonacci numbers in the same way. The kth tape
gets

F
(P )
n+P−2 + F

(P )
n+P−3 + · · ·+ F

(P )
n+k−2

initial runs in the perfect nth level distribution, for 1 ≤ k ≤ P , and the total
number of initial runs on all tapes is therefore

tn = PF
(P )
n+P−2 + (P − 1)F

(P )
n+P−3 + · · ·+ F

(P )
n−1. (6)

This settles the issue of “perfect Fibonacci distributions.” But what should
we do if S is not exactly equal to tn, for any n? And how do we get the runs
onto the tapes in the first place?

When S isn’t perfect (and so few values are), we can do just as we did in
balanced P -way merging, adding artificial “dummy runs” so that we can pretend
S is perfect after all. There are several ways to add the dummy runs, and we
aren’t ready yet to analyze the “best” way of doing this. We shall discuss first
a method of distribution and dummy-run assignment that isn’t strictly optimal,
although it has the virtue of simplicity and appears to be better than all other
equally simple methods.

Algorithm D (Polyphase merge sorting with “horizontal” distribution). This
algorithm takes initial runs and disperses them to tapes, one run at a time, until
the supply of initial runs is exhausted. Then it specifies how the tapes are to
be merged, assuming that there are T = P + 1 ≥ 3 available tape units, using
P -way merging. Tape T may be used to hold the input, since it does not receive
any initial runs. The following tables are maintained:

A[j], 1 ≤ j ≤ T : The perfect Fibonacci distribution we are striving for.
D[j], 1 ≤ j ≤ T : Number of dummy runs assumed to be present at the

beginning of logical tape unit number j.
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D1. Initialize

D2. Input
to tape j

D3. Advance j D4. Up a level

D5. Merge D6. Down a level

Input complete

Sorting complete

D≡0

Fig. 68. Polyphase merge sorting.

TAPE[j], 1 ≤ j ≤ T : Number of the physical tape unit corresponding to logical
tape unit number j.

(It is convenient to deal with “logical tape unit numbers” whose assignment to
physical tape units varies as the algorithm proceeds.)

D1. [Initialize.] Set A[j] ← D[j] ← 1 and TAPE[j] ← j, for 1 ≤ j < T. Set
A[T]← D[T]← 0 and TAPE[T]← T. Then set l← 1, j ← 1.

D2. [Input to tape j.] Write one run on tape number j, and decrease D[j] by 1.
Then if the input is exhausted, rewind all the tapes and go to step D5.

D3. [Advance j.] If D[j] < D[j + 1], increase j by 1 and return to D2. Other-
wise if D[j] = 0, go on to D4. Otherwise set j ← 1 and return to D2.

D4. [Up a level.] Set l ← l + 1, a ← A[1], and then for j = 1, 2, . . . , P (in
this order) set D[j] ← a + A[j + 1] − A[j] and A[j] ← a + A[j + 1].
(See (1) and note that A[P + 1] is always zero. At this point we will have
D[1] ≥ D[2] ≥ · · · ≥ D[T].) Now set j ← 1 and return to D2.

D5. [Merge.] If l = 0, sorting is complete and the output is on TAPE[1]. Other-
wise, merge runs from TAPE[1], . . . , TAPE[P] onto TAPE[T] until TAPE[P]
is empty and D[P] = 0. The merging process should operate as follows,
for each run merged: If D[j] > 0 for all j, 1 ≤ j ≤ P , then increase D[T]
by 1 and decrease each D[j] by 1 for 1 ≤ j ≤ P ; otherwise merge one run
from each TAPE[j] such that D[j] = 0, and decrease D[j] by 1 for each
other j. (Thus the dummy runs are imagined to be at the beginning of the
tape instead of at the ending.)

D6. [Down a level.] Set l← l−1. Rewind TAPE[P] and TAPE[T]. (Actually the
rewinding of TAPE[P] could have been initiated during step D5, just after
its last block was input.) Then set (TAPE[1], TAPE[2], . . . , TAPE[T]) ←
(TAPE[T], TAPE[1], . . . , TAPE[T − 1]), (D[1], D[2], . . . , D[T]) ← (D[T],
D[1], . . . , D[T − 1]), and return to step D5.
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Fig. 69. The order in which runs 34 through 65 are
distributed to tapes, when advancing from level 4 to
level 5. (See the table of perfect distributions, Eq. (1).)
Shaded areas represent the first 33 runs that were dis-
tributed when level 4 was reached. The bottom row
corresponds to the beginning of each tape.
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The distribution rule that is stated so succinctly in step D3 of this algorithm
is intended to equalize the number of dummies on each tape as well as possible.
Figure 69 illustrates the order of distribution when we go from level 4 (33 runs)
to level 5 (65 runs) in a six-tape sort; if there were only, say, 53 initial runs,
all runs numbered 54 and higher would be treated as dummies. (The runs are
actually being written at the end of the tape, but it is best to imagine them being
written at the beginning, since the dummies are assumed to be at the beginning.)

We have now discussed the first three questions listed above, and it remains
to consider the number of “passes” over the data. Comparing our six-tape
example to the table (1), we see that the total number of initial runs processed
when S = t6 was a5t1 + a4t2 + a3t3 + a2t4 + a1t5 + a0t6, excluding the initial
distribution pass. Exercise 4 derives the generating functions

a(z) =

n≥0

anzn = 1
1− z − z2 − z3 − z4 − z5 ,

t(z) =

n≥1

tnzn = 5z + 4z2 + 3z3 + 2z4 + z5

1− z − z2 − z3 − z4 − z5 .
(7)

It follows that, in general, the number of initial runs processed when S = tn
is exactly the coefficient of zn in a(z) t(z), plus tn (for the initial distribution
pass). This makes it possible to calculate the asymptotic behavior of polyphase
merging, as shown in exercises 5 through 7, and we obtain the following results:

Table 1
APPROXIMATE BEHAVIOR OF POLYPHASE MERGE SORTING

Tapes Phases Passes Pass/phase Growth ratio

3 2.078 lnS + 0.672 1.504 lnS + 0.992 72% 1.6180340
4 1.641 lnS + 0.364 1.015 lnS + 0.965 62% 1.8392868
5 1.524 lnS + 0.078 0.863 lnS + 0.921 57% 1.9275620
6 1.479 lnS − 0.185 0.795 lnS + 0.864 54% 1.9659482
7 1.460 lnS − 0.424 0.762 lnS + 0.797 52% 1.9835828
8 1.451 lnS − 0.642 0.744 lnS + 0.723 51% 1.9919642

10 1.445 lnS − 1.017 0.728 lnS + 0.568 50% 1.9980295
20 1.443 lnS − 2.170 0.721 lnS − 0.030 50% 1.9999981
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In Table 1, the “growth ratio” is limn→∞ tn+1/tn, the approximate factor by
which the number of runs increases at each level. “Passes” denotes the average
number of times each record is processed, namely 1/S times the total number
of initial runs processed during the distribution and merge phases. The stated
number of passes and phases is correct in each case up to O(S−ϵ), for some ϵ > 0,
for perfect distributions as S →∞.

Figure 70 shows the average number of times each record is merged, as
a function of S, when Algorithm D is used to handle the case of nonperfect
numbers. Note that with three tapes there are “peaks” of relative inefficiency
occurring just after the perfect distributions, but this phenomenon largely dis-
appears when there are four or more tapes. The use of eight or more tapes gives
comparatively little improvement over six or seven tapes.
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Fig. 70. Efficiency of polyphase merge using Algorithm D.

A closer look. In a balanced merge requiring k passes, every record is processed
exactly k times during the course of the sort. But the polyphase procedure does
not have this lack of bias; some records may get processed many more times
than others, and we can gain speed if we arrange to put dummy runs into the
oft-processed positions.
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Let us therefore study the polyphase distribution more closely; instead of
merely looking at the number of runs on each tape, as in (1), let us associate
with each run its merge number, the number of times it will be processed during
the complete polyphase sort. We get the following table in place of (1):
Level T1 T2 T3 T4 T5

0 0 — — — —
1 1 1 1 1 1
2 21 21 21 21 2
3 3221 3221 3221 322 32
4 43323221 43323221 4332322 433232 4332
5 5443433243323221 544343324332322 54434332433232 544343324332 54434332

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n An Bn Cn Dn En

n+ 1 (An + 1)Bn (An + 1)Cn (An + 1)Dn (An + 1)En An + 1 (8)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here An is a string of an values representing the merge numbers for each run
on T1, if we begin with the level n distribution; Bn is the corresponding string
for T2; etc. The notation “(An + 1)Bn” means “An with all values increased
by 1, followed by Bn.”

Figure 71(a) shows A5, B5, C5, D5, E5 tipped on end, showing how the
merge numbers for each run appear on tape; notice, for example, that the run at
the beginning of each tape will be processed five times, while the run at the end
of T1 will be processed only once. This discriminatory practice of the polyphase
merge makes it much better to put a dummy run at the beginning of the tape
than at the end. Figure 71(b) shows an optimum order in which to distribute runs
for a five-level polyphase merge, placing each new run into a position with the
smallest available merge number. Algorithm D is not quite as good (see Fig. 69),
since it fills some “4” positions before all of the “3” positions are used up.
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Fig. 71. Analysis of the fifth-level polyphase distribution for six tapes: (a) merge
numbers, (b) optimum distribution order.
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The recurrence relations (8) show that each of Bn, Cn, Dn, and En are
initial substrings of An. In fact, we can use (8) to derive the formulas

En = (An−1) + 1,

Dn = (An−1An−2) + 1,

Cn = (An−1An−2An−3) + 1,

Bn = (An−1An−2An−3An−4) + 1,

An = (An−1An−2An−3An−4An−5) + 1,

(9)

generalizing Eqs. (3), which treated only the lengths of these strings. Further-
more, the rule defining the A’s implies that essentially the same structure is
present at the beginning of every level; we have

An = n−Qn, (10)

where Qn is a string of an values defined by the law

Qn = Qn−1(Qn−2 + 1)(Qn−3 + 2)(Qn−4 + 3)(Qn−5 + 4), for n ≥ 1;
Q0 = 0; Qn = ϵ (the empty string) for n < 0. (11)

Since Qn begins with Qn−1, we can consider the infinite string Q∞, whose first
an elements are equal to Qn; this string Q∞ essentially characterizes all the
merge numbers in polyphase distribution. In the six-tape case,

Q∞ = 011212231223233412232334233434412232334233434452334344534454512232 · · · .
(12)

Exercise 11 contains an interesting interpretation of this string.

Given that An is the string m1m2 . . . man
, let

An(x) = xm1 + xm2 + · · ·+ xman

be the corresponding generating function that counts the number of times each
merge number appears; and define Bn(x), Cn(x), Dn(x), En(x) similarly. For
example, A4(x) = x4 + x3 + x3 + x2 + x3 + x2 + x2 + x = x4 + 3x3 + 3x2 + x.
Relations (9) tell us that

En(x) = x

An−1(x)


,

Dn(x) = x

An−1(x) + An−2(x)


,

Cn(x) = x

An−1(x) + An−2(x) + An−3(x)


,

Bn(x) = x

An−1(x) + An−2(x) + An−3(x) + An−4(x)


,

An(x) = x

An−1(x) + An−2(x) + An−3(x) + An−4(x) + An−5(x)


,

(13)

for n ≥ 1, where A0(x) = 1 and An(x) = 0 for n = −1, −2, −3, −4. Hence
n≥0

An(x)zn = 1
1− x(z + z2 + z3 + z4 + z5) =


k≥0

xk(z + z2 + z3 + z4 + z5)k.
(14)
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Considering the runs on all tapes, we let

Tn(x) = An(x) + Bn(x) + Cn(x) + Dn(x) + En(x), n ≥ 1; (15)

from (13) we immediately have

Tn(x) = 5An−1(x) + 4An−2(x) + 3An−3(x) + 2An−4(x) + An−5(x),
hence 

n≥1
Tn(x)zn = x(5z + 4z2 + 3z3 + 2z4 + z5)

1− x(z + z2 + z3 + z4 + z5) . (16)

The form of (16) shows that it is easy to compute the coefficients of Tn(x):

z z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14

x 5 4 3 2 1 0 0 0 0 0 0 0 0 0
x2 0 5 9 12 14 15 10 6 3 1 0 0 0 0
x3 0 0 5 14 26 40 55 60 57 48 35 20 10 4 (17)
x4 0 0 0 5 19 45 85 140 195 238 260 255 220 170
x5 0 0 0 0 5 24 69 154 294 484 703 918 1088 1168

The columns of this tableau give Tn(x); for example, T4(x) = 2x + 12x2 +
14x3 + 5x4. After the first row, each entry in the tableau is the sum of the five
entries just above and to the left in the previous row.

The number of runs in a “perfect” nth level distribution is Tn(1), and the
total amount of processing as these runs are merged is the derivative, T ′

n(1).
Now 

n≥1
T ′
n(x)zn = 5z + 4z2 + 3z3 + 2z4 + z5

1− x(z + z2 + z3 + z4 + z5)


2 ; (18)

setting x = 1 in (16) and (18) gives a result in agreement with our earlier
demonstration that the merge processing for a perfect nth level distribution is
the coefficient of zn in a(z)t(z); see (7).

We can use the functions Tn(x) to determine the work involved when dummy
runs are added in an optimum way. Let Σn(m) be the sum of the smallest m
merge numbers in an nth level distribution. These values are readily calculated
by looking at the columns of (17), and we find that Σn(m) is given by

m = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

n = 1 1 2 3 4 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
n = 2 1 2 3 4 6 8 10 12 14 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
n = 3 1 2 3 5 7 9 11 13 15 17 19 21 24 27 30 33 36 ∞ ∞ ∞ ∞
n = 4 1 2 4 6 8 10 12 14 16 18 20 22 24 26 29 32 35 38 41 44 47
n = 5 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 32 35 38 41 44 47
n = 6 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 33 36 39 42 45 48
n = 7 2 4 6 8 10 12 14 16 18 20 23 26 29 32 35 38 41 44 47 50 53

(19)

For example, if we wish to sort 17 runs using a level-3 distribution, the total
amount of processing is Σ3(17) = 36; but if we use a level-4 or level-5 distribution
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Table 2
NUMBER OF RUNS FOR WHICH A GIVEN LEVEL IS OPTIMUM

Level T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10
1 2 2 2 2 2 2 2 2 M1
2 3 4 5 6 7 8 9 10 M2
3 4 6 8 10 12 14 16 18 M3
4 6 10 14 14 17 20 23 26 M4
5 9 18 23 29 20 24 28 32 M5
6 14 32 35 43 53 27 32 37 M6
7 22 55 76 61 73 88 35 41 M7
8 35 96 109 154 98 115 136 44 M8
9 56 173 244 216 283 148 171 199 M9

10 90 280 359 269 386 168 213 243 M10
11 145 535 456 779 481 640 240 295 M11
12 234 820 1197 1034 555 792 1002 330 M12
13 378 1635 1563 1249 1996 922 1228 1499 M13
14 611 2401 4034 3910 2486 1017 1432 1818 M14
15 988 4959 5379 4970 2901 4397 1598 2116 M15
16 1598 7029 6456 5841 10578 5251 1713 2374 M16
17 2574 14953 18561 19409 13097 5979 8683 2576 M17
18 3955 20583 22876 23918 15336 6499 10069 2709 M18
19 6528 44899 64189 27557 17029 30164 11259 15787 M19

and position the dummy runs optimally, the total amount of processing during
the merge phases is only Σ4(17) = Σ5(17) = 35. It is better to use level 4, even
though 17 corresponds to a “perfect” level-3 distribution! Indeed, as S gets large
it turns out that the optimum number of levels is many more than that used in
Algorithm D.

Exercise 14 proves that there is a nondecreasing sequence of numbers Mn

such that level n is optimum for Mn ≤ S < Mn+1, but not for S ≥ Mn+1. In
the six-tape case the table of Σn(m) we have just calculated shows that

M0 = 0, M1 = 2, M2 = 6, M3 = 10, M4 = 14.

The discussion above treats only the case of six tapes, but it is clear that the
same ideas apply to polyphase merging with T tapes for any T ≥ 3; we simply
replace 5 by P = T − 1 in all appropriate places. Table 2 shows the sequences
Mn obtained for various values of T. Table 3 and Fig. 72 indicate the total
number of initial runs that are processed after making an optimum distribution
of dummy runs. (The formulas that appear at the bottom of Table 3 should
be taken with a grain of salt, since they are least-squares fits over the range
1 ≤ S ≤ 5000, or 1 ≤ S ≤ 10000 for T = 3; this leads to somewhat erratic
behavior because the given range of S values is not equally favorable for all T.
As S → ∞, the number of initial runs processed after an optimum polyphase
distribution is asymptotically S logP S, but convergence to this asymptotic limit
is extremely slow.)
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Fig. 72. Efficiency of polyphase merge with optimum initial distribution, using the
same assumptions as Fig. 70.

Table 3
INITIAL RUNS PROCESSED DURING AN OPTIMUM POLYPHASE MERGE

S T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10
10 36 24 19 17 15 14 13 12
20 90 60 49 44 38 36 34 33
50 294 194 158 135 128 121 113 104

100 702 454 362 325 285 271 263 254
500 4641 3041 2430 2163 1904 1816 1734 1632

1000 10371 6680 5430 4672 4347 3872 3739 3632
5000 63578 41286 32905 28620 26426 23880 23114 22073

S


(1.51

(−.11
0.951
+.14

0.761
+.16

0.656
+.19

0.589
+.21

0.548
+.20

0.539
+.02

0.488)× S lnS +
+.18)× S

Table 4 shows how the distribution method of Algorithm D compares with
the results of optimum distribution in Table 3. It is clear that Algorithm D is
not very close to the optimum when S and T become large; but it is not clear
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Table 4
INITIAL RUNS PROCESSED DURING THE STANDARD POLYPHASE MERGE

S T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10
10 36 24 19 17 15 14 13 12
20 90 62 49 44 41 37 34 33
50 294 194 167 143 134 131 120 114

100 714 459 393 339 319 312 292 277
500 4708 3114 2599 2416 2191 2100 2047 2025

1000 10730 6920 5774 5370 4913 4716 4597 4552
5000 64740 43210 36497 32781 31442 29533 28817 28080

how to do much better than Algorithm D without considerable complication in
such cases, especially if we do not know S in advance. Fortunately, we rarely
have to worry about large S (see Section 5.4.6), so Algorithm D is not too bad
in practice; in fact, it’s pretty good.

Polyphase sorting was first analyzed mathematically by W. C. Carter [Proc.
IFIP Congress (1962), 62–66]. Many of the results stated above about optimal
dummy run placement are due originally to B. Sackman and T. Singer [“A vector
model for merge sort analysis,” an unpublished paper presented at the ACM Sort
Symposium (November 1962), 21 pages]. Sackman later suggested the horizontal
method of distribution used in Algorithm D. Donald Shell [CACM 14 (1971),
713–719; 15 (1972), 28] developed the theory independently, noted relation (10),
and made a detailed study of several different distribution algorithms. Further
instructive developments and refinements have been made by Derek A. Zave
[SICOMP 6 (1977), 1–39]; some of Zave’s results are discussed in exercises 15
through 17. The generating function (16) was first investigated by W. Burge
[Proc. IFIP Congress (1971), 1, 454–459].

But what about rewind time? So far we have taken “initial runs processed”
as the sole measure of efficiency for comparing tape merge strategies. But after
each of phases 2 through 6, in the examples at the beginning of this section,
it is necessary for the computer to wait for two tapes to rewind; both the
previous output tape and the new current output tape must be repositioned at
the beginning, before the next phase can proceed. This can cause a significant
delay, since the previous output tape generally contains a significant percentage
of the records being sorted (see the “pass/phase” column in Table 1). It is
a shame to have the computer twiddling its thumbs during all these rewind
operations, since useful work could be done with the other tapes if we used a
different merging pattern.

A simple modification of the polyphase procedure will overcome this prob-
lem, although it requires at least five tapes [see Y. Césari, Thesis, U. of Paris
(1968), 25–27, where the idea is credited to J. Caron]. Each phase in Caron’s
scheme merges runs from T − 3 tapes onto another tape, while the remaining
two tapes are rewinding.
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For example, consider the case of six tapes and 49 initial runs. In the
following tableau, R denotes rewinding during the phase, and T5 is assumed to
contain the original input:

Phase T1 T2 T3 T4 T5 T6 Write time Rewind time
1 111 117 113 18 — (R) 49 17
2 (R) 19 15 — R 38 8× 3 = 24 49− 17 = 32
3 16 14 — R 35 R 5× 3 = 15 max(8, 24)
4 12 — R 54 R 34 4× 5 = 20 max(13, 15)
5 — R 72 R 33 32 2× 7 = 14 max(17, 20)
6 R 112 R 52 31 — 2× 11 = 22 max(11, 14)
7 151 R 71 51 — R 1× 15 = 15 max(22, 24)
8 R 111 70 — R 231 1× 23 = 23 max(15, 15)
9 151 111 — R 330 R 0× 33 = 0 max(20, 23)

10 (150) — R 491 (R) (230) 1× 49 = 49 14

Here all the rewind time is essentially overlapped, except in phase 9 (a “dummy
phase” that prepares for the final merge), and after the initial distribution phase
(when all tapes are rewound). If t is the time to merge the number of records in
one initial run, and if r is the time to rewind over one initial run, this process
takes about 182t+40r plus the time for initial distribution and final rewind. The
corresponding figures for standard polyphase using Algorithm D are 140t+104r,
which is slightly worse when r = 3

4 t, slightly better when r = 1
2 t.

Everything we have said about standard polyphase can be adapted to Caron’s
polyphase; for example, the sequence an now satisfies the recurrence

an = an−2 + an−3 + an−4 (20)

instead of (3). The reader will find it instructive to analyze this method in the
same way we analyzed standard polyphase, since it will enhance an understand-
ing of both methods. (See, for example, exercises 19 and 20.)

Table 5 gives statistics about Polyphase Caron that are analogous to the
facts about Polyphase Ordinaire in Table 1. Notice that Caron’s method actually
becomes superior to polyphase on eight or more tapes, in the number of runs
processed as well as in the rewind time, even though it does (T −3)-way merging
instead of (T − 1)-way merging!

Table 5
APPROXIMATE BEHAVIOR OF CARON’S POLYPHASE MERGE SORTING

Tapes Phases Passes Pass/phase Growth ratio

5 3.556 lnS + 0.158 1.463 lnS + 1.016 41% 1.3247180
6 2.616 lnS − 0.166 0.951 lnS + 1.014 36% 1.4655712
7 2.337 lnS − 0.472 0.781 lnS + 1.001 33% 1.5341577
8 2.216 lnS − 0.762 0.699 lnS + 0.980 32% 1.5701473
9 2.156 lnS − 1.034 0.654 lnS + 0.954 30% 1.5900054

10 2.124 lnS − 1.290 0.626 lnS + 0.922 29% 1.6013473
20 2.078 lnS − 3.093 0.575 lnS + 0.524 28% 1.6179086
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This may seem paradoxical until we realize that a high order of merge does
not necessarily imply an efficient sort. As an extreme example, consider placing
one run on T1 and n runs on T2, T3, T4, T5; if we alternately do five-way
merging to T6 and T1 until T2, T3, T4, T5 are empty, the processing time is
(2n2 + 3n) initial run lengths, essentially proportional to S2 instead of S log S,
although five-way merging was done throughout.

Tape splitting. Efficient overlapping of rewind time is a problem that arises
in many applications, not just sorting, and there is a general approach that can
often be used. Consider an iterative process that uses two tapes in the following
way:

T1 T2
Phase 1 Output 1 —

Rewind —
Phase 2 Input 1 Output 2

Rewind Rewind
Phase 3 Output 3 Input 2

Rewind Rewind
Phase 4 Input 3 Output 4

Rewind Rewind
and so on, where “Output k” means write the kth output file and “Input k”
means read it. The rewind time can be avoided when three tapes are used, as
suggested by C. Weisert [CACM 5 (1962), 102]:

T1 T2 T3
Phase 1 Output 1.1 — —

Output 1.2 — —
Rewind Output 1.3 —

Phase 2 Input 1.1 Output 2.1 —
Input 1.2 Rewind Output 2.2
Rewind Input 1.3 Output 2.3

Phase 3 Output 3.1 Input 2.1 Rewind
Output 3.2 Rewind Input 2.2
Rewind Output 3.3 Input 2.3

Phase 4 Input 3.1 Output 4.1 Rewind
Input 3.2 Rewind Output 4.2
Rewind Input 3.3 Output 4.3

and so on. Here “Output k.j” means write the jth third of the kth output
file, and “Input k.j” means read it. Virtually all of the rewind time will be
eliminated if rewinding is at least twice as fast as the read/write speed. Such a
procedure, in which the output of each phase is divided between tapes, is called
“tape splitting.”
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R. L. McAllester [CACM 7 (1964), 158–159] has shown that tape splitting
leads to an efficient way of overlapping the rewind time in a polyphase merge.
His method can be used with four or more tapes, and it does (T−2)-way merging.

Assuming once again that we have six tapes, let us try to design a merge
pattern that operates as follows, splitting the output on each level, where “I”,
“O”, and “R”, respectively, denote input, output, and rewinding:

Level T1 T2 T3 T4 T5 T6 Number of runs output
7 I I I I R O u7

I I I I O R v7

6 I I I R O I u6
I I I O R I v6

5 I I R O I I u5
I I O R I I v5

4 I R O I I I u4
I O R I I I v4

3 R O I I I I u3
O R I I I I v3

2 O I I I I R u2
R I I I I O v2

1 I I I I R O u1
I I I I O R v1

0 I I I R O I u0
I I I O R I v0 (21)

In order to end with one run on T4 and all other tapes empty, we need to have

v0 = 1,

u0 + v1 = 0,

u1 + v2 = u0 + v0,

u2 + v3 = u1 + v1 + u0 + v0,

u3 + v4 = u2 + v2 + u1 + v1 + u0 + v0,

u4 + v5 = u3 + v3 + u2 + v2 + u1 + v1 + u0 + v0,

u5 + v6 = u4 + v4 + u3 + v3 + u2 + v2 + u1 + v1,

etc.; in general, the requirement is that

un + vn+1 = un−1 + vn−1 + un−2 + vn−2 + un−3 + vn−3 + un−4 + vn−4 (22)

for all n ≥ 0, if we regard uj = vj = 0 for all j < 0.
There is no unique solution to these equations; indeed, if we let all the u’s be

zero, we get the usual polyphase merge with one tape wasted! But if we choose
un ≈ vn+1, the rewind time will be satisfactorily overlapped.

McAllester suggested taking

un = vn−1 + vn−2 + vn−3 + vn−4,

vn+1 = un−1 + un−2 + un−3 + un−4,
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so that the sequence

⟨x0, x1, x2, x3, x4, x5, . . . ⟩ = ⟨v0, u0, v1, u1, v2, u2, . . . ⟩

satisfies the uniform recurrence xn = xn−3 + xn−5 + xn−7 + xn−9. However, it
turns out to be better to let

vn+1 = un−1 + vn−1 + un−2 + vn−2,

un = un−3 + vn−3 + un−4 + vn−4;
(23)

this sequence not only leads to a slightly better merging time, it also has the
great virtue that its merging time can be analyzed mathematically. McAllester’s
choice is extremely difficult to analyze because runs of different lengths may
occur during a single phase; we shall see that this does not happen with (23).

We can deduce the number of runs on each tape on each level by working
backwards in the pattern (21), and we obtain the following sorting scheme:
Level T1 T2 T3 T4 T5 T6 Write time Rewind time

123 121 117 110 — 111 82 23
7 119 117 113 16 R 11144 4× 4 = 16 82− 23

113 111 17 — 46 R 6× 4 = 24 27
6 110 18 14 R 49 1844 3× 4 = 12 10

16 14 — 44 R 1444 4× 4 = 16 36
5 15 13 R 4471 48 1344 1× 7 = 7 17

12 — 73 R 45 44 3× 7 = 21 23
4 11 R 73131 4371 44 43 1× 13 = 13 21

— 131 R 4271 43 42 1× 13 = 13 34
3 R 131191 72131 4171 42 41 1× 19 = 19 23

191 R 71131 71 41 — 1× 19 = 19 32
2 191310 131191 71131 71 41 R 0× 31 = 0 27

R 130191 131 70 — 311 1× 31 = 31 19
1 191310 130191 131 70 R 311520 0× 52 = 0

191310 191 131 — 520 R 0× 52 = 0


max(36, 31, 23)

0 191310 191 131 R 520820 311520 0× 82 = 0
(310) (190) — 821 (R) (310520) 1× 82 = 82 0

Unoverlapped rewinding occurs in three places: when the input tape T5 is being
rewound (82 units), during the first half of the level 2 phase (27 units), and
during the final “dummy merge” phases in levels 1 and 0 (36 units). So we may
estimate the time as 273t + 145r; the corresponding amount for Algorithm D,
268t + 208r, is almost always inferior.

Exercise 23 proves that the run lengths output during each phase are suc-
cessively

4, 4, 7, 13, 19, 31, 52, 82, 133, . . . , (24)
a sequence ⟨t1, t2, t3, . . . ⟩ satisfying the law

tn = tn−2 + 2tn−3 + tn−4 (25)

if we regard tn = 1 for n ≤ 0. We can also analyze the optimum placement
of dummy runs, by looking at strings of merge numbers as we did for standard
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polyphase in Eq. (8): Final
Level T1 T2 T3 T4 T6 output on

1 1 1 1 1 — T5
2 1 1 1 — 1 T4
3 21 21 2 2 1 T3
4 2221 222 222 22 2 T2
5 23222 23222 2322 23 222 T1
6 333323222 33332322 333323 3333 2322 T6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n An Bn Cn Dn En T(k)
n+1 (A′′

nEn+1)Bn (A′′
nEn+1)Cn (A′′

nEn+1)Dn A′′
nEn+1 A′

n T(k−1) (26)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where An = A′
nA′′

n, and A′′
n consists of the last un merge numbers of An. The rule

above for going from level n to level n+1 is valid for any scheme satisfying (22).
When we define the u’s and v’s by (23), the strings An, . . . , En can be expressed
in the following rather simple way analogous to (9):

An = (Wn−1Wn−2Wn−3Wn−4) + 1,

Bn = (Wn−1Wn−2Wn−3) + 1,

Cn = (Wn−1Wn−2) + 1,

Dn = (Wn−1) + 1,

En = (Wn−2Wn−3) + 1, (27)

where
Wn = (Wn−3Wn−4Wn−2Wn−3) + 1 for n > 0,

W0 = 0, and Wn = ϵ for n < 0.
(28)

From these relations it is easy to make a detailed analysis of the six-tape case.
In general, when there are T ≥ 5 tapes, we let P = T − 2, and we define the

sequences ⟨un⟩, ⟨vn⟩ by the rules

vn+1 = un−1 + vn−1 + · · ·+ un−r + vn−r,

un = un−r−1 + vn−r−1 + · · ·+ un−P + vn−P , for n ≥ 0,
(29)

where r = ⌊P/2⌋; v0 = 1, and un = vn = 0 for n < 0. So if wn = un+vn, we have

wn = wn−2 + · · ·+ wn−r + 2wn−r−1 + wn−r−2 + · · ·+ wn−P , for n > 0; (30)

w0 = 1; and wn = 0 for n < 0. The initial distribution on tapes for level
n + 1 places wn + wn−1 + · · · + wn−P+k runs on tape k, for 1 ≤ k ≤ P , and
wn−1 + · · · + wn−r on tape T ; tape T − 1 is used for input. Then un runs are
merged to tape T while T − 1 is being rewound; vn are merged to T − 1 while T
is rewinding; un−1 to T − 1 while T − 2 is rewinding; etc.

Table 6 shows the approximate behavior of this procedure when S is not too
small. The “pass/phase” column indicates approximately how much of the entire
file is being rewound during each half of a phase, and approximately how much
of the file is being written during each full phase. The tape splitting method is
superior to standard polyphase on six or more tapes, and probably also on five,
at least for large S.
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Table 6
APPROXIMATE BEHAVIOR OF POLYPHASE MERGE WITH TAPE SPLITTING

Tapes Phases Passes Pass/phase Growth ratio

4 2.885 lnS + 0.000 1.443 lnS + 1.000 50% 1.4142136
5 2.078 lnS + 0.232 0.929 lnS + 1.022 45% 1.6180340
6 2.078 lnS − 0.170 0.752 lnS + 1.024 36% 1.6180340
7 1.958 lnS − 0.408 0.670 lnS + 1.007 34% 1.6663019
8 2.008 lnS − 0.762 0.624 lnS + 0.994 31% 1.6454116
9 1.972 lnS − 0.987 0.595 lnS + 0.967 30% 1.6604077

10 2.013 lnS − 1.300 0.580 lnS + 0.941 29% 1.6433803
20 2.069 lnS − 3.164 0.566 lnS + 0.536 27% 1.6214947

When T = 4 the procedure above would become essentially equivalent to
balanced two-way merging, without overlapping the rewind time, since w2n+1
would be 0 for all n. So the entries in Table 6 for T = 4 have been obtained by
making a slight modification, letting v2 = 0, u1 = 1, v1 = 0, u0 = 0, v0 = 1,
and vn+1 = un−1 + vn−1, un = un−2 + vn−2 for n ≥ 2. This leads to a very
interesting sorting scheme (see exercises 25 and 26).

EXERCISES
1. [16 ] Figure 69 shows the order in which runs 34 through 65 are distributed to five

tapes with Algorithm D; in what order are runs 1 through 33 distributed?
x 2. [21 ] True or false: After two merge phases in Algorithm D (that is, on the second

time we reach step D6), all dummy runs have disappeared.
x 3. [22 ] Prove that the condition D[1] ≥ D[2] ≥ · · · ≥ D[T] is always satisfied at the

conclusion of step D4. Explain why this condition is important, in the sense that the
mechanism of steps D2 and D3 would not work properly otherwise.

4. [M20 ] Derive the generating functions (7).
5. [HM26 ] (E. P. Miles, Jr., 1960.) For all p ≥ 2, prove that the polynomial fp(z) =
zp− zp−1−· · ·− z− 1 has p distinct roots, of which exactly one has magnitude greater
than unity. [Hint: Consider the polynomial zp+1 − 2zp + 1.]

6. [HM24 ] The purpose of this exercise is to consider how Tables 1, 5, and 6 were
prepared. Assume that we have a merging pattern whose properties are characterized
by polynomials p(z) and q(z) in the following way: (i) The number of initial runs present
in a “perfect distribution” requiring n merging phases is [zn] p(z)/q(z). (ii) The number
of initial runs processed during these n merging phases is [zn] p(z)/q(z)2. (iii) There
is a “dominant root” α of q(z−1) such that q(α−1) = 0, q′(α−1) ̸= 0, p(α−1) ̸= 0, and
q(β−1) = 0 implies that β = α or |β| < |α|.

Prove that there is a number ϵ > 0 such that, if S is the number of runs in a
perfect distribution requiring n merging phases, and if ρS initial runs are processed
during those phases, we have n = a lnS + b + O(S−ϵ) and ρ = c lnS + d + O(S−ϵ),
where

a = (lnα)−1, b = −a ln


p(α−1)
−q′(α−1)


− 1, c = a

α

−q′(α−1) ,

d = (b+ 1)α− p′(α−1)/p(α−1) + q′′(α−1)/q′(α−1)
−q′(α−1) .
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7. [HM22 ] Let αp be the dominant root of the polynomial fp(z) in exercise 5. What
is the asymptotic behavior of αp as p→∞?

8. [M20 ] (E. Netto, 1901.) Let N (p)
m be the number of ways to express m as an

ordered sum of the integers {1, 2, . . . , p}. For example, when p = 3 and m = 5, there
are 13 ways, namely 1+1+1+1+1 = 1+1+1+2 = 1+1+2+1 = 1+1+3 = 1+2+1+1 =
1 + 2 + 2 = 1 + 3 + 1 = 2 + 1 + 1 + 1 = 2 + 1 + 2 = 2 + 2 + 1 = 2 + 3 = 3 + 1 + 1 = 3 + 2.
Show that N (p)

m is a generalized Fibonacci number.
9. [M20 ] Let K(p)

m be the number of sequences of m 0s and 1s such that there are
no p consecutive 1s. For example, when p = 3 and m = 5 there are 24 such sequences:
00000, 00001, 00010, 00011, 00100, 00101, 00110, 01000, 01001, . . . , 11011. Show that
K

(p)
m is a generalized Fibonacci number.

10. [M27 ] (Generalized Fibonacci number system.) Prove that every nonnegative
integer n has a unique representation as a sum of distinct pth order Fibonacci numbers
F

(p)
j , for j ≥ p, subject to the condition that no p consecutive Fibonacci numbers are

used.
11. [M24 ] Prove that the nth element of the string Q∞ in (12) is equal to the number
of distinct Fibonacci numbers in the fifth-order Fibonacci representation of n− 1. [See
exercise 10.]

x 12. [M18 ] Find a connection between powers of the matrix


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 1 1 1

 and

the perfect Fibonacci distributions in (1).
x 13. [22 ] Prove the following rather odd property of perfect Fibonacci distributions:

When the final output will be on tape number T, the number of runs on each other
tape is odd; when the final output will be on some tape other than T, the number of
runs will be odd on that tape, and it will be even on the others. [See (1).]
14. [M35 ] Let Tn(x) =


k≥0 Tnkx

k, where Tn(x) is the polynomial defined in (16).
a) Show that for each k there is a number n(k) such that T1k ≤ T2k ≤ · · · ≤ Tn(k)k >

T(n(k)+1)k ≥ · · · .
b) Given that Tn′k′ < Tnk′ and n′ < n, prove that Tn′k ≤ Tnk for all k ≥ k′.
c) Prove that there is a nondecreasing sequence ⟨Mn⟩ such thatΣn(S) = minj≥1Σj(S)

when Mn ≤ S < Mn+1, but Σn(S) > minj≥1 Σj(S) when S ≥Mn+1. [See (19).]
15. [M43 ] Prove or disprove: Σn−1(m) < Σn(m) implies that Σn(m) ≤ Σn+1(m) ≤
Σn+2(m) ≤ · · · . [Such a result would greatly simplify the calculation of Table 2.]
16. [HM43 ] Determine the asymptotic behavior of the polyphase merge with optimum
distribution of dummy runs.
17. [32 ] Prove or disprove: There is a way to disperse runs for an optimum polyphase
distribution in such a way that the distribution for S + 1 initial runs is formed by
adding one run (on an appropriate tape) to the distribution for S initial runs.
18. [30 ] Does the optimum polyphase distribution produce the best possible merging
pattern, in the sense that the total number of initial runs processed is minimized, if we
insist that the initial runs be placed on at most T−1 of the tapes? (Ignore rewind time.)
19. [21 ] Make a table analogous to (1), for Caron’s polyphase sort on six tapes.
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20. [M24 ] What generating functions for Caron’s polyphase sort on six tapes corre-
spond to (7) and to (16)? What relations, analogous to (9) and (27), define the strings
of merge numbers?
21. [11 ] What should appear on level 7 in (26)?
22. [M21 ] Each term of the sequence (24) is approximately equal to the sum of the
previous two. Does this phenomenon hold for the remaining numbers of the sequence?
Formulate and prove a theorem about tn − tn−1 − tn−2.

x 23. [29 ] What changes would be made to (25), (27), and (28), if (23) were changed
to vn+1 = un−1 + vn−1 + un−2, un = vn−2 + un−3 + vn−3 + un−4 + vn−4?
24. [HM41 ] Compute the asymptotic behavior of the tape-splitting polyphase proce-
dure, when vn+1 is defined to be the sum of the first q terms of un−1 + vn−1 + · · · +
un−P + vn−P , for various P = T − 2 and for 0 ≤ q ≤ 2P . (The text treats only the
case q = 2⌊P/2⌋; see exercise 23.)
25. [19 ] Show how the tape-splitting polyphase merge on four tapes, mentioned at
the end of this section, would sort 32 initial runs. (Give a phase-by-phase analysis like
the 82-run six-tape example in the text.)
26. [M21 ] Analyze the behavior of the tape-splitting polyphase merge on four tapes,
when S = 2n and when S = 2n + 2n−1. (See exercise 25.)
27. [23 ] Once the initial runs have been distributed to tapes in a perfect distribution,
the polyphase strategy is simply to “merge until empty”: We merge runs from all
nonempty input tapes until one of them has been entirely read; then we use that tape
as the next output tape, and let the previous output tape serve as an input.

Does this merge-until-empty strategy always sort, no matter how the initial runs
are distributed, as long as we distribute them onto at least two tapes? (One tape will,
of course, be left empty so that it can be the first output tape.)
28. [M26 ] The previous exercise defines a rather large family of merging patterns.
Show that polyphase is the best of them, in the following sense: If there are six tapes,
and if we consider the class of all initial distributions (a, b, c, d, e) such that the merge-
until-empty strategy requires at most n phases to sort, then a + b + c + d + e ≤ tn,
where tn is the corresponding value for polyphase sorting (1).
29. [M47 ] Exercise 28 shows that the polyphase distribution is optimal among all
merge-until-empty patterns in the minimum-phase sense. But is it optimal also in the
minimum-pass sense?

Let a be relatively prime to b, and assume that a+ b is the Fibonacci number Fn.
Prove or disprove the following conjecture due to R. M. Karp: The number of initial
runs processed during the merge-until-empty pattern starting with distribution (a, b)
is greater than or equal to ((n− 5)Fn+1 + (2n+ 2)Fn)/5. (The latter figure is achieved
when a = Fn−1, b = Fn−2.)
30. [42 ] Prepare a table analogous to Table 2, for the tape-splitting polyphase merge.
31. [M22 ] (R. Kemp.) Let Kd(n) be the number of n-node ordered trees in which
every leaf is at distance d from the root. For example, K3(8) = 7 because of the trees

Show that Kd(n) is a generalized Fibonacci number, and find a one-to-one correspon-
dence between such trees and the ordered partitions considered in exercise 8.
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*5.4.3. The Cascade Merge
Another basic pattern, called the “cascade merge,” was actually discovered
before polyphase [B. K. Betz and W. C. Carter, ACM National Meeting 14
(1959), Paper 14]. This approach is illustrated for six tapes and 190 initial runs
in the following table, using the notation developed in Section 5.4.2:

Initial runs
T1 T2 T3 T4 T5 T6 processed

Pass 1 155 150 141 129 115 — 190
Pass 2 — ∗15 29 312 414 515 190
Pass 3 155 144 123 92 ∗51 — 190
Pass 4 — ∗151 291 411 501 551 190
Pass 5 1901 — — — — — 190

A cascade merge, like polyphase, starts out with a “perfect distribution” of
runs on tapes, although the rule for perfect distributions is somewhat different
from those in Section 5.4.2. Each line in the table represents a complete pass
over all the data. Pass 2, for example, is obtained by doing a five-way merge
from {T1, T2, T3, T4, T5} to T6, until T5 is empty (this puts 15 runs of relative
length 5 on T6), then a four-way merge from {T1, T2, T3, T4} to T5, then a
three-way merge to T4, a two-way merge to T3, and finally a one-way merge
(a copying operation) from T1 to T2. Pass 3 is obtained in the same way, first
doing a five-way merge until one tape becomes empty, then a four-way merge,
and so on. (Perhaps the present section of this book should be numbered 5.4.3.2.1
instead of 5.4.3!)

It is clear that the copying operations are unnecessary, and they could be
omitted. Actually, however, in the six-tape case this copying takes only a small
percentage of the total time. The items marked with an asterisk in the table
above are those that were simply copied; only 25 of the 950 runs processed are
of this type. Most of the time is devoted to five-way and four-way merging.

Table 1
APPROXIMATE BEHAVIOR OF CASCADE MERGE SORTING

Tapes Passes (with copying) Passes (without copying) Growth ratio

3 2.078 lnS + 0.672 1.504 lnS + 0.992 1.6180340
4 1.235 lnS + 0.754 1.102 lnS + 0.820 2.2469796
5 0.946 lnS + 0.796 0.897 lnS + 0.800 2.8793852
6 0.796 lnS + 0.821 0.773 lnS + 0.808 3.5133371
7 0.703 lnS + 0.839 0.691 lnS + 0.822 4.1481149
8 0.639 lnS + 0.852 0.632 lnS + 0.834 4.7833861
9 0.592 lnS + 0.861 0.587 lnS + 0.845 5.4189757

10 0.555 lnS + 0.869 0.552 lnS + 0.854 6.0547828
20 0.397 lnS + 0.905 0.397 lnS + 0.901 12.4174426

At first it may seem that the cascade pattern is a rather poor choice, by
comparison with polyphase, since standard polyphase uses (T − 1)-way merging
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throughout while the cascade uses (T − 1)-way, (T − 2)-way, (T − 3)-way, etc.
But in fact it is asymptotically better than polyphase, on six or more tapes! As
we have observed in Section 5.4.2, a high order of merge is not a guarantee of
efficiency. Table 1 shows the performance characteristics of cascade merge, by
analogy with the similar tables in Section 5.4.2.

The “perfect distributions” for a cascade merge are easily derived by working
backwards from the final state (1, 0, . . . , 0). With six tapes, they are

Level T1 T2 T3 T4 T5

0 1 0 0 0 0
1 1 1 1 1 1
2 5 4 3 2 1
3 15 14 12 9 5
4 55 50 41 29 15
5 190 175 146 105 55

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n an bn cn dn en

n+1 an+bn+cn+dn+en an+bn+cn+dn an+bn+cn an+bn an (1)

It is interesting to note that the relative magnitudes of these numbers appear
also in the diagonals of a regular (2T − 1)-sided polygon. For example, the five
diagonals in the hendecagon of Fig. 73 have relative lengths very nearly equal
to 190, 175, 146, 105, and 55! We shall prove this remarkable fact later in this
section, and we shall also see that the relative amount of time spent in (T−1)-way
merging, (T −2)-way merging, . . . , 1-way merging is approximately proportional
to the squares of the lengths of these diagonals.

a

b

c

d

e

Fig. 73. Geometrical interpretation of cascade numbers.

Initial distribution of runs. When the actual number of initial runs isn’t
perfect, we can insert dummy runs as usual. A superficial analysis of this situ-
ation would indicate that the method of dummy run assignment is immaterial,
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Fig. 74. Efficiency of cascade merge with the distribution of Algorithm D.

since cascade merging operates by complete passes; if we have 190 initial runs,
each record is processed five times as in the example above, but if there are 191
we must apparently go up a level so that every record is processed six times.
Fortunately this abrupt change is not actually necessary; David E. Ferguson has
found a way to distribute initial runs so that many of the operations during the
first merge pass reduce to copying the contents of a tape. When such copying
relations are bypassed (by simply changing “logical” tape unit numbers relative
to the “physical” numbers as in Algorithm 5.4.2D), we obtain a relatively smooth
transition from level to level, as shown in Fig. 74.

Suppose that (a, b, c, d, e) is a perfect distribution, where a ≥ b ≥ c ≥ d ≥ e.
By redefining the correspondence between logical and physical tape units, we
can imagine that the distribution is actually (e, d, c, b, a), with a runs on T5,
b on T4, etc. The next perfect distribution is (a+b+c+d+e, a+b+c+d, a+b+c,
a+b, a); and if the input is exhausted before we reach this next level, let us
assume that the tapes contain, respectively, (D1, D2, D3, D4, D5) dummy runs,
where

D1 ≤ a + b + c + d, D2 ≤ a + b + c, D3 ≤ a + b, D4 ≤ a, D5 = 0;
D1 ≥ D2 ≥ D3 ≥ D4 ≥ D5. (2)
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We are free to imagine that the dummy runs appear in any convenient place
on the tapes. The first merge pass is supposed to produce a runs by five-way
merging, then b by four-way merging, etc., and our goal is to arrange the dummies
so as to replace merging by copying. It is convenient to do the first merge pass
as follows:

1. If D4 = a, subtract a from each of D1, D2, D3, D4 and pretend that
T5 is the result of the merge. If D4 < a, merge a runs from tapes T1 through
T5, using the minimum possible number of dummies on tapes T1 through T5 so
that the new values of D1, D2, D3, D4 will satisfy

D1 ≤ b + c + d, D2 ≤ b + c, D3 ≤ b, D4 = 0;
D1 ≥ D2 ≥ D3 ≥ D4. (3)

Thus, if D2 was originally ≤ b + c, we use no dummies from it at this step, while
if b + c < D2 ≤ a + b + c we use exactly D2 − b− c of them.

2. (This step is similar to step 1, but “shifted.”) If D3 = b, subtract b from
each of D1, D2, D3 and pretend that T4 is the result of the merge. If D3 < b,
merge b runs from tapes T1 through T4, reducing the number of dummies if
necessary in order to make

D1 ≤ c + d, D2 ≤ c, D3 = 0; D1 ≥ D2 ≥ D3.

3. And so on.
Table 2

EXAMPLE OF CASCADE DISTRIBUTION STEPS

Add to T1 Add to T2 Add to T3 Add to T4 Add to T5 “Amount saved”
Step (1,1) 9 0 0 0 0 15+14+12+5
Step (2,2) 3 12 0 0 0 15+14+9+5
Step (2,1) 9 0 0 0 0 15+14+5
Step (3,3) 2 2 14 0 0 15+12+5
Step (3,2) 3 12 0 0 0 15+9+5
Step (3,1) 9 0 0 0 0 15+5
Step (4,4) 1 1 1 15 0 14+5
Step (4,3) 2 2 14 0 0 12+5
Step (4,2) 3 12 0 0 0 9+5
Step (4,1) 9 0 0 0 0 5

Ferguson’s method of distributing runs to tapes can be illustrated by con-
sidering the process of going from level 3 to level 4 in (1). Assume that “logical”
tapes (T1, . . . , T5) contain respectively (5, 9, 12, 14, 15) runs and that we want
eventually to bring this up to (55, 50, 41, 29, 15). The procedure can be summa-
rized as shown in Table 2. We first put nine runs on T1, then (3, 12) on T1
and T2, etc. If the input becomes exhausted during, say, Step (3,2), then the
“amount saved” is 15 + 9 + 5, meaning that the five-way merge of 15 runs, the
two-way merge of 9 runs, and the one-way merge of 5 runs are avoided by the
dummy run assignment. In other words, 15 + 9 + 5 of the runs present at level
3 are not processed during the first merge phase.
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The following algorithm defines the process in detail.

Algorithm C (Cascade merge sorting with special distribution). This algorithm
takes initial runs and disperses them to tapes, one run at a time, until the supply
of initial runs is exhausted. Then it specifies how the tapes are to be merged,
assuming that there are T ≥ 3 available tape units, using at most (T − 1)-way
merging and avoiding unnecessary one-way merging. Tape T may be used to
hold the input, since it does not receive any initial runs. The following tables
are maintained:

A[j], 1 ≤ j ≤ T : The perfect cascade distribution we have most recently
reached.

AA[j], 1 ≤ j ≤ T : The perfect cascade distribution we are striving for.
D[j], 1 ≤ j ≤ T : Number of dummy runs assumed to be present on logical

tape unit number j.
M[j], 1 ≤ j < T : Maximum number of dummy runs desired on logical tape

unit number j.
TAPE[j], 1 ≤ j ≤ T : Number of the physical tape unit corresponding to logical

tape unit number j.
C1. [Initialize.] Set A[k] ← AA[k] ← D[k] ← 0 for 2 ≤ k ≤ T ; and set

A[1]← 0, AA[1]← 1, D[1]← 1. Set TAPE[k]← k for 1 ≤ k ≤ T. Finally
set i ← T − 2, j ← 1, k ← 1, l ← 0, m ← 1, and go to step C5. (This
maneuvering is one way to get everything started, by jumping right into the
inner loop with appropriate settings of the control variables.)

C2. [Begin new level.] (We have just reached a perfect distribution, and since
there is more input we must get ready for the next level.) Increase l by 1. Set
A[k]← AA[k], for 1 ≤ k ≤ T ; then set AA[T − k]← AA[T − k + 1]+A[k],
for k = 1, 2, . . . , T−1 in this order. Set (TAPE[1], . . . , TAPE[T−1]) ←
(TAPE[T−1], . . . , TAPE[1]), and set D[k] ← AA[k + 1] for 1 ≤ k < T.
Finally set i← 1.

C3. [Begin ith sublevel.] Set j ← i. (The variables i and j represent “Step
(i, j)” in the example shown in Table 2.)

C4. [Begin Step (i, j).] Set k ← j and m ← A[T − j − 1]. If m = 0 and i = j,
set i← T − 2 and return to C3; if m = 0 and i ̸= j, return to C2. (Variable
m represents the number of runs to be written onto TAPE[k]; m = 0 occurs
only when l = 1.)

C5. [Input to TAPE[k].] Write one run on tape number TAPE[k], and decrease
D[k] by 1. Then if the input is exhausted, rewind all the tapes and go to
step C7.

C6. [Advance.] Decrease m by 1. If m > 0, return to C5. Otherwise decrease k
by 1; if k > 0, set m← A[T − j − 1]−A[T − j] and return to C5 if m > 0.
Otherwise decrease j by 1; if j > 0, go to C4. Otherwise increase i by 1; if
i < T − 1, return to C3. Otherwise go to C2.
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C1. Initialize

C2. Begin new level

C3. Begin ith sublevel

C4. Begin Step (i, j)

C5. Input to TAPE[k] C6. Advance

C7. Prepare to merge

C8. Cascade C9. Down a level

Input complete

Sorting complete

Fig. 75. The cascade merge, with special distribution.

C7. [Prepare to merge.] (At this point the initial distribution is complete, and
the AA, D, and TAPE tables describe the present states of the tapes.) Set
M[k] ← AA[k + 1] for 1 ≤ k < T, and set FIRST ← 1. (Variable FIRST is
nonzero only during the first merge pass.)

C8. [Cascade.] If l = 0, stop; sorting is complete and the output is on TAPE[1].
Otherwise, for p = T −1, T −2, . . . , 1, in this order, do a p-way merge from
TAPE[1], . . . , TAPE[p] to TAPE[p + 1] as follows:
If p = 1, simulate the one-way merge by simply rewinding TAPE[2], then
interchanging TAPE[1]↔ TAPE[2].
Otherwise if FIRST = 1 and D[p− 1] = M[p− 1], simulate the p-way merge
by simply interchanging TAPE[p] ↔ TAPE[p + 1], rewinding TAPE[p], and
subtracting M[p− 1] from each of D[1], . . . , D[p−1], M[1], . . . , M[p−1].
Otherwise, subtract M[p− 1] from each of M[1], . . . , M[p− 1]. Then merge
one run from each TAPE[j] such that 1 ≤ j ≤ p and D[j] ≤ M[j]; subtract
one from each D[j] such that 1 ≤ j ≤ p and D[j] > M[j]; and put the
output run on TAPE[p + 1]. Continue doing this until TAPE[p] is empty.
Then rewind TAPE[p] and TAPE[p + 1].

C9. [Down a level.] Decrease l by 1, set FIRST ← 0, and set (TAPE[1], . . . ,
TAPE[T]) ← (TAPE[T], . . . , TAPE[1]). (At this point all D’s and M’s are
zero and will remain so.) Return to C8.
Steps C1–C6 of this algorithm do the distribution, and steps C7–C9 do the

merging; the two parts are fairly independent of each other, and it would be
possible to store M[k] and AA[k + 1] in the same memory locations.
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Analysis of cascade merging. The cascade merge is somewhat harder to
analyze than polyphase, but the analysis is especially interesting because so many
remarkable formulas are present. Readers who enjoy discrete mathematics are
urged to study the cascade distribution for themselves, before reading further,
since the numbers have extraordinary properties that are a pleasure to discover.
We shall discuss here one of the many ways to approach the analysis, emphasizing
the way in which the results might be discovered.

For convenience, let us consider the six-tape case, looking for formulas that
generalize to all T. Relations (1) lead to the first basic pattern:

an = an =
0

0

an,

bn = an−en−1
= an−an−2 =

1
0

an−

2
2

an−2,

cn = bn−dn−1
= bn−an−2−bn−2 =

2
0

an−

3
2

an−2+

4
4

an−4, (4)

dn = cn−cn−1
= cn−an−2−bn−2−cn−2 =

3
0

an−

4
2

an−2+

5
4

an−4−

6
6

an−6,

en = dn−bn−1
= dn−an−2−bn−2−cn−2−dn−2 =

4
0

an−

5
2

an−2+

6
4

an−4−

7
6

an−6+

8
8

an−8.

Let A(z) =


n≥0 anzn, . . . , E(z) =


n≥0 enzn, and define the polynomials

qm(z) =


m

0


−


m + 1
2


z2 +


m + 2

4


z4 − · · ·

=

k


m + k

2k


(−1)kz2k =

m
k=0

2m− k

k


(−1)m−kz2m−2k. (5)

The result of (4) can be summarized by saying that the generating functions
B(z) − q1(z)A(z), C(z) − q2(z)A(z), D(z) − q3(z)A(z), and E(z) − q4(z)A(z)
reduce to finite sums, corresponding to the values of a−1, a−2, a−3, . . . that appear
in (4) for small n but do not appear in A(z). In order to supply appropriate
boundary conditions, let us run the recurrence backwards to negative levels,
through level −8:

n an bn cn dn en

0 1 0 0 0 0
−1 0 0 0 0 1
−2 1 −1 0 0 0
−3 0 0 0 −1 2
−4 2 −3 1 0 0
−5 0 0 1 −4 5
−6 5 −9 5 −1 0
−7 0 −1 6 −14 14
−8 14 −28 20 −7 1
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(On seven tapes the table would be similar, with entries for odd n shifted right
one column.) The sequence a0, a−2, a−4, . . . = 1, 1, 2, 5, 14, . . . is a dead giveaway
for computer scientists, since it occurs in connection with so many recursive
algorithms (see, for example, exercise 2.2.1–4 and Eq. 2.3.4.4–(14)); therefore we
conjecture that in the T -tape case

a−2n =
2n

n

 1
n + 1 , for 0 ≤ n ≤ T − 2;

a−2n−1 = 0, for 0 ≤ n ≤ T − 3.

(6)

To verify that this choice is correct, it suffices to show that (6) and (4) yield the
correct results for levels 0 and 1. On level 1 this is obvious, and on level 0 we
have to verify that

m

0


a0 −


m + 1

2


a−2 +


m + 2

4


a−4 −


m + 3

6


a−6 + · · ·

=

k≥0


m + k

2k

2k

k

 (−1)k
k + 1 = δm0 (7)

for 0 ≤ m ≤ T − 2. Fortunately this sum can be evaluated by standard tech-
niques; it is, in fact, Example 2 in Section 1.2.6.

Now we can compute the coefficients of B(z)− q1(z)A(z), etc. For example,
consider the coefficient of z2m in D(z)− q3(z)A(z): It is

k≥0

3 + m + k

2m + 2k


(−1)m+ka−2k =


k≥0

3 + m + k

2m + 2k

2k

k

 (−1)m+k

k + 1

= (−1)m
 2 + m

2m− 1


−
3 + m

2m


= (−1)m+1

2 + m

2m


,

by the result of Example 3 in Section 1.2.6. Therefore we have deduced that

A(z) = q0(z)A(z),
B(z) = q1(z)A(z)− q0(z),
D(z) = q3(z)A(z)− q2(z),

C(z) = q2(z)A(z)− q1(z),
E(z) = q4(z)A(z)− q3(z). (8)

Furthermore we have en+1 = an; hence zA(z) = E(z), and

A(z) = q3(z)/

q4(z)− z


. (9)

The generating functions have now been derived in terms of the q polyno-
mials, and so we want to understand the q’s better. Exercise 1.2.9–15 is useful
in this regard, since it gives us a closed form that may be written

qm(z) =

(
√

4− z2 + iz)/2
2m+1 +


(
√

4− z2 − iz)/2
2m+1

√
4− z2

. (10)
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Everything simplifies if we now set z = 2 sin θ:

qm(2 sin θ) = (cos θ+ i sin θ)2m+1 +(cos θ− i sin θ)2m+1

2 cos θ
= cos(2m+1)θ

cos θ
. (11)

(This coincidence leads us to suspect that the polynomial qm(z) is well known in
mathematics; and indeed, a glance at appropriate tables will show that qm(z) is
essentially a Chebyshev polynomial of the second kind, namely (−1)mU2m(z/2)
in conventional notation.)

We can now determine the roots of the denominator in (9): The equation
q4(2 sin θ) = 2 sin θ reduces to

cos 9θ = 2 sin θ cos θ = sin 2θ.

We can obtain solutions to this relation whenever ±9θ = 2θ + (2n − 1
2 )π; and

all such θ yield roots of the denominator in (9) provided that cos θ ̸= 0. (When
cos θ = 0, qm(±2) = (2m + 1) is never equal to ±2.) The following eight distinct
roots for q4(z)− z = 0 are therefore obtained:

2 sin −5
14 π, 2 sin −1

14 π, 2 sin 3
14 π; 2 sin −7

22 π, 2 sin −3
22 π, 2 sin 1

22 π, 2 sin 5
22 π, 2 sin 9

22 π.

Since q4(z) is a polynomial of degree 8, this accounts for all the roots. The first
three of these values make q3(z) = 0, so q3(z) and q4(z) − z have a polynomial
of degree three as a common factor. The other five roots govern the asymptotic
behavior of the coefficients of A(z), if we expand (9) in partial fractions.

Considering the general T -tape case, let θk = (4k + 1)π/(4T − 2). The
generating function A(z) for the T -tape cascade distribution numbers takes the
form

4
2T − 1


−T/2<k<⌊T/2⌋

cos2 θk
1− z/(2 sin θk) (12)

(see exercise 8); hence

an = 4
2T − 1


−T/2<k<⌊T/2⌋

cos2 θk


1

2 sin θk

n

. (13)

The equations in (8) now lead to the similar formulas

bn = 4
2T − 1


−T/2<k<⌊T/2⌋

cos θk cos 3θk


1

2 sin θk

n

,

cn = 4
2T − 1


−T/2<k<⌊T/2⌋

cos θk cos 5θk


1

2 sin θk

n

, (14)

dn = 4
2T − 1


−T/2<k<⌊T/2⌋

cos θk cos 7θk


1

2 sin θk

n

,

and so on. Exercise 9 shows that these equations hold for all n ≥ 0, not only
for large n. In each sum the term for k = 0 dominates all the others, especially
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when n is reasonably large; therefore the “growth ratio” is
1

2 sin θ0
= 2

π
T − 1

π
+ π

48T
+ O(T−2). (15)

Cascade sorting was first analyzed by W. C. Carter [Proc. IFIP Congress
(1962), 62–66], who obtained numerical results for small T, and by David E.
Ferguson [see CACM 7 (1964), 297], who discovered the first two terms in the
asymptotic behavior (15) of the growth ratio. During the summer of 1964,
R. W. Floyd discovered the explicit form 1/(2 sin θ0) of the growth ratio, so that
exact formulas could be used for all T. An intensive analysis of the cascade
numbers was independently carried out by G. N. Raney [Canadian J. Math. 18
(1966), 332–349], who came across them in quite another way having nothing to
do with sorting. Raney observed the “ratio of diagonals” principle of Fig. 73,
and derived many other interesting properties of the numbers. Floyd and Raney
used matrix manipulations in their proofs (see exercise 6).

Modifications of cascade sorting. If one more tape is added, it is possible
to overlap nearly all of the rewind time during a cascade sort. For example,
we can merge T1–T5 to T7, then T1–T4 to T6, then T1–T3 to T5 (which by
now is rewound), then T1–T2 to T4, and the next pass can begin when the
comparatively short data on T4 has been rewound. The efficiency of this process
can be predicted from the analysis of cascading. (See Section 5.4.6 for further
information.)

A “compromise merge” scheme, which includes both polyphase and cascade
as special cases, was suggested by D. E. Knuth in CACM 6 (1963), 585–587.
Each phase consists of (T − 1)-way, (T − 2)-way, . . . , P -way merges, where P
is any fixed number between 1 and T − 1. When P = T − 1, this is polyphase,
and when P = 1 it is pure cascade; when P = 2 it is cascade without copy
phases. Analyses of this scheme have been made by C. E. Radke [IBM Systems
J. 5 (1966), 226–247] and by W. H. Burge [Proc. IFIP Congress (1971), 1, 454–
459]. Burge found the generating function


Tn(x)zn for each (P, T ) compromise

merge, generalizing Eq. 5.4.2–(16); he showed that the best value of P , from the
standpoint of fewest initial runs processed as a function of S as S → ∞ (using
a straightforward distribution scheme and ignoring rewind time), is respectively
(2, 3, 3, 4, 4, 4, 3, 3, 4) for T = (3, 4, 5, 6, 7, 8, 9, 10, 11). These values of P lean
more towards cascade than polyphase as T increases; and it turns out that the
compromise merge is never substantially better than cascade itself. On the other
hand, with an optimum choice of levels and optimum distribution of dummy
runs, as described in Section 5.4.2, pure polyphase seems to be best of all the
compromise merges; unfortunately the optimum distribution is comparatively
difficult to implement.

Th. L. Johnsen [BIT 6 (1966), 129–143] has studied a combination of bal-
anced and polyphase merging; a rewind-overlap variation of balanced merging
has been proposed by M. A. Goetz [Digital Computer User’s Handbook, edited
by M. Klerer and G. A. Korn (New York: McGraw–Hill, 1967), 1.311–1.312];
and many other hybrid schemes can be imagined.
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EXERCISES
1. [10 ] Using Table 1, compare cascade merging with the tape-splitting version of

polyphase described in Section 5.4.2. Which is better? (Ignore rewind time.)
x 2. [22 ] Compare cascade sorting on three tapes, using Algorithm C, to polyphase

sorting on three tapes, using Algorithm 5.4.2D. What similarities and differences can
you find?

3. [23 ] Prepare a table that shows what happens when 100 initial runs are sorted
on six tapes using Algorithm C.

4. [M20 ] (G. N. Raney.) An “nth level cascade distribution” is a multiset defined
as follows (in the case of six tapes): {1, 0, 0, 0, 0} is a 0th level cascade distribution;
and if {a, b, c, d, e} is an nth level cascade distribution, {a+b+c+d+e, a+b+c+d,
a+b+c, a+b, a} is an (n + 1)st level cascade distribution. (A multiset is unordered,
hence up to 5! different (n + 1)st level distributions can be formed from a single nth
level distribution.)

a) Prove that any multiset {a, b, c, d, e} of relatively prime integers is an nth level
cascade distribution, for some n.

b) Prove that the distribution defined for cascade sorting is optimum, in the sense
that, if {a, b, c, d, e} is any nth level distribution with a ≥ b ≥ c ≥ d ≥ e, we have
a ≤ an, b ≤ bn, c ≤ cn, d ≤ dn, e ≤ en, where (an, bn, cn, dn, en) is the distribution
defined in (1).

x 5. [20 ] Prove that the cascade numbers defined in (1) satisfy the law

akan−k + bkbn−k + ckcn−k + dkdn−k + eken−k = an, for 0 ≤ k ≤ n.

[Hint: Interpret this relation by considering how many runs of various lengths are
output during the kth pass of a complete cascade sort.]

6. [M20 ] Find a 5× 5 matrix Q such that the first row of Qn contains the six-tape
cascade numbers an bn cn dn en for all n ≥ 0.

7. [M20 ] Given that cascade merge is being applied to a perfect distribution of an

initial runs, find a formula for the amount of processing saved when one-way merging
is suppressed.

8. [HM23 ] Derive (12).
9. [HM26 ] Derive (14).

x 10. [M28 ] Instead of using the pattern (4) to begin the study of the cascade numbers,
start with the identities

en = an−1 =
1

1

an−1,

dn = 2an−1 − en−2 =
2

1

an−1 −

3
3

an−3,

cn = 3an−1 − dn−2 − 2en−2 =
3

1

an−1 −

4
3

an−3 −

5
5

an−5,

etc. Letting
rm(z) =


m

1


z −


m+ 1

3


z3 +


m+ 2

5


z5 − · · · ,

express A(z), B(z), etc. in terms of these r polynomials.
11. [M38 ] Let

fm(z) =
m

k=0


⌊(m+ k)/2⌋

k


(−1)⌈k/2⌉zk.
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Prove that the generating function A(z) for the T -tape cascade numbers is equal to
fT−3(z)/fT−1(z), where the numerator and denominator in this expression have no
common factor.
12. [M40 ] Prove that Ferguson’s distribution scheme is optimum, in the sense that
no method of placing the dummy runs, satisfying (2), will cause fewer initial runs to
be processed during the first pass, provided that the strategy of steps C7–C9 is used
during this pass.
13. [40 ] The text suggests overlapping most of the rewind time, by adding an extra
tape. Explore this idea. (For example, the text’s scheme involves waiting for T4 to
rewind; would it be better to omit T4 from the first merge phase of the next pass?)

*5.4.4. Reading Tape Backwards
Many magnetic tape units have the ability to read tape in the opposite direction
from which it was written. The merging patterns we have encountered so far
always write information onto tape in the “forward” direction, then rewind the
tape, read it forwards, and rewind again. The tape files therefore behave as
queues, operating in a first-in-first-out manner. Backwards reading allows us to
eliminate both of these rewind operations: We write the tape forwards and read
it backwards. In this case the files behave as stacks, since they are used in a
last-in-first-out manner.

The balanced, polyphase, and cascade merge patterns can all be adapted to
backward reading. The main difference is that merging reverses the order of the
runs when we read backwards and write forwards. If two runs are in ascending
order on tape, we can merge them while reading backwards, but this produces
descending order. The descending runs produced in this way will subsequently
become ascending on the next pass; so the merging algorithms must be capable
of dealing with runs in either order. Programmers who are confronted with
read-backwards for the first time often feel like they are standing on their heads!

As an example of backwards reading, consider the process of merging 8 initial
runs, using a balanced merge on four tapes. The operations can be summarized
as follows:

T1 T2 T3 T4
Pass 1 A1A1A1A1 A1A1A1A1 — — Initial distribution
Pass 2 — — D2D2 D2D2 Merge to T3 and T4
Pass 3 A4 A4 — — Merge to T1 and T2
Pass 4 — — D8 — Final merge to T3

Here Ar stands for a run of relative length r that appears on tape in ascending
order, if the tape is read forwards as in our previous examples; Dr is the
corresponding notation for a descending run of length r. During Pass 2 the
ascending runs become descending: They appear to be descending in the input,
since we are reading T1 and T2 backwards. Then the runs switch orientation
again on Pass 3.

Notice that the process above finishes with the result on tape T3, in de-
scending order. If this is bad (depending on whether the output is to be read
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backwards, or to be dismounted and put away for future use), we could copy it
to another tape, reversing the direction. A faster way would be to rewind T1
and T2 after Pass 3, producing A8 during Pass 4. Still faster would be to start
with eight descending runs during Pass 1, since this would interchange all the
A’s and D’s. However, the balanced merge on 16 initial runs would require the
initial runs to be ascending; and we usually don’t know in advance how many
initial runs will be formed, so it is necessary to choose one consistent direction.
Therefore the idea of rewinding after Pass 3 is probably best.

The cascade merge carries over in the same way. For example, consider
sorting 14 initial runs on four tapes:

T1 T2 T3 T4
Pass 1 A1A1A1A1A1A1 A1A1A1A1A1 A1A1A1 —
Pass 2 — D1 D2D2 D3D3D3
Pass 3 A6 A5 A3 —
Pass 4 — — — D14

Again, we could produce A14 instead of D14, if we rewound T1, T2, T3 just
before the final pass. This tableau illustrates a “pure” cascade merge, in the
sense that all of the one-way merges have been performed explicitly. If we had
suppressed the copying operations, as in Algorithm 5.4.3C, we would have been
confronted with the situation

A1 — D2D2 D3D3D3

after Pass 2, and it would have been impossible to continue with a three-way
merge since we cannot merge runs that are in opposite directions! The operation
of copying T1 to T2 could be avoided if we rewound T1 and proceeded to read
it forward during the next merge phase (while reading T3 and T4 backwards).
But it would then be necessary to rewind T1 again after merging, so this trick
trades one copy for two rewinds.

Thus the distribution method of Algorithm 5.4.3C does not work as efficient-
ly for read-backwards as for read-forwards; the amount of time required jumps
rather sharply every time the number of initial runs passes a “perfect” cas-
cade distribution number. Another dispersion technique can be used to give a
smoother transition between perfect cascade distributions (see exercise 17).

Read-backward polyphase. At first glance (and even at second and third
glance), the polyphase merge scheme seems to be totally unfit for reading back-
wards. For example, suppose that we have 13 initial runs and three tapes:

T1 T2 T3
Phase 1 A1A1A1A1A1 A1A1A1A1A1A1A1A1 —
Phase 2 — A1A1A1 D2D2D2D2D2

Now we’re stuck; we could rewind either T2 or T3 and then read it forwards,
while reading the other tape backwards, but this would jumble things up and
we would have gained comparatively little by reading backwards.
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An ingenious idea that saves the situation is to alternate the direction of
runs on each tape. Then the merging can proceed in perfect synchronization:

T1 T2 T3
Phase 1 A1D1A1D1A1 D1A1D1A1D1A1D1A1 —
Phase 2 — D1A1D1 D2A2D2A2D2
Phase 3 A3D3A3 — D2A2
Phase 4 A3 D5A5 —
Phase 5 — D5 D8
Phase 6 A13 — —

This principle was mentioned briefly by R. L. Gilstad in his original article on
polyphase merging, and he described it more fully in CACM 6 (1963), 220–223.

The ADA . . . technique works properly for polyphase merging on any num-
ber of tapes; for we can show that the A’s and D’s will be properly synchronized
at each phase, provided only that the initial distribution pass produces alter-
nating A’s and D’s on each tape and that each tape ends with A (or each tape
ends with D): Since the last run written on the output file during one phase is
in the opposite direction from the last runs used from the input files, the next
phase always finds its runs in the proper orientation. Furthermore we have seen
in exercise 5.4.2–13 that most of the perfect Fibonacci distributions call for an
odd number of runs on one tape (the eventual output tape), and an even number
of runs on each other tape. If T1 is designated as the final output tape, we can
therefore guarantee that all tapes end with an A run, if we start T1 with an A
and let the remaining tapes start with a D. A distribution method analogous to
Algorithm 5.4.2D can be used, modified so that the distributions on each level
have T1 as the final output tape. (We skip levels 1, T +1, 2T +1, . . . , since they
are the levels in which the initially empty tape is the final output tape.) For
example, in the six-tape case, we can use the following distribution numbers in
place of 5.4.2–(1):

Final output
Level T1 T2 T3 T4 T5 Total will be on

0 1 0 0 0 0 1 T1
2 1 2 2 2 2 9 T1
3 3 4 4 4 2 17 T1
4 7 8 8 6 4 33 T1 (1)
5 15 16 14 12 8 65 T1
6 31 30 28 24 16 129 T1
8 61 120 116 108 92 497 T1

Thus, T1 always gets an odd number of runs, while T2 through T5 get the even
numbers, in decreasing order for flexibility in dummy run assignment. Such a
distribution has the advantage that the final output tape is known in advance,
regardless of the number of initial runs that happen to be present. It turns out
(see exercise 3) that the output will always appear in ascending order on T1
when this scheme is used.
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Another way to handle the distribution for read-backward polyphase has
been suggested by D. T. Goodwin and J. L. Venn [CACM 7 (1964), 315]. We
can distribute runs almost as in Algorithm 5.4.2D, beginning with a D run on
each tape. When the input is exhausted, a dummy A run is imagined to be
at the beginning of the unique “odd” tape, unless a distribution with all odd
numbers has been reached. Other dummies are imagined at the end of the
tapes, or grouped into pairs in the middle. The question of optimum placement
of dummy runs is analyzed in exercise 5 below.

Optimum merge patterns. So far we have been discussing various patterns
for merging on tape, without asking for “best possible” methods. It appears
to be quite difficult to determine the optimal patterns, especially in the read-
forward case where the interaction of rewind time with merge time is hard to
handle. On the other hand, when merging is done by reading backwards and
writing forwards, all rewinding is essentially eliminated, and it is possible to
get a fairly good characterization of optimal ways to merge. Richard M. Karp
has introduced some very interesting approaches to this problem, and we shall
conclude this section by discussing the theory he has developed.

In the first place we need a more satisfactory way to describe merging
patterns, instead of the rather mysterious tape-content tableaux that have been
used above. Karp has suggested two ways to do this, the vector representation
and the tree representation of a merge pattern. Both forms of representation are
useful in practice, so we shall describe them in turn.

The vector representation of a merge pattern consists of a sequence of “merge
vectors” y(m) . . . y(1) y(0), each of which has T components. The ith-last merge
step is represented by y(i) in the following way:

y
(i)
j =

+1, if tape number j is an input to the merge;
0, if tape number j is not used in the merge;
−1, if tape number j gets the output of the merge.

(2)

Thus, exactly one component of y(i) is −1, and the other components are 0s and
1s. The final vector y(0) is special; it is a unit vector, having 1 in position j if the
final sorted output appears on unit j, and 0 elsewhere. These definitions imply
that the vector sum

v(i) = y(i) + y(i−1) + · · ·+ y(0) (3)

represents the distribution of runs on tape just before the ith-last merge step,
with v

(i)
j runs on tape j. In particular, v(m) tells how many runs the initial

distribution pass places on each tape.
It may seem awkward to number these vectors backwards, with y(m) coming

first and y(0) last, but this peculiar viewpoint turns out to be advantageous for
developing the theory. One good way to search for an optimal method is to start
with the sorted output and to imagine “unmerging” it to various tapes, then
unmerging these, etc., considering the successive distributions v(0), v(1), v(2), . . .
in the reverse order from which they actually occur during the sorting process.
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In fact that is essentially the approach we have taken already in our analysis of
polyphase and cascade merging.

The three merge patterns described in tabular form earlier in this section
have the following vector representations:
Balanced (T = 4, S = 8) Cascade (T = 4, S = 14) Polyphase (T = 3, S = 13)
v(7) = ( 4, 4, 0, 0) v(10) = ( 6, 5, 3, 0) v(12) = ( 5, 8, 0)
y(7) = (+1,+1,−1, 0) y(10) = (+1,+1,+1,−1) y(12) = (+1,+1,−1)
y(6) = (+1,+1, 0,−1) y(9) = (+1,+1,+1,−1) y(11) = (+1,+1,−1)
y(5) = (+1,+1,−1, 0) y(8) = (+1,+1,+1,−1) y(10) = (+1,+1,−1)
y(4) = (+1,+1, 0,−1) y(7) = (+1,+1,−1, 0) y(9) = (+1,+1,−1)
y(3) = (−1, 0,+1,+1) y(6) = (+1,+1,−1, 0) y(8) = (+1,+1,−1)
y(2) = ( 0,−1,+1,+1) y(5) = (+1,−1, 0, 0) y(7) = (−1,+1,+1)
y(1) = (+1,+1,−1, 0) y(4) = (−1,+1,+1,+1) y(6) = (−1,+1,+1)
y(0) = ( 0, 0, 1, 0) y(3) = ( 0,−1,+1,+1) y(5) = (−1,+1,+1)

y(2) = ( 0, 0,−1,+1) y(4) = (+1,−1,+1)
y(1) = (+1,+1,+1,−1) y(3) = (+1,−1,+1)
y(0) = ( 0, 0, 0, 1) y(2) = (+1,+1,−1)

y(1) = (−1,+1,+1)
y(0) = ( 1, 0, 0)

Every merge pattern obviously has a vector representation. Conversely, it is
easy to see that the sequence of vectors y(m) . . . y(1) y(0) corresponds to an actual
merge pattern if and only if the following three conditions are satisfied:

i) y(0) is a unit vector.
ii) y(i) has exactly one component equal to −1, all other components equal to

0 or +1, for m ≥ i ≥ 1.
iii) All components of y(i) + · · ·+ y(1) + y(0) are nonnegative, for m ≥ i ≥ 1.

The tree representation of a merge pattern gives another picture of the same
information. We construct a tree with one external leaf node for each initial
run, and one internal node for each run that is merged, in such a way that the
descendants of each internal node are the runs from which it was fabricated.
Each internal node is labeled with the step number on which the corresponding
run was formed, numbering steps backwards as in the vector representation;
furthermore, the line just above each node is labeled with the name of the tape
on which that run appears. For example, the three merge patterns above have
the tree representations depicted in Fig. 76, if we call the tapes A, B, C, D
instead of T1, T2, T3, T4.

This representation displays many of the relevant properties of the merge
pattern in convenient form; for example, if the run on level 0 of the tree (the
root) is to be ascending, then the runs on level 1 must be descending, those
on level 2 must be ascending, etc.; an initial run is ascending if and only if the
corresponding external node is on an even-numbered level. Furthermore the total
number of initial runs processed during the merging (not including the initial
distribution) is exactly equal to the external path length of the tree, since each
initial run on level k is processed exactly k times.
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Fig. 76. Tree representations of three merge patterns.

Every merge pattern has a tree representation, but not every tree defines a
merge pattern. A tree whose internal nodes have been labeled with the numbers
1 through m, and whose lines have been labeled with tape names, represents a
valid read-backward merge pattern if and only if
a) no two lines adjacent to the same internal node have the same tape name;
b) if i > j, and if A is a tape name, the tree does not contain the configuration

i

j

A ;

c) if i < j < k < l, and if A is a tape name, the tree does not contain

both
i

k

A and
j

l

A or both
i

k

A and
j

A . (4)



5.4.4 READING TAPE BACKWARDS 305

Condition (a) is self-evident, since the input and output tapes in a merge must be
distinct; similarly, (b) is obvious. The “no crossover” condition (c) mirrors the
last-in-first-out restriction that characterizes read-backward operations on tape:
The run formed at step k must be removed before any runs formed previously on
that same tape; hence the configurations in (4) are impossible. It is not difficult
to verify that any labeled tree satisfying conditions (a), (b), (c) does indeed
correspond to a read-backward merge pattern.

If there are T tape units, condition (a) implies that the degree of each
internal node is T − 1 or less. It is not always possible to attach suitable labels
to all such trees; for example, when T = 3 there is no merge pattern whose tree
has the shape

(5)

This shape would lead to an optimal merge pattern if we could attach step
numbers and tape names in a suitable way, since it is the only way to achieve
the minimum external path length in a tree having four external nodes. But
there is essentially only one way to do the labeling according to conditions (a)
and (b), because of the symmetries of the diagram, namely,

1

2 3

B C

A AC B

A

(6)

and this violates condition (c). A shape that can be labeled according to the
conditions above, using at most T tape names, is called a T-lifo tree.

Another way to characterize all labeled trees that can arise from merge
patterns is to consider how all such trees can be “grown.” Start with some tape
name, say A, and with the seedling

A

.

Step number i in the tree’s growth consists of choosing distinct tape names
B, B1, B2, . . . , Bk, and changing the most recently formed external node corre-
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sponding to B

from B to i

B1 B2 Bk· · ·

B

. (7)

This “last formed, first grown on” rule explains how the tree representation can
be constructed directly from the vector representation.

The determination of strictly optimum T -tape merge patterns — that is, of
T -lifo trees whose path length is minimum for a given number of external nodes —
seems to be quite difficult. For example, the following nonobvious pattern turns
out to be an optimum way to merge seven initial runs on four tapes, reading
backwards:

1

2

3

4

B C D

CA

A

AD DB

A

(8)

A one-way merge is actually necessary to achieve the optimum! (See exercise 8.)
On the other hand, it is not so difficult to give constructions that are asymptot-
ically optimal, for any fixed T.

Let KT (n) be the minimum external path length achievable in a T -lifo tree
with n external nodes. From the theory developed in Section 2.3.4.5, it is not
difficult to prove that

KT (n) ≥ nq −


(T − 1)q − n

/(T − 2)


, q = ⌈logT−1 n⌉, (9)

since this is the minimum external path length of any tree with n external nodes
and all nodes of degree < T. At the present time comparatively few values of
KT (n) are known exactly. Here are some upper bounds that are probably exact:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
K3(n) ≤ 0 2 5 9 12 16 21 25 30 34 39 45 50 56 61 (10)
K4(n) ≤ 0 2 3 6 8 11 14 17 20 24 27 31 33 37 40

Karp discovered that any tree whose internal nodes have degrees < T is
almost T -lifo, in the sense that it can be made T -lifo by changing some of the
external nodes to one-way merges. In fact, the construction of a suitable labeling
is fairly simple. Let A be a particular tape name, and proceed as follows:
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Step 1. Attach tape names to the lines of the tree diagram, in any manner
consistent with condition (a) above, provided that the special name A is used
only in the leftmost line of a branch.
Step 2. Replace each external node of the form

B by
A

B

whenever B ̸= A.
Step 3. Number the internal nodes of the tree in preorder. The result will be a
labeling satisfying conditions (a), (b), and (c).

For example, if we start with the tree

(11)

and three tapes, this procedure might assign labels as follows:

1

2

3

4 5

6

7

8

9

10 11

12

13

A A

A A

A

A A A

A

A

B

B B

B

B

C

C

C C C

A

(12)

It is not difficult to verify that Karp’s construction satisfies the “last formed,
first grown on” discipline, because of the nature of preorder (see exercise 12).

The result of this construction is a merge pattern for which all of the initial
runs appear on tape A. This suggests the following distribution and sorting
scheme, which we may call the preorder merge:
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P1. Distribute initial runs onto Tape A until the input is exhausted. Let S be
the total number of initial runs.

P2. Carry out the construction above, using a minimum-path-length (T − 1)-
ary tree with S external nodes, obtaining a T -lifo tree whose external path
length is within S of the lower bound in (9).

P3. Merge the runs according to this pattern.

This scheme will produce its output on any desired tape. But it has one serious
flaw — does the reader see what will go wrong? The problem is that the merge
pattern requires some of the runs initially on tape A to be ascending, and some to
be descending, depending on whether the corresponding external node appears
on an odd or an even level. This problem can be resolved without knowing S
in advance, by copying runs that should be descending onto an auxiliary tape
or tapes, just before they are needed. Then the total amount of processing, in
terms of initial run lengths, comes to

S logT−1 S + O(S). (13)

Thus the preorder merge is definitely better than polyphase or cascade, as
S →∞; indeed, it is asymptotically optimum, since (9) shows that S logT−1 S +
O(S) is the best we could ever hope to achieve on T tapes. On the other
hand, for the comparatively small values of S that usually arise in practice, the
preorder merge is rather inefficient; polyphase or cascade methods are simpler
and faster, when S is reasonably small. Perhaps it will be possible to invent a
simple distribution-and-merge scheme that is competitive with polyphase and
cascade for small S, and that is asymptotically optimum for large S.

The second set of exercises below shows how Karp has formulated the
question of read-forward merging in a similar way. The theory turns out to
be rather more complicated in this case, although some very interesting results
have been discovered.

EXERCISES — First Set
1. [17 ] It is often convenient, during read-forward merging, to mark the end of each

run on tape by including an artificial sentinel record whose key is +∞. How should
this practice be modified, when reading backwards?

2. [20 ] Will the columns of an array like (1) always be nondecreasing, or is there a
chance that we will have to “subtract” runs from some tape as we go from one level to
the next?

x 3. [20 ] Prove that when read-backward polyphase merging is used with the perfect
distributions of (1), we will always obtain an A run on tape T1 when sorting is complete,
if T1 originally starts with ADA . . . and T2 through T5 start with DAD . . . .

4. [M22 ] Is it a good idea to do read-backward polyphase merging after distributing
all runs in ascending order, imagining all the D positions to be initially filled with
dummies?

x 5. [23 ] What formulas for the strings of merge numbers replace (8), (9), (10), and
(11) of Section 5.4.2, when read-backward polyphase merging is used? Show the
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merge numbers for the fifth level distribution on six tapes, by drawing a diagram
like Fig. 71(a).

6. [07 ] What is the vector representation of the merge pattern whose tree represen-
tation is (8)?

7. [16 ] Draw the tree representation for the read-backward merge pattern defined
by the following sequence of vectors:

v(33) = ( 20, 9, 5) y(16) = (+1,+1,−1)
y(33) = (+1,−1,+1) y(15) = (+1,+1,−1)
y(32) = (+1,+1,−1) y(14) = (+1,−1,+1)
y(31) = (+1,+1,−1) y(13) = (+1,−1,+1)
y(30) = (+1,+1,−1) y(12) = (−1,+1,+1)
y(29) = (+1,−1,+1) y(11) = (+1,+1,−1)
y(28) = (−1,+1,+1) y(10) = (+1,+1,−1)
y(27) = (+1,−1,+1) y(9) = (+1,−1,+1)
y(26) = (+1,−1,+1) y(8) = (+1,+1,−1)
y(25) = (+1,+1,−1) y(7) = (+1,+1,−1)
y(24) = (+1,−1,+1) y(6) = (+1,+1,−1)
y(23) = (+1,−1,+1) y(5) = (−1,+1,+1)
y(22) = (+1,−1,+1) y(4) = (+1,−1,+1)
y(21) = (−1,+1,+1) y(3) = (−1,+1,+1)
y(20) = (+1,+1,−1) y(2) = (+1,−1,+1)
y(19) = (−1,+1,+1) y(1) = (−1,+1,+1)
y(18) = (+1,+1,−1) y(0) = ( 1, 0, 0)
y(17) = (+1,+1,−1)

8. [23 ] Prove that (8) is an optimum way to merge, reading backwards, when S = 7
and T = 4, and that all methods that avoid one-way merging are inferior.

9. [M22 ] Prove the lower bound (9).
10. [41 ] Prepare a table of the exact values of KT (n), using a computer.

x 11. [20 ] True or false: Any read-backward merge pattern that uses nothing but
(T − 1)-way merging must always have the runs alternating ADAD . . . on each tape;
it will not work if two adjacent runs appear in the same order.
12. [22 ] Prove that Karp’s preorder construction always yields a labeled tree satisfy-
ing conditions (a), (b), and (c).
13. [16 ] Make (12) more efficient, by removing as many of the one-way merges as
possible so that preorder still gives a valid labeling of the internal nodes.
14. [40 ] Devise an algorithm that carries out the preorder merge without explicitly
representing the tree in steps P2 and P3, using only O(logS) words of memory to
control the merging pattern.
15. [M39 ] Karp’s preorder construction in the text yields trees with one-way merges at
several terminal nodes. Prove that when T = 3 it is possible to construct asymptotically
optimal 3-lifo trees in which two-way merging is used throughout.

In other words, let K̂T (n) be the minimum external path length over all T -lifo
trees with n external nodes, such that every internal node has degree T −1. Prove that
K̂3(n) = n lgn+O(n).
16. [M46 ] In the notation of exercise 15, is K̂T (n) = n logT−1 n+O(n) for all T ≥ 3,
when n ≡ 1 (modulo T − 2)?
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x 17. [28 ] (Richard D. Pratt.) To achieve ascending order in a read-backward cascade
merge, we could insist on an even number of merging passes; this suggests a technique
of initial distribution that is somewhat different from Algorithm 5.4.3C.

a) Change 5.4.3–(1) so that it shows only the perfect distributions that require an
even number of merging passes.

b) Design an initial distribution scheme that interpolates between these perfect dis-
tributions. (Thus, if the number of initial runs falls between perfect distributions,
it is desirable to merge some, but not all, of the runs twice, in order to reach a
perfect distribution.)

x 18. [M38 ] Suppose that T tape units are available, for some T ≥ 3, and that T1
contains N records while the remaining tapes are empty. Is it possible to reverse the
order of the records on T1 in fewer than Ω(N logN) steps, without reading backwards?
(The operation is, of course, trivial if backwards reading is allowed.) See exercise
5.2.5–14 for a class of such algorithms that do require order N logN steps.

EXERCISES — Second Set
The following exercises develop the theory of tape merging on read-forward tapes; in
this case each tape acts as a queue instead of as a stack. A merge pattern can be
represented as a sequence of vectors y(m) . . . y(1)y(0) exactly as in the text, but when
we convert the vector representation to a tree representation we change “last formed,
first grown on” to “first formed, first grown on.” Thus the invalid configurations (4)
would be changed to

both
i

l

A and

j

k

A or both
i

A and

j

k

A . (4′)

A tree that can be labeled so as to represent a read-forward merge on T tapes is called
T -fifo, analogous to the term “T -lifo” in the read-backward case.

When tapes can be read backwards, they make very good stacks. But unfortu-
nately they don’t make very good general-purpose queues. If we randomly write and
read, in a first-in-first-out manner, we waste a lot of time moving from one part of the
tape to another. Even worse, we will soon run off the end of the tape! We run into the
same problem as the queue overrunning memory in 2.2.2–(4) and (5), but the solution
in 2.2.2–(6) and (7) doesn’t apply to tapes since they aren’t circular loops. Therefore
we shall call a tree strongly T -fifo if it can be labeled so that the corresponding merge
pattern makes each tape follow the special queue discipline “write, rewind, read all,
rewind; write, rewind, read all, rewind; etc.”

x 19. [22 ] (R. M. Karp.) Find a binary tree that is not 3-fifo.
x 20. [22 ] Formulate the condition “strongly T -fifo” in terms of a fairly simple rule

about invalid configurations of tape labels, analogous to (4′).
21. [18 ] Draw the tree representation for the read-forwards merge pattern defined by
the vectors in exercise 7. Is this tree strongly 3-fifo?
22. [28 ] (R. M. Karp.) Show that the tree representations for polyphase and cascade
merging with perfect distributions are exactly the same for both the read-backward
and the read-forward case, except for the numbers that label the internal nodes. Find
a larger class of vector representations of merging patterns for which this is true.
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23. [24 ] (R. M. Karp.) Let us say that a segment y(q) . . . y(r) of a merge pattern is a
stage if no output tape is subsequently used as an input tape — that is, if there do not
exist i, j, k with q ≥ i > k ≥ r, y(i)

j = −1, and y(k)
j = +1. The purpose of this exercise

is to prove that cascade merge minimizes the number of stages, over all merge patterns
having the same number of tapes and initial runs.

It is convenient to define some notation. Let us write v → w if v and w are T -
vectors such that w reduces to v in the first stage of some merge pattern. (Thus there
is a merge pattern y(m) . . . y(0) such that y(m) . . . y(l+1) is a stage, w = y(m) + · · ·+ y(0),
and v = y(l) + · · · + y(0).) Let us write v ⪯ w if v and w are T -vectors such that
the sum of the largest k elements of v is ≤ the sum of the largest k elements of w, for
1 ≤ k ≤ T. Thus, for example, (2, 1, 2, 2, 2, 1) ⪯ (1, 2, 3, 0, 3, 1), since 2 ≤ 3, 2+2 ≤ 3+3,
. . . , 2 + 2 + 2 + 2 + 1 + 1 ≤ 3 + 3 + 2 + 1 + 1 + 0. Finally, if v = (v1, . . . , vT ), let
C(v) = (sT , sT−2, sT−3, . . . , s1, 0) where sk is the sum of the largest k elements of v.

a) Prove that v → C(v).
b) Prove that v ⪯ w implies C(v) ⪯ C(w).
c) Assuming the result of exercise 24, prove that cascade merge minimizes the number

of stages.

24. [M35 ] In the notation of exercise 23, prove that v → w implies w ⪯ C(v).

25. [M36 ] (R. M. Karp.) Let us say that a segment y(q) . . . y(r) of a merge pattern
is a phase if no tape is used both for input and for output — that is, if there do not
exist i, j, k with q ≥ i ≥ r, q ≥ k ≥ r, yȷ

(i) = +1, and yȷ
(k) = −1. The purpose of this

exercise is to investigate merge patterns that minimize the number of phases. We shall
write v ⇒ w if w can be reduced to v in one phase (a similar notation was introduced
in exercise 23); and we let

Dk(v) = (sk +tk+1, sk +tk+2, . . . , sk +tT , 0, . . . , 0),

where tj denotes the jth largest element of v and sk = t1 + · · ·+ tk.
a) Prove that v ⇒ Dk(v) for 1 ≤ k < T.
b) Prove that v ⪯ w implies Dk(v) ⪯ Dk(w), for 1 ≤ k < T.
c) Prove that v ⇒ w implies w ⪯ Dk(v), for some k, 1 ≤ k < T.
d) Consequently, a merge pattern that sorts the maximum number of initial runs on

T tapes in q phases can be represented by a sequence of integers k1 k2 . . . kq, such
that the initial distribution is Dkq (. . . (Dk2 (Dk1 (u))) . . . ), where u = (1, 0, . . . , 0).
This minimum-phase strategy has a strongly T -fifo representation, and it also
belongs to the class of patterns in exercise 22. When T = 3 it is the polyphase
merge, and for T = 4, 5, 6, 7 it is a variation of the balanced merge.

26. [M46 ] (R. M. Karp.) Is the optimum sequence k1 k2 . . . kq mentioned in exercise 25
equal to 1⌈T/2⌉⌊T/2⌋⌈T/2⌉⌊T/2⌋ . . . , for all T ≥ 4 and all sufficiently large q?

*5.4.5. The Oscillating Sort

A somewhat different approach to merge sorting was introduced by Sheldon
Sobel in JACM 9 (1962), 372–375. Instead of starting with a distribution pass
where all the initial runs are dispersed to tapes, he proposed an algorithm that
oscillates back and forth between distribution and merging, so that much of the
sorting takes place before the input has been completely examined.
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Suppose, for example, that there are five tapes available for merging. Sobel’s
method would sort 16 initial runs as follows:

Operation T1 T2 T3 T4 T5 Cost
Phase 1 Distribute A1 A1 A1 A1 — 4
Phase 2 Merge — — — — D4 4
Phase 3 Distribute — A1 A1 A1 D4A1 4
Phase 4 Merge D4 — — — D4 4
Phase 5 Distribute D4A1 — A1 A1 D4A1 4
Phase 6 Merge D4 D4 — — D4 4
Phase 7 Distribute D4A1 D4A1 — A1 D4A1 4
Phase 8 Merge D4 D4 D4 — D4 4
Phase 9 Merge — — — A16 — 16

Here, as in Section 5.4.4, we use Ar and Dr to stand respectively for ascending
and descending runs of relative length r. The method begins by writing an initial
run onto each of four tapes, and merges them (reading backwards) onto the fifth
tape. Distribution resumes again, this time cyclically shifted one place to the
right with respect to the tapes, and a second merge produces another run D4.
When four D4’s have been formed in this way, an additional merge creates A16.
We could go on to create three more A16’s, merging them into a D64, and so on
until the input is exhausted. It isn’t necessary to know the length of the input
in advance.

When the number of initial runs, S, is 4m, it is not difficult to see that this
method processes each record exactly m + 1 times: once during the distribution,
and m times during a merge. When S is between 4m−1 and 4m, we could assume
that dummy runs are present, bringing S up to 4m; hence the total sorting time
would essentially amount to


log4 S


+ 1 passes over all the data. This is just

what would be achieved by a balanced sort on eight tapes; in general, oscillating
sort with T work tapes is equivalent to balanced merging with 2(T −1) tapes,
since it makes 

logT−1 S


+ 1

passes over the data. When S is a power of T − 1, this is the best any T -tape
method could possibly do, since it achieves the lower bound in Eq. 5.4.4–(9). On
the other hand, when S is

(T − 1)m−1 + 1,

just one higher than a power of T − 1, the method wastes nearly a whole pass.
Exercise 2 shows how to eliminate part of this penalty for non-perfect-

powers S, by using a special ending routine. A further refinement was discovered
in 1966 by Dennis L. Bencher, who called his procedure the “criss-cross merge”
[see H. Wedekind, Datenorganisation (Berlin: W. de Gruyter, 1970), 164–166;
see also U.S. Patent 3540000 (1970)]. The main idea is to delay merging until
more knowledge of S has been gained. We shall discuss a slightly modified form
of Bencher’s original scheme.
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This improved oscillating sort proceeds as follows:

Operation T1 T2 T3 T4 T5 Cost
Phase 1 Distribute — A1 A1 A1 A1 4
Phase 2 Distribute — A1 A1A1 A1A1 A1A1 3
Phase 3 Merge D4 — A1 A1 A1 4
Phase 4 Distribute D4A1 — A1 A1A1 A1A1 3
Phase 5 Merge D4 D4 — A1 A1 4
Phase 6 Distribute D4A1 D4A1 — A1 A1A1 3
Phase 7 Merge D4 D4 D4 — A1 4
Phase 8 Distribute D4A1 D4A1 D4A1 — A1 3
Phase 9 Merge D4 D4 D4 D4 — 4
We do not merge the D4’s into an A16 at this point (unless the input happens
to be exhausted); only after building up to

Phase 15 Merge D4D4 D4D4 D4D4 D4 — 4

will we get

Phase 16 Merge D4 D4 D4 — A16 16

The second A16 will occur after three more D4’s have been made,

Phase 22 Merge D4D4 D4D4 D4 — A16D4 4
Phase 23 Merge D4 D4 — A16 A16 16

and so on (compare with Phases 1–5). The advantage of Bencher’s scheme can be
seen for example if there are only five initial runs: Oscillating sort as modified
in exercise 2 would do a four-way merge (in Phase 2) followed by a two-way
merge, for a total cost of 4 + 4 + 1 + 5 = 14, while Bencher’s scheme would do
a two-way merge (in Phase 3) followed by a four-way merge, for a total cost of
4 + 1 + 2 + 5 = 12. Both methods also involve a small additional cost, namely
one unit of rewind before the final merge.

A precise description of Bencher’s method appears in Algorithm B below.
Unfortunately it seems to be a procedure that is harder to understand than to
code; it is much easier to explain the technique to a computer than to a computer
scientist! This is partly because it is an inherently recursive method that has
been expressed in iterative form and then optimized somewhat; the reader may
find it necessary to trace through the operation of this algorithm several times
before discovering what is really going on.

Algorithm B (Oscillating sort with “criss-cross” distribution). This algorithm
takes initial runs and disperses them to tapes, occasionally interrupting the
distribution process in order to merge some of the tape contents. The algorithm
uses P -way merging, assuming that T = P + 1 ≥ 3 tape units are available —
not counting the unit that may be necessary to hold the input data. The tape
units must allow reading in both forward and backward directions, and they are
designated by the numbers 0, 1, . . . , P . The following tables are maintained:
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D[j], 0 ≤ j ≤ P : Number of dummy runs assumed to be present at the end of
tape j.

A[l, j], 0 ≤ l ≤ L,
0 ≤ j ≤P

Here L is a number such that at most PL+1 initial runs will
be input. When A[l, j] = k ≥ 0, a run of nominal length
P k is present on tape j, corresponding to “level l” of the
algorithm’s operation. This run is ascending if k is even,
descending if k is odd. When A[l, j] < 0, level l does not use
tape j.

The statement “Write an initial run on tape j” is an abbreviation for the
following operations:

Set A[l, j] ← 0. If the input is exhausted, increase D[j] by 1; otherwise
write an initial run (in ascending order) onto tape j.

The statement “Merge to tape j” is an abbreviation for the following operations:
If D[i] > 0 for all i ̸= j, decrease D[i] by 1 for all i ̸= j and increase D[j]
by 1. Otherwise merge one run to tape j, from all tapes i ̸= j such that
D[i] = 0, and decrease D[i] by 1 for all other i ̸= j.

B1. Initialize

B2. Input
complete?

B3. Begin
new level

B4. Ready
to merge?

B5. Merge
B6. Is level
complete?

No

Yes

Yes

No Yes No

l=0

Fig. 77. Oscillating sort, with a “criss-cross” distribution.

B1. [Initialize.] Set D[j] ← 0 for 0 ≤ j ≤ P . Set A[0, 0] ← −1, l ← 0, q ← 0.
Then write an initial run on tape j, for 1 ≤ j ≤ P .

B2. [Input complete?] (At this point tape q is empty and the other tapes contain
at most one run each.) If there is more input, go on to step B3. But if
the input is exhausted, rewind all tapes j ̸= q such that A[0, j] is even;
then merge to tape q, reading forwards on tapes just rewound, and reading
backwards on the other tapes. This completes the sort, with the output in
ascending order on tape q.

B3. [Begin new level.] Set l ← l + 1, r ← q, s ← 0, and q ← (q + 1) mod T .
Write an initial run on tape (q + j) mod T, for 1 ≤ j ≤ T − 2. (Thus an
initial run is written onto each tape except tapes q and r.) Set A[l, q]← −1
and A[l, r]← −2.

B4. [Ready to merge?] If A[l−1, q] ̸= s, go back to step B3.
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B5. [Merge.] (At this point A[l−1, q] = A[l, j] = s for all j ̸= q, j ̸= r.)
Merge to tape r, reading backwards. (See the definition of this operation
above.) Then set s ← s + 1, l ← l − 1, A[l, r] ← s, and A[l, q] ← −1. Set
r ← (2q− r) mod T . (In general, we have r = (q− 1) mod T when s is even,
r = (q + 1) mod T when s is odd.)

B6. [Is level complete?] If l = 0, go to B2. Otherwise if A[l, j] = s for all j ̸= q
and j ̸= r, go to B4. Otherwise return to B3.

We can use a “recursion induction” style of proof to show that this al-
gorithm is valid, just as we have done for Algorithm 2.3.1T. Suppose that
we begin at step B3 with l = l0, q = q0, s+ = A[l0, (q0+1) mod T], and
s− = A[l0, (q0−1) mod T]; and assume furthermore that either s+ = 0 or s− = 1
or s+ = 2 or s− = 3 or · · · . It is possible to verify by induction that the algorithm
will eventually get to step B5 without changing rows 0 through l0 of A, and with
l = l0 + 1, q = q0 ± 1, r = q0, and s = s+ or s−, where we choose the + sign if
s+ = 0 or (s+ = 2 and s− ̸= 1) or (s+ = 4 and s− ̸= 1, 3) or · · · , and we choose
the − sign if (s− = 1 and s+ ̸= 0) or (s− = 3 and s+ ̸= 0, 2) or · · · . The proof
sketched here is not very elegant, but the algorithm has been stated in a form
more suited to implementation than to verification.

Figure 78 shows the efficiency of Algorithm B, in terms of the average num-
ber of times each record is merged as a function of the number S of initial runs,
assuming that the initial runs are approximately equal in length. (Corresponding
graphs for polyphase and cascade sort have appeared in Figs. 70 and 74.) A slight
improvement, mentioned in exercise 3, has been used in preparing this chart.

A related method called the gyrating sort was developed by R. M. Karp,
based on the theory of preorder merging that we have discussed in Section 5.4.4;
see Combinatorial Algorithms, edited by Randall Rustin (Algorithmics Press,
1972), 21–29.

Reading forwards. The oscillating sort pattern appears to require a read-
backwards capability, since we need to store long runs somewhere as we merge
newly input short runs. However, M. A. Goetz [Proc. AFIPS Spring Joint
Comp. Conf. 25 (1964), 599–607] has discovered a way to perform an oscillating
sort using only forward reading and simple rewinding. His method is radically
different from the other schemes we have seen in this chapter, in two ways:
a) Data is sometimes written at the front of the tape, with the understanding

that the existing data in the middle of the tape is not destroyed.
b) All initial runs have a fixed maximum length.

Condition (a) violates the first-in-first-out property we have assumed to be
characteristic of forward reading, but it can be implemented reliably if a sufficient
amount of blank tape is left between runs and if parity errors are ignored at
appropriate times. Condition (b) tends to be somewhat incompatible with an
efficient use of replacement selection.

Goetz’s read-forward oscillating sort has the somewhat dubious distinction
of being one of the first algorithms to be patented as an algorithm instead of as
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a physical device [U.S. Patent 3380029 (1968)]; between 1968 and 1988, no one in
the U.S.A. could legally use the algorithm in a program without permission of the
patentee. Bencher’s read-backward oscillating sort technique was patented by
IBM several years later. [Alas, we have reached the end of the era when the joy of
discovering a new algorithm was satisfaction enough! Fortunately the oscillating
sort isn’t especially good; let’s hope that community-minded folks who invent
the best algorithms continue to make their ideas freely available. Of course the
specter of people keeping new techniques completely secret is far worse than the
public appearance of algorithms that are proprietary for a limited time.]

The central idea in Goetz’s method is to arrange things so that each tape
begins with a run of relative length 1, followed by one of relative length P , then
P 2, etc. For example, when T = 5 the sort begins as follows, using “.” to
indicate the current position of the read-write head on each tape:

Operation T1 T2 T3 T4 T5 “Cost” Remarks
Phase 1 Distribute .A1 .A1 .A1 .A1 A1. 5 [T5 not rewound]
Phase 2 Merge A\ 1. A\ 1. A\ 1. A\ 1. A1 A4. 4 [Now rewind all]
Phase 3 Distribute .A1 .A1 .A1 A1. .A1 A4 4 [T4 not rewound]
Phase 4 Merge A\ 1. A\ 1. A\ 1. A1 A4. A\ 1.A4 4 [Now rewind all]
Phase 5 Distribute .A1 .A1 A1. .A1 A4 .A1 A4 4 [T3 not rewound]
Phase 6 Merge A\ 1. A\ 1. A1 A4. A\ 1.A4 A\ 1.A4 4 [Now rewind all]
Phase 7 Distribute .A1 A1. .A1 A4 .A1 A4 .A1 A4 4 [T2 not rewound]
Phase 8 Merge A\ 1. A1 A4. A\ 1.A4 A\ 1.A4 A\ 1.A4 4 [Now rewind all]
Phase 9 Distribute A1. .A1 A4 .A1 A4 .A1 A4 .A1 A4 4 [T1 not rewound]
Phase 10 Merge A1A4. A\ 1.A4 A\ 1.A4 A\ 1.A4 A\ 1.A4 4 [No rewinding]
Phase 11 Merge A1A4A16. A\ 1 A\ 4. A\ 1 A\ 4. A\ 1 A\ 4. A\ 1 A\ 4. 16 [Now rewind all]

And so on. During Phase 1, T1 was rewinding while T2 was receiving its input,
then T2 was rewinding while T3 was receiving input, etc. Eventually, when the
input is exhausted, dummy runs will start to appear, and we will sometimes
need to imagine that they were written explicitly on the tape at full length. For
example, if S = 18, the A1’s on T4 and T5 would be dummies during Phase 9;
we would have to skip forwards on T4 and T5 while merging from T2 and T3
to T1 during Phase 10, because we have to get to the A4’s on T4 and T5 in
preparation for Phase 11. On the other hand, the dummy A1 on T1 need not
appear explicitly. Thus the “endgame” is a bit tricky.

Another example of this method appears in the next section.

EXERCISES
1. [22 ] The text illustrates Sobel’s original oscillating sort for T = 5 and S = 16.

Give a precise specification of an algorithm that generalizes the procedure, sorting
S = PL initial runs on T = P + 1 ≥ 3 tapes. Strive for simplicity.

2. [24 ] If S = 6 in Sobel’s original method, we could pretend that S = 16 and that
10 dummy runs were present. Then Phase 3 in the text’s example would put dummy
runs A0 on T4 and T5; Phase 4 would merge the A1’s on T2 and T3 into a D2 on T1;
Phases 5–8 would do nothing; and Phase 9 would produce A6 on T4. It would be better
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Fig. 78. Efficiency of oscillating sort, using the technique of Algorithm B and exercise 3.

to rewind T2 and T3 just after Phase 3, then to produce A6 immediately on T4 by
three-way merging.

Show how to modify the algorithm of exercise 1, so that an improved ending like
this is obtained when S is not a perfect power of P .

x 3. [29 ] Prepare a chart showing the behavior of Algorithm B when T = 3, assuming
that there are nine initial runs. Show that the procedure is obviously inefficient in one
place, and prescribe corrections to Algorithm B that will remedy the situation.

4. [21 ] Step B3 sets A[l, q] and A[l, r] to negative values. Show that one of these
two operations is always superfluous, since the corresponding A table entry is never
looked at.

5. [M25 ] Let S be the number of initial runs present in the input to Algorithm B.
Which values of S require no rewinding in step B2?

*5.4.6. Practical Considerations for Tape Merging
Now comes the nitty-gritty: We have discussed the various families of merge
patterns, so it is time to see how they actually apply to real configurations of
computers and magnetic tapes, and to compare them in a meaningful way. Our
study of internal sorting showed that we can’t adequately judge the efficiency of a
sorting method merely by counting the number of comparisons it performs; sim-
ilarly we can’t properly evaluate an external sorting method by simply knowing
the number of passes it makes over the data.
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In this section we shall discuss the characteristics of typical tape units, and
the way they affect initial distribution and merging. In particular we shall study
some schemes for buffer allocation, and the corresponding effects on running
time. We also shall consider briefly the construction of sort generator programs.

How tape works. Different manufacturers have provided tape units with widely
varying characteristics. For convenience, we shall define a hypothetical MIXT tape
unit, which is reasonably typical of the equipment that was being manufactured
at the time this book was first written. MIXT reads and writes 800 characters per
inch of tape, at a rate of 75 inches per second. This means that one character
is read or written every 1

60 ms, or 16 2
3 microseconds, when the tape is active.

Actual tape units that were available in 1970 had densities ranging from 200 to
1600 characters per inch, and tape speeds ranging from 37 1

2 to 150 inches per
second, so their effective speed varied from 1/8 to 4 times as fast as MIXT.

Of course, we observed near the beginning of Section 5.4 that magnetic tapes
in general are now pretty much obsolete. But many lessons were learned during
the decades when tape sorting was of major importance, and those lessons are
still valuable. Thus our main concern here is not to obtain particular answers; it
is to learn how to combine theory and practice in a reasonable way. Methodology
is much more important than phenomenology, because the principles of problem
solving remain useful despite technological changes. Readers will benefit most
from this material by transplanting themselves temporarily into the mindset of
the 1970s. Let us therefore pretend that we still live in that bygone era.

One of the important considerations to keep in mind, as we adopt the
perspective of the early days, is the fact that individual tapes have a strictly
limited capacity. Each reel contains 2400 feet of tape or less; hence there is
room for at most 23,000,000 or so characters per reel of MIXT tape, and it takes
about 23000000/3600000 ≈ 6.4 minutes to read them all. If larger files must be
sorted, it is generally best to sort one reelful at a time, and then to merge the
individually sorted reels, in order to avoid excessive tape handling. This means
that the number of initial runs, S, actually present in the merge patterns we have
been studying is never extremely large. We will never find S > 5000, even with a
very small internal memory that produces initial runs only 5000 characters long.
Consequently the formulas that give asymptotic efficiency of the algorithms as
S →∞ are primarily of academic interest.

Data appears on tape in blocks (Fig. 79), and each read/write instruction
transmits a single block. Tape blocks are often called “records,” but we shall
avoid that terminology because it conflicts with the fact that we are sorting a
file of “records” in another sense. Such a distinction was unnecessary on many
of the early sorting programs written during the 1950s, since one record was
written per block; but we shall see that it is usually advantageous to have quite
a few records in every block on the tape.

An interblock gap, 480 character positions long, appears between adjacent
blocks, in order to allow the tape to stop and to start between individual read
or write commands. The effect of interblock gaps is to decrease the number of
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Fig. 79. Magnetic tape with variable-size blocks.

characters per reel of tape, depending on the number of characters per block (see
Fig. 80); and the average number of characters transmitted per second decreases
in the same way, since tape moves at a fairly constant speed.
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Fig. 80. The number of characters per reel of MIXT tape, as a function of the block size.

Many old-fashioned computers had fixed block sizes that were rather small;
their design was reflected in the MIX computer as defined in Chapter 1, which
always reads and writes 100-word blocks. But MIX’s convention corresponds to
about 500 characters per block, and 480 characters per gap, hence almost half
the tape is wasted! Most machines of the 1970s therefore allowed the block size
to be variable; we shall discuss the choice of appropriate block sizes below.

At the end of a read or write operation, the tape unit “coasts” at full speed
over the first 66 characters (or so) of the gap. If the next operation for the same
tape is initiated during this time, the tape motion continues without interruption.
But if the next operation doesn’t come soon enough, the tape will stop and it
will also require some time to accelerate to full speed on the next operation. The
combined stop/start time delay is 5 ms, 2 for the stop and 3 for the start (see
Fig. 81). Thus if we just miss the chance to have continuous full-speed reading,
the effect on running time is essentially the same as if there were 780 characters
instead of 480 in the interblock gap.

Now let us consider the operation of rewinding. Unfortunately, the exact
time needed to rewind over a given number n of characters is not easy to
characterize. On some machines there is a high-speed rewind that applies only
when n is greater than 5 million or so; for smaller values of n, rewinding goes at
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Fig. 81. How to compute the stop/start delay time. (This gets added to the time used
for reading or writing the blocks and the gaps.)

normal read/write speed. On other machines a special motor is used to control
all of the rewind operations; it gradually accelerates the tape reel to a certain
number of revolutions per minute, then puts on the brakes when it is time to
stop, and the actual tape speed varies with the fullness of the reel. For simplicity,
we shall assume that MIXT requires max(30, n/150) ms to rewind over n character
positions (including gaps), roughly two-fifths as long as it took to write them.
This is a reasonably good approximation to the behavior of many actual tape
units, where the ratio of read/write time to rewind time is generally between 2
and 3, but it does not adequately model the effect of combined low-speed and
high-speed rewind that is present on many other machines. (See Fig. 82.)

Initial loading and/or rewinding will position a tape at “load point,” and an
extra 110 ms are necessary for any read or write operation initiated at load point.
When the tape is not at load point, it may be read backwards; an extra 32 ms is
added to the time of any backward operation following a forward operation or
any forward operation following a backward one.
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Fig. 82. Approximate running time for two commonly used rewind techniques.
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Merging revisited. Let us now look again at the process of P -way merging,
with an emphasis on input and output activities, assuming that P +1 tape units
are being used for the input files and the output file. Our goal is to overlap
the input/output operations as much as possible with each other and with the
computations of the program, so that the overall merging time is minimized.

It is instructive to consider the following special case, in which serious
restrictions are placed on the amount of simultaneity possible. Suppose that
a) at most one tape may be written on at any one time;
b) at most one tape may be read from at any one time;
c) reading, writing, and computing may take place simultaneously only when

the read and write operations have been initiated simultaneously.
It turns out that a system of 2P input buffers and 2 output buffers is sufficient
to keep the tape moving at essentially its maximum speed, even though these
three restrictions are imposed, unless the computer is unusually slow. Note that
condition (a) is not really a restriction, since there is only one output tape.
Furthermore the amount of input is equal to the amount of output, so there is
only one tape being read, on the average, at any given time; if condition (b) is
not satisfied, there will necessarily be periods when no input at all is occurring.
Thus we can minimize the merging time if we keep the output tape busy.

An important technique called forecasting leads to the desired effect. While
we are doing a P -way merge, we generally have P current input buffers, which
are being used as the source of data; some of them are more full than others,
depending on how much of their data has already been scanned. If all of them
become empty at about the same time, we will need to do a lot of reading before
we can proceed further, unless we have foreseen this eventuality in advance.
Fortunately it is always possible to tell which buffer will empty first, by simply
looking at the last record in each buffer. The buffer whose last record has the
smallest key will always be the first one empty, regardless of the values of any
other keys; so we always know which file should be the source of our next input
command. The following algorithm spells out this principle in detail.
Algorithm F (Forecasting with floating buffers). This algorithm controls the
buffering during a P -way merge of long input files, for P ≥ 2. Assume that the
input tapes and files are numbered 1, 2, . . . , P . The algorithm uses 2P input
buffers I[1], . . . , I[2P]; two output buffers O[0] and O[1]; and the following
auxiliary tables:

A[j], 1≤ j≤ 2P : 0 if I[j] is available for input, 1 otherwise.
B[i], 1≤ i≤P : Index of the buffer holding the last block read so far from file i.
C[i], 1≤ i≤P : Index of the buffer currently being used for the input from file i.
L[i], 1≤ i≤P : The last key read so far from file i.
S[j], 1≤ j≤ 2P : Index of the buffer to use when I[j] becomes empty.
The algorithm described here does not terminate; an appropriate way to shut it
off is discussed below.
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F1. Initialize F2. Merge

F3. I/O complete

F4. Forecast

F5. Read/write

Fig. 83. Forecasting with floating buffers.

F1. [Initialize.] Read the first block from tape i into buffer I[i], set A[i] ← 1,
A[P + i] ← 0, B[i] ← i, C[i] ← i, and set L[i] to the key of the final
record in buffer I[i], for 1 ≤ i ≤ P . Then find m such that L[m] =
min{L[1], . . . , L[P]}; and set t ← 0, k ← P + 1. Begin to read from tape
m into buffer I[k].

F2. [Merge.] Merge records from buffers I[C[1]], . . . , I[C[P]] to O[t], until
O[t] is full. If during this process an input buffer, say I[C[i]], becomes
empty and O[t] is not yet full, set A[C[i]] ← 0, C[i] ← S[C[i]], and
continue to merge.

F3. [I/O complete.] Wait until the previous read (or read/write) operation is
complete. Then set A[k]← 1, S[B[m]]← k, B[m]← k, and set L[m] to
the key of the final record in I[k].

F4. [Forecast.] Find m such that L[m] = min{L[1], . . . , L[P]}, and find k such
that A[k] = 0.

F5. [Read/write.] Begin to read from tape m into buffer I[k], and to write from
buffer O[t] onto the output tape. Then set t← 1− t and return to F2.

The example in Fig. 84 shows how forecasting works when P = 2, assuming
that each block on tape contains only two records. The input buffer contents are
illustrated each time we get to the beginning of step F2. Algorithm F essentially
forms P queues of buffers, with C[i] pointing to the front and B[i] to the rear
of the ith queue, and with S[j] pointing to the successor of buffer I[j]; these
pointers are shown as arrows in Fig. 84. Line 1 illustrates the state of affairs
after initialization: There is one buffer for each input file, and another block is
being read from File 1 (since 03 < 05). Line 2 shows the status of things after the
first block has been merged: We are outputting a block containing 01 02 , and
inputting the next block from File 2 (since 05 < 09). Note that in line 3, three
of the four input buffers are essentially committed to File 2, since we are reading
from that file and we already have a full buffer and a partly full buffer in its
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File 1 contains 01 03 04 09 11 13 16 18 · · ·

File 2 contains 02 05 06 07 08 10 12 14 · · ·

Line No. Buffers for File 1 Buffers for File 2
Next input being

read from

1

2

3

4

5

6

7

01 03

03 04 09

09

09

09 11 13

11 13

13 16 18

02 05

05

05 06 07

07 08 10

10

12 14

14

File 1

File 1

File 1

File 2

File 2

File 2

File 2

Fig. 84. Buffer queuing, according to Algorithm F.

queue. This floating-buffer arrangement is an important feature of Algorithm F,
since we would be unable to proceed in line 4 if we had chosen File 1 instead of
File 2 for the input on line 3.

In order to prove that Algorithm F is valid, we must show two things:

i) There is always an input buffer available (that is, we can always find a k in
step F4).

ii) If an input buffer is exhausted while merging, its successor is already present
in memory (that is, S[C[i]] is meaningful in step F2).

Suppose (i) is false, so that all buffers are unavailable at some point when we
reach step F4. Each time we get to that step, the total amount of unprocessed
data among all the buffers is exactly P bufferloads, just enough data to fill
P buffers if it were redistributed, since we are inputting and outputting data
at the same rate. Some of the buffers are only partially full; but at most one
buffer for each file is partially full, so at most P buffers are in that condition. By
hypothesis all 2P of the buffers are unavailable; therefore at least P of them must
be completely full. This can happen only if P are full and P are empty, otherwise
we would have too much data. But at most one buffer can be unavailable and
empty at any one time; hence (i) cannot be false.

Suppose (ii) is false, so that we have no unprocessed records in memory,
for some file, but the current output buffer is not yet full. By the principle of
forecasting, we must have no more than one block of data for each of the other
files, since we do not read in a block for a file unless that block will be needed
before the buffers on any other file are exhausted. Therefore the total number of
unprocessed records amounts to at most P −1 blocks; adding the unfilled output
buffer leads to less than P bufferloads of data in memory, a contradiction.
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This argument establishes the validity of Algorithm F; and it also indicates
the possibility of pathological circumstances under which the algorithm just
barely avoids disaster. An important subtlety that we have not mentioned,
regarding the possibility of equal keys, is discussed in exercise 5. See also
exercise 4, which considers the case P = 1.

One way to terminate Algorithm F gracefully is to set L[m] to∞ in step F3
if the block just read is the last of a run. (It is customary to indicate the end of
a run in some special way.) After all of the data on all of the files has been read,
we will eventually find all of the L’s equal to ∞ in step F4; then it is usually
possible to begin reading the first blocks of the next run on each file, beginning
initialization of the next merge phase as the final P + 1 blocks are output.

Thus we can keep the output tape going at essentially full speed, without
reading more than one tape at a time. An exception to this rule occurs in step F1,
where it would be beneficial to read several tapes at once in order to get things
going in the beginning; but step F1 can usually be arranged to overlap with the
preceding part of the computation.

The idea of looking at the last record in each block, to predict which buffer
will empty first, was discovered in 1953 by F. E. Holberton. The technique was
first published by E. H. Friend [JACM 3 (1956), 144–145, 165]. His rather
complicated algorithm used 3P input buffers, with three dedicated to each
input file; Algorithm F improves the situation by making use of floating buffers,
allowing any single file to claim as many as P + 1 input buffers at once, yet
never needing more than 2P in all. A discussion of merging with fewer than 2P
input buffers appears at the end of this section. Some interesting improvements
to Algorithm F are discussed in Section 5.4.9.

Comparative behavior of merge patterns. Let us now use what we know
about tapes and merging to compare the effectiveness of the various merge
patterns that we have studied in Sections 5.4.2 through 5.4.5. It is very in-
structive to work out the details when each method is applied to the same task.
Consider therefore the problem of sorting a file whose records each contain 100
characters, when there are 100,000 character positions of memory available for
data storage — not counting the space needed for the program and its auxiliary
variables, or the space occupied by links in a selection tree. (Remember that
we are pretending to live in the days when memories were small.) The input
appears in random order on tape, in blocks of 5000 characters each, and the
output is to appear in the same format. There are five scratch tapes to work
with, in addition to the unit containing the input tape.

The total number of records to be sorted is 100,000, but this information is
not known in advance to the sorting algorithm.

The foldout illustration in Chart A summarizes the actions that transpire
when ten different merging schemes are applied to this data. The best way to look
at this important illustration is to imagine that you are actually watching the
sort take place: Scan each line slowly from left to right, pretending that you can
actually see six tapes reading, writing, rewinding, and/or reading backwards, as
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indicated on the diagram. During a P -way merge the input tapes will be moving
only 1/P times as often as the output tape. When the original input tape has
been completely read (and rewound “with lock”), Chart A assumes that a skilled
computer operator dismounts it and replaces it with a scratch tape, in just 30
seconds. In examples 2, 3, and 4 this is “critical path time” when the computer
is idly waiting for the operator to finish; but in the remaining examples, the
dismount-reload operation is overlapped by other processing.

Example 1. Read-forward balanced merge. Let’s review the specifications
of the problem: The records are 100 characters long, there is enough internal
memory to hold 1000 records at a time, and each block on the input tape contains
5000 characters (50 records). There are 100,000 records (= 10,000,000 characters
= 2000 blocks) in all.

We are free to choose the block size for intermediate files. A six-tape
balanced merge uses three-way merging, so the technique of Algorithm F calls for
8 buffers; we may therefore use blocks containing 1000/8 = 125 records (= 12500
characters) each.

The initial distribution pass can make use of replacement selection (Algo-
rithm 5.4.1R), and in order to keep the tapes running smoothly we may use two
input buffers of 50 records each, plus two output buffers of 125 records each.
This leaves room for 650 records in the replacement selection tree. Most of the
initial runs will therefore be about 1300 records long (10 or 11 blocks); it turns
out that 78 initial runs are produced in Chart A, the last one being rather short.

The first merge pass indicated shows nine runs merged to tape 4, instead of
alternating between tapes 4, 5, and 6. This makes it possible to do useful work
while the computer operator is loading a scratch tape onto unit 6; since the total
number S of runs is known once the initial distribution has been completed, the
algorithm knows that ⌈S/9⌉ runs should be merged to tape 4, then ⌈(S − 3)/9⌉
to tape 5, then ⌈(S − 6)/9⌉ to tape 6.

The entire sorting procedure for this example can be summarized in the
following way, using the notation introduced in Section 5.4.2:

126 126 126 — — —
— — — 39 39 38

93 93 9261 — — —
— — — 271 271 241

781 — — — — —

Example 2. Read-forward polyphase merge. The second example in
Chart A carries out the polyphase merge, according to Algorithm 5.4.2D. In
this case we do five-way merging, so the memory is split into 12 buffers of 83
records each. During the initial replacement selection we have two 50-record
input buffers and two 83-record output buffers, leaving 734 records in the tree;
so the initial runs this time are about 1468 records long (17 or 18 blocks). The
situation illustrated shows that S = 70 initial runs were obtained, the last two
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actually being only four blocks and one block long, respectively. The merge
pattern can be summarized thus:

013118 013117 013115 012112 0818 —
115 114 112 18 — 08142153

17 16 14 — 48 142153

13 12 — 84 44 2153

11 — 161191 82 42 52

— 341 191 81 41 51

701 — — — — —

Curiously, polyphase actually took about 25 seconds longer than the far less
sophisticated balanced merge! There are two main reasons for this:

1) Balanced merge was particularly lucky in this case, since S = 78 is just
less than a perfect power of 3. If 82 initial runs had been produced, the balanced
merge would have needed an extra pass.

2) Polyphase merge wasted 30 seconds while the input tape was being
changed, and a total of more than 5 minutes went by while it was waiting for
rewind operations to be completed. By contrast the balanced merge needed
comparatively little rewind time. In the second phase of the polyphase merge,
13 seconds were saved because the 8 dummy runs on tape 6 could be assumed
present even while that tape was rewinding; but no other rewind overlap oc-
curred. Therefore polyphase lost out even though it required significantly less
read/write time.

Example 3. Read-forward cascade merge. This case is analogous to the
preceding, but using Algorithm 5.4.3C. The merging may be summarized thus:

114 115 112 114 115 —
15 19 — 114 115 132336

5163 53 5362 — 11 22

— 121 61 181 181 161

701 — — — — —

(Remember to watch each of these examples in action, by scanning Chart A in
the foldout illustration.)

Example 4. Tape-splitting polyphase merge. This procedure, described at
the end of Section 5.4.2, allows most of the rewind time to be overlapped. It uses
four-way merging, so we divide the memory into ten 100-record buffers; there are
700 records in the replacement selection tree, so it turns out that 72 initial runs
are formed. The last run, again, is very short. A distribution scheme analogous
to Algorithm 5.4.2D has been used, followed by a simple but somewhat ad hoc
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method of placing dummy runs:

121 119 115 18 — 0219

02117 02115 02111 0214 — 021944

113 111 17 — 0244 021944

110 18 14 — 02443241 1844

16 14 — 44 02443241 1444

15 13 — 4431 01443241 1344

12 — 3172 4431 423241 44

11 — 3172131 4331 413241 43

— 131 3172131 4231 3241 42

— 131141 72131 4131 3141 41

181 131141 71131 31 41 —
181 141 131 — — 271

— — — 721 — —
This turns out to give the best running time of all the examples in Chart A that
do not read backwards. Since S will never be very large, it would be possible to
develop a more complicated algorithm that places dummy runs in an even better
way; see Eq. 5.4.2–(26).

Example 5. Cascade merge with rewind overlap. This procedure runs
almost as fast as the previous example, although the algorithm governing it is
much simpler. We simply use the cascade sort method as in Algorithm 5.4.3C
for the initial distribution, but with T = 5 instead of T = 6. Then each phase
of each “cascade” staggers the tapes so that we ordinarily don’t write on a tape
until after it has had a chance to be rewound. The pattern, very briefly, is

121 122 119 110 — —
14 17 — — 122235 410

72 — 83 7282 — 41

— 261 — 81 221 161

721 — — — — —

Example 6. Read-backward balanced merge. This is like example 1 but
with all the rewinding eliminated:

A26
1 A26

1 A26
1 — — —

— — — D9
3 D9

3 D8
3

A3
9 A3

9 A2
9A1

6 — — —
— — — D1

24 D1
27 D1

27

A1
78 — — — — —
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Since there was comparatively little rewinding in example 1, this scheme is not a
great deal better than the read-forward case. In fact, it turns out to be slightly
slower than tape-splitting polyphase, in spite of the fortunate value S = 78.

Example 7. Read-backward polyphase merge. In this example only five of
the six tapes are used, in order to eliminate the time for rewinding and changing
the input tape. Thus, the merging is only four-way, and the buffer allocation
is like that in examples 4 and 5. A distribution like Algorithm 5.4.2D is used,
but with alternating directions of runs, and with tape 1 fixed as the final output
tape. First an ascending run is written on tape 1; then descending runs on tapes
2, 3, 4; then ascending runs on 2, 3, 4; then descending on 1, 2, 3; etc. Each time
we switch direction, replacement selection usually produces a shorter run, so it
turns out that 77 initial runs are formed instead of the 72 in examples 4 and 5.

This procedure results in a distribution of (22, 21, 19, 15) runs, and the next
perfect distribution is (29, 56, 52, 44). Exercise 5.4.4–5 shows how to generate
strings of merge numbers that can be used to place dummy runs in optimum
positions; such a procedure is feasible in practice because the finiteness of a tape
reel ensures that S is never too large. Therefore the example in Chart A has
been constructed using such a method for dummy run placement (see exercise 7).
This turns out to be the fastest of all the examples illustrated.

Example 8. Read-backward cascade merge. As in example 7, only five
tapes are used here. This procedure follows Algorithm 5.4.3C, using rewind and
forward read to avoid one-way merging (since rewinding is more than twice as
fast as reading on MIXT units). Distribution is therefore the same as in example 5.
The pattern may be summarized briefly as follows, using ↓ to denote rewinding:

A21
1 A22

1 A19
1 A10

1 —

A4
1↓ A7

1↓ — D2
1D2

2D5
3 D10

4

A8A2
7 A2

5 A4
9 — D1

4↓

— D17 A9↓ D25 D21

A72 — — — —

Example 9. Read-backward oscillating sort. Oscillating sort with T = 5
(Algorithm 5.4.5B) can use buffer allocation as in examples 4, 5, 7, and 8, since
it does four-way merging. However, replacement selection does not behave in
the same way, since a run of length 700 (not 1400 or so) is output just before
entering each merge phase, in order to clear the internal memory. Consequently
85 runs are produced in this example, instead of 72. Some of the key steps in
the process are

— A1 A1A1 A1A1 A1A1

D4 — A1 A1 A1

. . . . . . . . . . . . . . . . . . . . . . . . . .
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D4D4 D4D4 D4D4 D4 —

D4 D4 D4 — A16

. . . . . . . . . . . . . . . . . . . . . . . . . .
D4 A16D4D4 A16D4 A16D4A1 A16

D4 A16D4D4 A16D4D1 A16D4 A16

— A16D4 A16D4 A16 A16A13

— A16D4 A16 A16A4 A16A13

— A16 A16A4 A16A4 A16A13

D37 — A16↓ A16↓ A16↓

— A85 — — —

Example 10. Read-forward oscillating sort. In the final example, replace-
ment selection is not used because all initial runs must be the same length.
Therefore full core loads of 1000 records are sorted internally whenever an initial
run is required; this makes S = 100. Some key steps in the process are

A1 A1 A1 A1 A1

— — — — A1A4

. . . . . . . . . . . . . . . . . . . . . . . .
A1 A1 A1 A1 A1A4

— — — A1A4 A\ 1A4

A1 A1 A1 A1A4 A1A4

. . . . . . . . . . . . . . . . . . . . . . . .
A1 A1A4 A1A4 A1A4 A1A4

A1A4 A\ 1A4 A\ 1A4 A\ 1A4 A\ 1A4

A1A4A16 — — — —
. . . . . . . . . . . . . . . . . . . . . . . .

— A1A4 A1A4 A1A4 A1A4A16A64

A4 A\ 1A4 A\ 1A4 A\ 1A4 A\ 1A4A16A64

A4A16 — — — A\ 1A\ 4A16A64

A\ 4A16 A4 — — A\ 1A\ 4A16A64

— — — A36 A\ 1A\ 4A\ 16A64

A100 — — — —

This routine turns out to be slowest of all, partly because it does not use
replacement selection, but mostly because of its rather awkward ending (a two-
way merge).
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Fig. 85. A somewhat misleading way to compare merge patterns.

Estimating the running time. Let’s see now how to figure out the ap-
proximate execution time of a sorting method using MIXT tapes. Could we
have predicted the outcomes shown in Chart A without carrying out a detailed
simulation?

One way that has traditionally been used to compare different merge pat-
terns is to superimpose graphs such as we have seen in Figs. 70, 74, and 78.
These graphs show the effective number of passes over the data, as a function of
the number of initial runs, assuming that each initial run has approximately the
same length. (See Fig. 85.) But this is not a very realistic comparison, because
we have seen that different methods lead to different numbers of initial runs;
furthermore there is a different overhead time caused by the relative frequency
of interblock gaps, and the rewind time also has significant effects. All of these
machine-dependent features make it impossible to prepare charts that provide
a valid machine-independent comparison of the methods. On the other hand,
Fig. 85 does show us that, except for balanced merge, the effective number
of passes can be reasonably well approximated by smooth curves of the form
α ln S + β. Therefore we can make a fairly good comparison of the methods
in any particular situation, by studying formulas that approximate the running
time. Our goal, of course, is to find formulas that are simple yet sufficiently
realistic.

Let us now attempt to develop such formulas, in terms of the following
parameters:

N = number of records to be sorted,
C = number of characters per record,

M = number of character positions available in the internal memory (assumed to
be a multiple of C),
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τ = number of seconds to read or write one character,
ρτ = number of seconds to rewind over one character,
στ = number of seconds for stop/start time delay,

γ = number of characters per interblock gap,
δ = number of seconds for operator to dismount and replace input tape,

Bi = number of characters per block in the unsorted input,
Bo = number of characters per block in the sorted output.

For MIXT we have τ = 1/60000, ρ = 2/5, σ = 300, γ = 480. The example
application treated above has N = 100000, C = 100, M = 100000, δ = 30, Bi =
Bo = 5000. These parameters are usually the machine and data characteristics
that affect sorting time most critically (although rewind time is often given by a
more complicated expression than a simple ratio ρ). Given the parameters above
and a merge pattern, we shall compute further quantities such as

P = maximum order of merge in the pattern,
P ′ = number of records in replacement selection tree,
S = number of initial runs,

π = α ln S + β = approximate average number of times each character is read
and written, not counting the initial distribution or the final
merge,

π′ = α′ ln S + β ′ = approximate average number of times rewinding over each
character during intermediate merge phases,

B = number of characters per block in the intermediate merge
phases,

ωi, ω, ωo = “overhead ratio,” the effective time required to read or write
a character (due to gaps and stop/start) divided by the hard-
ware time τ .

The examples of Chart A have chosen block and buffer sizes according to
the formula

B =


M

C(2P + 2)


C, (1)

so that the blocks can be as large as possible consistent with the buffering scheme
of Algorithm F. (In order to avoid trouble during the final pass, P should be
small enough that (1) makes B ≥ Bo.) The size of the tree during replacement
selection is then

P ′ = (M − 2Bi − 2B)/C. (2)

For random data the number of initial runs S can be estimated as

S ≈


N

2P ′ + 7
6


, (3)
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using the results of Section 5.4.1. Assuming that Bi < B and that the input
tape can be run at full speed during the distribution (see below), it takes about
NCωiτ seconds to distribute the initial runs, where

ωi = (Bi + γ)/Bi. (4)

While merging, the buffering scheme allows simultaneous reading, writing, and
computing, but the frequent switching between input tapes means that we must
add the stop/start time penalty; therefore we set

ω = (B + γ + σ)/B, (5)

and the merge time is approximately

(π + ρπ′)NCωτ. (6)

This formula penalizes rewind slightly, since ω includes stop/start time, but
other considerations, such as rewind interlock and the penalty for reading from
load point, usually compensate for this. The final merge pass, assuming that
Bo ≤ B, is constrained by the overhead ratio

ωo = (Bo + γ)/Bo. (7)

We may estimate the running time of the final merge and rewind as

NC(1 + ρ)ωoτ ;

in practice it might take somewhat longer due to the presence of unequal block
lengths (input and output are not synchronized as in Algorithm F), but the
running time will be pretty much the same for all merge patterns.

Before going into more specific formulas for individual patterns, let us try
to justify two of the assumptions made above.

a) Can replacement selection keep up with the input tape? In the examples
of Chart A it probably can, since it takes about ten iterations of the inner
loop of Algorithm 5.4.1R to select the next record, and we have Cωiτ > 1667
microseconds in which to do this. With careful programming of the replacement
selection loop, this can be done on most machines (even in the 1970s). Notice
that the situation is somewhat less critical while merging: The computation time
per record is almost always less than the tape time per record during a P -way
merge, since P isn’t very large.

b) Should we really choose B to be the maximum possible buffer size, as
in (1)? A large buffer size cuts down the overhead ratio ω in (5); but it also
increases the number of initial runs S, since P ′ is decreased. It is not immediately
clear which factor is more important. Considering the merging time as a function
of x = CP ′, we can express it in the approximate form

θ1 ln


N

x
+ 7

6


+ θ2


θ3 − x

θ4 − x


(8)

for some appropriate constants θ1, θ2, θ3, θ4, with θ3 > θ4. Differentiating with
respect to x shows that there is some N0 such that for all N ≥ N0 it does not pay
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to increase x at the expense of buffer size. In the sorting application of Chart A,
for example, N0 turns out to be roughly 10000; when sorting more than 10000
records the large buffer size is superior.

Note, however, that with balanced merge the number of passes jumps sharply
when S passes a power of P . If an approximation to N is known in advance,
the buffer size should be chosen so that S will most likely be slightly less than a
power of P . For example, the buffer size for the first line of Chart A was 12500;
since S = 78, this was very satisfactory, but if S had turned out to be 82 it
would have been much better to decrease the buffer size a little.

Formulas for the ten examples. Returning to Chart A, let us try to give
formulas that approximate the running time in each of the ten methods. In most
cases the basic formula

NCωiτ + (π + ρπ′)NCωτ + (1 + ρ)NCωoτ (9)

will be a sufficiently good approximation to the overall sorting time, once we
have specified the number of intermediate merge passes π = α ln S + β and the
number of intermediate rewind passes π′ = α′ ln S+β ′. Sometimes it is necessary
to add a further correction to (9); details for each method can be worked out as
follows:

Example 1. Read-forward balanced merge. The formulas

π = ⌈ln S/ln P ⌉ − 1, π′ = ⌈ln S/ln P ⌉/P

may be used for P -way merging on 2P tapes.

Example 2. Read-forward polyphase merge. We may take π′ ≈ π, since
every phase is usually followed by a rewind of about the same length as the
previous merge. From Table 5.4.2–1 we get the values α ≈ 0.795, β ≈ 0.864− 2,
in the case of six tapes. (We subtract 2 because the table entry includes the
initial and final passes as well as the intermediate ones.) The time for rewinding
the input tape after the initial distribution, namely ρNCωiτ +δ, should be added
to (9).

Example 3. Read-forward cascade merge. Table 5.4.3–1 gives the values
α ≈ 0.773, β ≈ 0.808 − 2. Rewind time is comparatively difficult to estimate;
perhaps setting π′ ≈ π is accurate enough. As in example 2, we need to add the
initial rewind time to (9).

Example 4. Tape-splitting polyphase merge. Table 5.4.2–6 tells us that
α ≈ 0.752, β ≈ 1.024 − 2. The rewind time is almost overlapped except after
the initialization (ρNCωiτ + δ) and two phases near the end (2ρNCωτ times
36 percent). We may also subtract 0.18 from β since the first half phase is
overlapped by the initial rewind.

Example 5. Cascade merge with rewind overlap. In this case we use
Table 5.4.3–1 for T = 5, to get α ≈ 0.897, β ≈ 0.800 − 2. Nearly all of the
unoverlapped rewind occurs just after the initial distribution and just after each
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two-way merge. After a perfect initial distribution, the longest tape contains
about 1/g of the data, where g is the “growth ratio.” After each two-way merge
the amount of rewind in the six-tape case is dkdn−k (see exercise 5.4.3–5), hence
the amount of rewind after two-way merges in the T -tape case can be shown to
be approximately 

2/(2T − 1)


1− cos

4π/(2T − 1)


of the file. In our case, T = 5, this is 2

9 (1− cos 80◦) ≈ 0.184 of the file, and the
number of times it occurs is 0.946 ln S + 0.796− 2.
Example 6. Read-backward balanced merge. This is like example 1, ex-
cept that most of the rewinding is eliminated. The change in direction from
forward to backward causes some delays, but they are not significant. There is
a 50-50 chance that rewinding will be necessary before the final pass, so we may
take π′ = 1/(2P ).
Example 7. Read-backward polyphase merge. Since replacement selec-
tion in this case produces runs that change direction about every P times, we
must replace (3) by another formula for S. A reasonably good approximation,
suggested by exercise 5.4.1–24, is S =


N(3 + 1/P )/(6P ′)


+ 1. All rewind time

is eliminated, and Table 5.4.2–1 gives α ≈ 0.863, β ≈ 0.921− 2.
Example 8. Read-backward cascade merge. From Table 5.4.3–1 we have
α ≈ 0.897, β ≈ 0.800 − 2. The rewind time can be estimated as twice the
difference between “passes with copying” minus “passes without copying” in
that table, plus 1/(2P ) in case the final merge must be preceded by rewinding
to get ascending order.
Example 9. Read-backward oscillating sort. In this case replacement se-
lection has to be started and stopped many times; bursts of P − 1 to 2P − 1
runs are distributed at a time, averaging P in length; the average length of runs
therefore turns out to be approximately P ′(2P − 4/3)/P , and we may estimate
S =


N/


2− 4/(3P )


P ′ + 1. A little time is used to switch from merging to

distribution and vice-versa; this is approximately the time to read in P ′ records
from the input tape, namely P ′Cωiτ , and it occurs about S/P times. Rewind
time and merging time may be estimated as in example 6.
Example 10. Read-forward oscillating sort. This method is not easy to
analyze, because the final “cleanup” phases performed after the input is ex-
hausted are not as efficient as the earlier phases. Ignoring this troublesome
aspect, and simply calling it one extra pass, we can estimate the merging time by
setting α = 1/ ln P , β = 0, and π′ = π/P . The distribution of runs is somewhat
different in this case, since replacement selection is not used; we set P ′ = M/C
and S = ⌈N/P ′⌉. With care we will be able to overlap computing, reading, and
writing during the distribution, with an additional factor of about (M+2B)/M in
the overhead. The “mode-switching” time mentioned in example 9 is not needed
in the present case because it is overlapped by rewinding. So the estimated
sorting time in this case is (9) plus 2BNCωiτ/M.
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Table 1
SUMMARY OF SORTING TIME ESTIMATES

Additions Est. Actual
Ex. P B P ′ S ω α β α′ β ′ (9) to (9) total total

1 3 12500 650 79 1.062 0.910 −1.000 0.303 0.000 1064 1064 1076
2 5 8300 734 70 1.094 0.795 −1.136 0.795 −1.136 1010 ρNCωiτ + δ 1113 1103
3 5 8300 734 70 1.094 0.773 −1.192 0.773 −1.192 972 ρNCωiτ + δ 1075 1127
4 4 10000 700 73 1.078 0.752 −0.994 0.000 0.720 844 ρNCωiτ + δ 947 966
5 4 10000 700 73 1.078 0.897 −1.200 0.173 0.129 972 972 992
6 3 12500 650 79 1.062 0.910 −1.000 0.000 0.167 981 981 980
7 4 10000 700 79 1.078 0.863 −1.079 0.000 0.000 922 922 907
8 4 10000 700 73 1.078 0.897 −1.200 0.098 0.117 952 952 949
9 4 10000 700 87 1.078 0.721 −1.000 0.000 0.125 846 P ′SCωiτ/P 874 928

10 4 10000 — 100 1.078 0.721 0.000 0.180 0.000 1095 2BNCωiτ/M 1131 1158

Table 1 shows that the estimates are not too bad in these examples, although
in a few cases there is a discrepancy of 50 seconds or so. The formulas in
examples 2 and 3 indicate that cascade merge should be preferable to polyphase
on six tapes, yet in practice polyphase was better. The reason is that graphs
like Fig. 85 (which shows the five-tape case) are more nearly straight lines for
the polyphase algorithm; cascade is superior to polyphase on six tapes for 14 ≤
S ≤ 15 and 43 ≤ S ≤ 55, near the “perfect” cascade numbers 15 and 55, but
the polyphase distribution of Algorithm 5.4.2D is equal or better for all other
S ≤ 100. Cascade will win over polyphase as S → ∞, but S doesn’t actually
approach ∞. The underestimate in example 9 is due to similar circumstances;
polyphase was superior to oscillating even though the asymptotic theory tells us
that oscillating will be better for large S.

Some miscellaneous remarks. It is now appropriate to make a few more or
less random observations about tape merging.
• The formulas above show that the cost of tape sorting is essentially a

function of N times C, not of N and C independently. Except for a few relatively
minor considerations (such as the fact that B was taken to be a multiple of C),
our formulas say that it takes about as long to sort one million records of 10
characters each as to sort 100,000 records of 100 characters each. Actually there
may be a difference, not revealed in our formulas, because of the space used by
link fields during replacement selection. In any event the size of the key makes
hardly any difference, unless keys get so long and complicated that internal
computation cannot keep up with the tapes.

With long records and short keys it is tempting to “detach” the keys, sort
them first, and then somehow rearrange the records as a whole. But this idea
doesn’t really work; it merely postpones the agony, because the final rearrange-
ment procedure takes about as long as a conventional merge sort would take.
• When writing a sort routine that is to be used repeatedly, it is wise to

estimate the running time very carefully and to compare the theory with actual
observed performance. Since the theory of sorting has been fairly well developed,
this procedure has been known to turn up bugs in the input/output hardware or
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software on existing systems; the service was substantially slower than it should
have been, yet nobody had noticed it until the sorting routine ran too slowly!
• Our analysis of replacement selection has been carried out for “random”

files, but the files that actually arise in practice very often have a good deal of
existing order. (In fact, sometimes people will sort a file that is already in order,
just to be sure.) Therefore experience has shown that replacement selection
is preferable to other kinds of internal sort, even more so than our formulas
indicate. This advantage is slightly mitigated in the case of read-backward
polyphase sorting, since a number of descending runs must be produced; indeed,
R. L. Gilstad (who first published the polyphase merge) originally rejected the
read-backward technique for that reason. But he noticed later that alternating
directions will still pick up long ascending runs. Furthermore, read-backward
polyphase is the only standard technique that likes descending input files as well
as ascending ones.
• Another advantage of replacement selection is that it allows simultaneous

reading, writing, and computing. If we merely did the internal sort in an obvious
way — filling the memory, sorting it, then writing it out as it becomes filled with
the next load — the distribution pass would take about twice as long.

The only other internal sort we have discussed that appears to be amenable
to simultaneous reading, writing, and computing is heapsort. Suppose for con-
venience that the internal memory holds 1000 records, and that each block on
tape holds 100. Example 10 of Chart A was prepared with the following strategy,
letting B1 B2 . . . B10 stand for the contents of memory divided into ten 100-record
blocks:
Step 0. Fill memory, and make the elements of B2 . . . B10 satisfy the inequalities
for a heap (with smallest element at the root).
Step 1. Make B1 . . . B10 into a heap, then select out the least 100 records and
move them to B10.
Step 2. Write out B10, while selecting the smallest 100 records of B1 . . . B9 and
moving them to B9.
Step 3. Read into B10, and write out B9, while selecting the smallest 100 records
of B1 . . . B8 and moving them to B8.

...
Step 9. Read into B4, and write out B3, while selecting the smallest 100 records
of B1 B2 and moving them to B2 and while making the heap inequalities valid
in B5 . . . B10.
Step 10. Read into B3, and write out B2, while sorting B1 and while making
the heap inequalities valid in B4 . . . B10.
Step 11. Read into B2, and write out B1, while making the heap inequalities
valid in B3 . . . B10.
Step 12. Read into B1, while making the heap inequalities valid in B2 . . . B10.
Return to step 1.
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• We have been assuming that the number N of records to be sorted is not
known in advance. Actually in most computer applications it would be possible
to keep track of the number of records in all files at all times, and we could assume
that our computer system is capable of telling us the value of N. How much help
would this be? Unfortunately, not very much! We have seen that replacement
selection is very advantageous, but it leads to an unpredictable number of initial
runs. In a balanced merge we could use information about N to set the buffer
size B in such a way that S will probably be just less than a power of P ; and in
a polyphase distribution with optimum placement of dummy runs we could use
information about N to decide what level to shoot for (see Table 5.4.2–2).
• Tape drives tend to be the least reliable part of a computer. Therefore the

original input tape should never be destroyed until it is known that the entire sort
has been satisfactorily completed. The “operator dismount time” is annoying in
some of the examples of Chart A, but it would be too risky to overwrite the input
in view of the probability that something might go wrong during a long sort.
• When changing from forward write to backward read, we could save some

time by never writing the last bufferload onto tape; it will just be read back in
again anyway. But Chart A shows that this trick actually saves comparatively
little time, except in the oscillating sort where directions are reversed frequently.
• Although a large computer system might have lots of tape units, we might

be better off not using them all. The percentage difference between logP S and
logP+1 S is not very great when P is large, and a higher order of merge usually
implies a smaller block size. (Consider also the poor computer operator who
has to mount all those scratch tapes.) On the other hand, exercise 12 describes
an interesting way to make use of additional tape units, grouping them so as to
overlap input/output time without increasing the order of merge.
• On machines like MIX, which have fixed rather small block sizes, hardly any

internal memory is needed while merging. Oscillating sort then becomes more
attractive, because it becomes possible to maintain the replacement selection
tree in memory while merging. In fact we can improve on oscillating sort in this
case (as suggested by Colin J. Bell in 1962), merging a new initial run into the
output every time we merge from the working tapes.
• We have observed that multireel files should be sorted one reel at a time,

in order to avoid excessive tape handling. This is sometimes called a “reel time”
application. Actually a balanced merge on six tapes can sort three reelfuls, up
until the time of the final merge, if it has been programmed carefully.

To merge a fairly large number of individually sorted reels, a minimum-
path-length merging tree will be fastest (see Section 5.4.4). This construction
was first made by E. H. Friend [JACM 3 (1956), 166–167]; then W. H. Burge
[Information and Control 1 (1958), 181–197] pointed out that an optimum way
to merge runs of given (possibly unequal) lengths is obtained by constructing a
tree with minimum weighted path length, using the run lengths as weights (see
Sections 2.3.4.5 and 5.4.9), if we ignore tape handling time.
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• Our discussions have blithely assumed that we have direct control over
the input/output instructions for tape units, and that no complicated operating
system keeps us from using tape as efficiently as the tape designers intended.
These idealistic assumptions give us insights into the tape merging problem, and
may give some insights into the proper design of operating system interfaces,
but we should realize that multiprogramming and multiprocessing can make the
situation considerably more complicated.
• The issues we have studied in this section were first discussed in print

by E. H. Friend [JACM 3 (1956), 134–168], W. Zoberbier [Elektronische Daten-
verarbeitung 5 (1960), 28–44], and M. A. Goetz [Digital Computer User’s Hand-
book (New York: McGraw–Hill, 1967), 1.292–1.320].

Summary. We can sum up what we have learned about the relative efficiencies
of different approaches to tape sorting in the following way:

Theorem A. It is difficult to decide which merge pattern is best in a given
situation.

The examples we have seen in Chart A show how 100,000 randomly ordered
100-character records (or 1 million 10-character records) might be sorted using
six tapes under realistic assumptions. This much data fills about half of a tape,
and it can be sorted in about 15 to 19 minutes on the MIXT tapes. However, there
is considerable variation in available tape equipment, and running times for such
a job could vary between about four minutes and about two hours on different
machines of the 1970s. In our examples, about 3 minutes of the total time were
used for initial distribution of runs and internal sorting; about 4 1

2 minutes were
used for the final merge and rewinding the output tape; and about 7 1

2 to 11 1
2

minutes were spent in intermediate stages of merging.
Given six tapes that cannot read backwards, the best sorting method under

our assumptions was the “tape-splitting polyphase merge” (example 4); and for
tapes that do allow backward reading, the best method turned out to be read-
backward polyphase with a complicated placement of dummy runs (example 7).
Oscillating sort (example 9) was a close second. In both cases the cascade merge
provided a simpler alternative that was only slightly slower (examples 5 and 8).
In the read-forward case, a straightforward balanced merge (example 1) was
surprisingly effective, partly by luck in this particular example but partly also
because it spends comparatively little time rewinding.

The situation would change somewhat if we had a different number of
available tapes.

Sort generators. Given the wide variability of data and equipment charac-
teristics, it is almost impossible to write a single external sorting program that is
satisfactory in a variety of different applications. And it is also rather difficult to
prepare a program that really handles tapes efficiently. Therefore the preparation
of sorting software is a particularly challenging job. A sort generator is a program
that produces machine code specially tailored to particular sorting applications,
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based on parameters that describe the data format and the hardware configura-
tion. Such a program is often tied to high-level languages such as COBOL or PL/I.

One of the features normally provided by a sort generator is the ability
to insert the user’s “own coding,” a sequence of special instructions to be in-
corporated into the first and last passes of the sorting routine. First-pass own
coding is usually used to edit the input records, often shrinking them or slightly
expanding them into a form that is easier to sort. For example, suppose that
the input records are to be sorted on a nine-character key that represents a date
in month-day-year format:

JUL041776 OCT311517 NOV051605 JUL141789 NOV071917

On the first pass the three-letter month code can be looked up in a table, and
the month codes can be replaced by numbers with the most significant fields at
the left:

17760704 15171031 16051105 17890714 19171107

This decreases the record length and makes subsequent comparisons much sim-
pler. (An even more compact code could also be substituted.) Last-pass own
coding can be used to restore the original format, and/or to make other desired
changes to the file, and/or to compute some function of the output records. The
merging algorithms we have studied are organized in such a way that it is easy
to distinguish the last pass from other merges. Notice that when own coding
is present there must be at least two passes over the file even if it is initially
in order. Own coding that changes the record size can make it difficult for the
oscillating sort to overlap some of its input/output operations.

Sort generators also take care of system details like tape label conventions,
and they often provide for “hash totals” or other checks to make sure that none
of the data has been lost or altered. Sometimes there are provisions for stopping
the sort at convenient places and resuming later. The fanciest generators allow
records to have dynamically varying lengths [see D. J. Waks, CACM 6 (1963),
267–272].

*Merging with fewer buffers. We have seen that 2P + 2 buffers are sufficient
to keep tapes moving rapidly during a P -way merge. Let us conclude this section
by making a mathematical analysis of the merging time when fewer than 2P + 2
buffers are present.

Two output buffers are clearly desirable, since we can be writing from one
while forming the next block of output in the other. Therefore we may ignore
the output question entirely, and concentrate only on the input.

Suppose there are P + Q input buffers, where 1 ≤ Q ≤ P . We shall use the
following approximate model of the situation, as suggested by L. J. Woodrum
[IBM Systems J. 9 (1970), 118–144]: It takes one unit of time to read a block of
tape. During this time there is a probability p0 that no input buffers have been
emptied, p1 that one has been emptied, p≥2 that two or more have been, etc.
When completing a tape read we are in one of Q + 1 states:
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State 0. Q buffers are empty; we begin to read a block into one of them from the
appropriate file, using the forecasting technique explained earlier in this section.
After one unit of time we go to state 1 with probability p0, otherwise we remain
in state 0.
State 1. Q− 1 buffers are empty; we begin to read into one of them, forecasting
the appropriate file. After one unit of time we go to state 2 with probability p0,
to state 1 with probability p1, and to state 0 with probability p≥2.

...
State Q − 1. One buffer is empty; we begin to read into it, forecasting the
appropriate file. After one unit of time we go to state Q with probability p0, to
state Q − 1 with probability p1, . . . , to state 1 with probability pQ−1, and to
state 0 with probability p≥Q.
State Q. All buffers are filled. Tape reading stops for an average of µ units of
time and then we go to state Q− 1.

We start in state 0. This model of the situation corresponds to a Markov
process (see exercise 2.3.4.2–26), which can be analyzed via generating functions
in the following interesting way: Let z be an arbitrary parameter, and assume
that each time we have a chance to read from tape we make a decision to do so
with probability z, but we decide to terminate the algorithm with probability
1− z. Now let gQ(z) =


n≥0 a(Q)

n zn(1− z) be the average number of times that
state Q occurs in such a process; it follows that a(Q)

n is the average number of
times state Q occurs when exactly n blocks have been read. Then n + a(Q)

n µ is
the average total time for input plus computation. If we had perfect overlap, as
in the (2P + 2)-buffer algorithm, the total time would be only n units, so a(Q)

n µ
represents the “reading hangup” time.

Let Aij be the probability that we go from state i to state j in this process,
for 0 ≤ i, j ≤ Q + 1, where Q + 1 is a new “stopped” state. For example, the
A-matrix takes the following forms for small Q:

Q = 1:

 p≥1z p0z 1− z

1 0 0
0 0 0

 ,

Q = 2:


p≥1z p0z 0 1− z

p≥2z p1z p0z 1− z

0 1 0 0
0 0 0 0

 ,

Q = 3:


p≥1z p0z 0 0 1− z

p≥2z p1z p0z 0 1− z

p≥3z p2z p1z p0z 1− z

0 0 1 0 0
0 0 0 0 0

 .
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Exercise 2.3.4.2–26(b) tells us that gQ(z) = cofactorQ0(I −A)/det(I −A). Thus
for example when Q = 1 we have

g1(z) = det

 0 −p0z z − 1
1 0 0
0 0 1


det

 1− p≥1z −p0z z − 1
−1 1 0

0 0 1


= p0z

1− p≥1z − p0z
= p0z

1− z
=


n≥0

np0zn(1− z),

so a
(1)
n = np0. This of course was obvious a priori, since the problem is very

simple when Q = 1. A similar calculation when Q = 2 (see exercise 14) gives
the less obvious formula

a(2)
n = p2

0n

1− p1
− p2

0(1− pn
1 )

(1− p1)2 . (10)

In general we can show that a
(Q)
n has the form α(Q)n + O(1) as n → ∞, where

the constant α(Q) is not terribly difficult to calculate. (See exercise 15.) It turns
out that α(3) = p3

0


(1− p1)2 − p0p2

.

The nature of merging makes it fairly reasonable to assume that µ = 1/P
and that we have a binomial distribution

pk =


P

k

 1
P

kP − 1
P

P−k

.

For example, when P = 5 we have p0 = .32768, p1 = .4096, p2 = .2048,
p3 = .0512, p4 = .0064, and p5 = .00032; hence α(1) ≈ 0.328, α(2) ≈ 0.182, and
α(3) ≈ 0.125. In other words, if we use 5 + 3 input buffers instead of 5 + 5, we
can expect an additional “reading hangup” time of about 0.125/5 ≈ 2.5 percent.

Of course this model is only a very rough approximation; we know that when
Q = P there is no hangup time at all, but the model says that there is. The
extra reading hangup time for smaller Q just about counterbalances the savings
in overhead gained by having larger blocks, so the simple scheme with Q = P
seems to be vindicated.

EXERCISES
1. [13 ] Give a formula for the exact number of characters per tape, when every block

on the tape contains n characters. Assume that the tape could hold exactly 23000000
characters if there were no interblock gaps.

2. [15 ] Explain why the first buffer for File 2, in line 6 of Fig. 84, is completely
blank.

3. [20 ] Would Algorithm F work properly if there were only 2P − 1 input buffers
instead of 2P? If so, prove it; if not, give an example where it fails.

4. [20 ] How can Algorithm F be changed so that it works also when P = 1?
x 5. [21 ] When equal keys are present on different files, it is necessary to be very

careful in the forecasting process. Explain why, and show how to avoid difficulty by
defining the merging and forecasting operations of Algorithm F more precisely.
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6. [22 ] What changes should be made to Algorithm 5.4.3C in order to convert it
into an algorithm for cascade merge with rewind overlap, on T + 1 tapes?

x 7. [26 ] The initial distribution in example 7 of Chart A produces

(A1D1)11 D1(A1D1)10 D1(A1D1)9 D1(A1D1)7

on tapes 1–4, where (A1D1)7 means A1D1A1D1A1D1A1D1A1D1A1D1A1D1. Show
how to insert additional A0’s and D0’s in a “best possible” way (in the sense that
the overall number of initial runs processed while merging is minimized), bringing the
distribution up to

A(DA)14 (DA)28 (DA)26 (DA)22.

Hint: To preserve parity it is necessary to insert many of the A0’s and D0’s as adjacent
pairs. The merge numbers for each initial run may be computed as in exercise 5.4.4–5;
some simplification occurs since adjacent runs always have adjacent merge numbers.

8. [20 ] Chart A shows that most of the schemes for initial distribution of runs (with
the exception of the initial distribution for the cascade merge) tend to put consecutive
runs onto different tapes. If consecutive runs went onto the same tape we could save the
stop/start time; would it therefore be a good idea to modify the distribution algorithms
so that they switch tapes less often?

x 9. [22 ] Estimate how long the read-backward polyphase algorithm would have taken
in Chart A, if we had used all T = 6 tapes for sorting, instead of T = 5 as in example 7.
Was it wise to avoid using the input tape?
10. [M23 ] Use the analyses in Sections 5.4.2 and 5.4.3 to show that the length of
each rewind during a standard six-tape polyphase or cascade merge is rarely more than
about 54 percent of the file (except for the initial and final rewinds, which cover the
entire file).
11. [23 ] By modifying the appropriate entries in Table 1, estimate how long the first
nine examples of Chart A would have taken if we had a combined low speed/high speed
rewind. Assume that ρ = 1 when the tape is less than about one-fourth full, and that
the rewind time for fuller tapes is approximately five seconds plus the time that would
be obtained for ρ = 1

5 . Change example 8 so that it uses cascade merge with copying,
since rewinding and reading forward is slower than copying in this case. [Hint: Use the
result of exercise 10.]
12. [40 ] Consider partitioning six tapes into three pairs of tapes, with each pair
playing the role of a single tape in a polyphase merge with T = 3. One tape of each
pair will contains blocks 1, 3, 5, . . . and the other tape will contain blocks 2, 4, 6, . . . ; in
this way we can essentially have two input tapes and two output tapes active at all
times while merging, effectively doubling the merging speed.

a) Find an appropriate way to extend Algorithm F to this situation. How many
buffers should there be?

b) Estimate the total running time that would be obtained if this method were used
to sort 100,000 100-character records, considering both the read-forward and read-
backward cases.

13. [20 ] Can a five-tape oscillating sort, as defined in Algorithm 5.4.5B, be used to
sort four reelfuls of input data, up until the time of the final merge?
14. [M19 ] Derive (10).
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15. [HM29 ] Prove that gQ(z) = hQ(z)/(1−z), where hQ(z) is a rational function of z
having no singularities inside the unit circle; hence a(Q)

n = hQ(1)n + O(1) as n → ∞.
In particular, show that

h3(1) = det


0 −p0 0 0
0 1− p1 −p0 0
0 −p2 1− p1 −p0
1 0 0 0




det


1 −p0 0 0
1 1− p1 −p0 0
1 −p2 1− p1 −p0
0 0 −1 1

 .

16. [41 ] Carry out detailed studies of the problem of sorting 100,000 100-character
records, drawing charts such as those in Chart A, assuming that 3, 4, or 5 tapes are
available.

*5.4.7. External Radix Sorting

The previous sections have discussed the process of tape sorting by merging;
but there is another way to sort with tapes, based on the radix sorting principle
that was once used in mechanical card sorters (see Section 5.2.5). This method
is sometimes called distribution sorting, column sorting, pocket sorting, digital
sorting, separation sorting, etc.; it turns out to be essentially the opposite of
merging!

Suppose, for example, that we have four tapes and that there are only eight
possible keys: 0, 1, 2, 3, 4, 5, 6, 7. If the input data is on tape T1, we can begin
by transferring all even keys to T3, all odd keys to T4:

T1 T2 T3 T4
Given {0, 1, 2, 3, 4, 5, 6, 7} — — —
Pass 1 — — {0, 2, 4, 6} {1, 3, 5, 7}

Now we rewind, and read T3 and then T4, putting {0, 1, 4, 5} on T1 and
{2, 3, 6, 7} on T2:

Pass 2 {0, 4}{1, 5} {2, 6}{3, 7} — —

(The notation “{0, 4}{1, 5}” stands for a file that contains some records whose
keys are all 0 or 4 followed by records whose keys are all 1 or 5. Notice that T1
now contains those keys whose middle binary digit is 0.) After rewinding again
and distributing 0, 1, 2, 3 to T3 and 4, 5, 6, 7 to T4, we have

Pass 3 {0}{1}{2}{3} {4}{5}{6}{7}

Now we can finish up by copying T4 to the end of T3. In general, if the keys
range from 0 to 2k−1, we could sort the file in an analogous way using k passes,
followed by a final collection phase that copies about half of the data from one
tape to another. With six tapes we could use radix 3 representations in a similar
way, to sort keys from 0 to 3k − 1 in k passes.

Partial-pass methods can also be used. For example, suppose that there
are ten possible keys {0, 1, . . . , 9}, and consider the following procedure due to
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R. L. Ashenhurst [Theory of Switching, Progress Report BL-7 (Harvard Univ.
Comp. Laboratory: May 1954), I.1–I.76]:

Phase T1 T2 T3 T4 passes
{0, 1, . . . , 9} — — —

1 — {0, 2, 4, 7} {1, 5, 6} {3, 8, 9} 1.0
2 {0} — {1, 5, 6}{2, 7} {3, 8, 9}{4} 0.4
3 {0}{1}{2} {6}{7} — {3, 8, 9}{4}{5} 0.5
4 {0}{1}{2}{3} {6}{7}{8} {9} {4}{5} 0.3
C {0}{1}{2}{3}{4} . . . {9} 0.6

2.8
Here C represents the collection phase. If each key value occurs about one-tenth
of the time, the procedure above takes only 2.8 passes to sort ten keys, while the
first example required 3.5 passes to sort only eight keys. Therefore we find that
a clever distribution pattern can make a significant difference, for radix sorting
as well as for merging.

The distribution patterns in the examples above can conveniently be repre-
sented as tree structures:

Example 1
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2 3
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8 910 11

A AB B

C

C
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D DD D
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Example 2
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B

B

B

B

C

C C

D

D D

A

The circular internal nodes of these trees are numbered 1, 2, 3, . . . , corre-
sponding to steps 1, 2, 3, . . . of the process. Tape names A, B, C, D (instead
of T1, T2, T3, T4) have been placed next to the lines of the trees, in order to
show where the records go. Square external nodes represent portions of a file
that contain only one key, and that key is shown in boldface type just below the
node. The lines just above square nodes all carry the name of the output tape
(C in the first example, A in the second).

Thus, step 3 of example 1 consists of reading from tape D and writing 1s
and 5s on tape A, 3s and 7s on tape B. It is not difficult to see that the number
of passes performed is equal to the external path length of the tree divided by
the number of external nodes, if we assume that each key occurs equally often.
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Because of the sequential nature of tape, and the first-in-first-out discipline
of forwards reading, we can’t simply use any labeled tree as the basis of a
distribution pattern. In the tree of example 1, data gets written on tape A
during step 2 and step 3; it is necessary to use the data written during step 2
before we use the data written during step 3. In general if we write onto a tape
during steps i and j, where i < j, we must use the data written during step i
first; when the tree contains two branches of the form

i

k

A

j

l

A , i < j,

we must have k < l. Furthermore we cannot write anything onto tape A between
steps k and l, because we must rewind between reading and writing.

The reader who has worked the exercises of Section 5.4.4 will now immedi-
ately perceive that the allowable trees for read-forward radix sorting on T tapes
are precisely the strongly T -fifo trees, which characterize read-forward merge
sorting on T tapes! (See exercise 5.4.4–20.) The only difference is that all of
the external nodes on the trees we are considering here have the same tape
labels. We could remove this restriction by assuming a final collection phase
that transfers all records to an output tape, or we could add that restriction to
the rules for T -fifo trees by requiring that the initial distribution pass of a merge
sort be explicitly represented in the corresponding merge tree.

In other words, every merge pattern corresponds to a distribution pattern,
and every distribution pattern corresponds to a merge pattern. A moment’s
reflection shows why this is so, if we consider the actions of a merge sort and
imagine that time could run backwards: The final output is “unmerged” into
subfiles, which are unmerged into others, etc.; at time zero the output has been
unmerged into S runs. Such a pattern is possible with tapes if and only if
the corresponding radix sort distribution pattern, for S keys, is possible. This
duality between merging and distribution is almost perfect; it breaks down only
in one respect, namely that the input tape must be saved at different times.

The eight-key example treated at the beginning of this section is clearly
dual to a balanced merge on four tapes. The ten-key example with partial
passes corresponds to the following ten-run merge pattern (if we suppress the
copy phases, steps 6–11 in the tree):

T1 T2 T3 T4
Initial distribution 14 13 11 12

Tree step 5 13 12 — 1231

Tree step 4 12 11 21 1231

Tree step 3 11 — 2131 1131

Tree step 2 — 41 31 31

Tree step 1 101 — — —
If we compare this to the radix sort, we see that the methods have essentially
the same structure but are reversed in time, with the tape contents also reversed
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from back to front: 1231 (two runs each of length 1 followed by one of length 3)
corresponds to {3, 8, 9}{4}{5} (two subfiles containing one key each, preceded
by one subfile containing three).

Going the other way, we can in principle construct a radix sort dual to
polyphase merge, another one dual to cascade merge, etc. For example, the
21-run polyphase merge on three tapes, illustrated at the beginning of Section
5.4.2, corresponds to the following interesting radix sort:
Phase T1 T2 T3

{0,1, ... ,20} — —
1 — {0,2,4,5,7,9,10,12,13,15,17,18,20} {1,3,6,8,11,14,16,19}

2 {0,5,10,13,18} — {1,3,6,8,11,14,16,19}
{2,4,7,9,12,15,17,20}

3 {0,5,10,13,18}{1,6,11,14,19}
{2,7,12,15,20} {3,8,16}{4,9,17} —

4 — {3,8,16}{4,9,17}{5,10,18}
{6,11,19}{7,12,20} {0,13}{1,14}{2,15}

5 {8}{9}{10}{11}{12} — {0,13}{1,14}{2,15}
{3,16}...{7,20}

6 {8}{9}{10}{11}{12}{13}...{20} {0}{1}...{7} —

The distribution rule used here to decide which keys go on which tapes at
each step appears to be magic, but in fact it has a simple connection with the
Fibonacci number system. (See exercise 2.)

Reading backwards. Duality between radix sorting and merging applies also
to algorithms that read tapes backwards. We have defined “T -lifo trees” in
Section 5.4.4, and it is easy to see that they correspond to radix sorts as well as
to merge sorts.

A read-backward radix sort was actually considered by John Mauchly al-
ready in 1946, in one of the first papers ever to be published about sorting
(see Section 5.5); Mauchly essentially gave the following construction:

Phase T1 T2 T3 T4
— {0, 1, 2, . . . , 9} — —

1 {4, 5} — {2, 3, 6, 7} {0, 1, 8, 9}
2 {4, 5}{2, 7} {3, 6} — {0, 1, 8, 9}
3 {4, 5}{2, 7}{0, 9} {3, 6}{1, 8} — —
4 {4, 5}{2, 7} {3, 6}{1, 8} {9} {0}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 — — {9}{8}{7}{6}{5} {0}{1}{2}{3}{4}
C — — — {0}{1}{2}{3}{4}{5} . . . {9}

His scheme is not the most efficient one possible, but it is interesting because
it shows that partial pass methods were considered for radix sorting already in
1946, although they did not appear in the literature for merging until about 1960.

An efficient construction of read-backward distribution patterns has been
suggested by A. Bayes [CACM 11 (1968), 491–493]: Given P + 1 tapes and
S keys, divide the keys into P subfiles each containing ⌊S/P ⌋ or ⌈S/P ⌉ keys,
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and apply this procedure recursively to each subfile. When S < 2P , one subfile
should consist of the smallest key alone, and it should be written onto the output
file. (R. M. Karp’s general preorder construction, which appears at the end of
Section 5.4.4, includes this method as a special case.)

Backward reading makes merging a little more complicated because it re-
verses the order of runs. There is a corresponding effect on radix sorting: The
outcome is stable or “anti-stable” depending on what level is reached in the tree.
After a read-backward radix sort in which some of the external nodes are at odd
levels and some are at even levels, the relative order of different records with
equal keys will be the same as the original order for some keys, but it will be
the opposite of the original order for the other keys. (See exercise 6.)

Oscillating merge sorts have their counterparts too, under duality. In an
oscillating radix sort we continue to separate out the keys until reaching subfiles
that have only one key or are small enough to be internally sorted; such subfiles
are sorted and written onto the output tape, then the separation process is
resumed. For example, if we have three work tapes and one output tape, and if
the keys are binary numbers, we may start by putting keys of the form 0x on tape
T1, keys 1x on T2. If T1 receives more than one memory load, we scan it again
and put 00x on T2 and 01x on T3. Now if the 00x subfile is short enough to be
internally sorted, we do so and output the result, then continue by processing
the 01x subfile. Such a method was called a “cascading pseudo-radix sort” by
E. H. Friend [JACM 3 (1956), 157–159]; it was developed further by H. Nagler
[JACM 6 (1959), 459–468], who gave it the colorful name “amphisbaenic sort,”
and by C. H. Gaudette [IBM Tech. Disclosure Bull. 12 (April 1970), 1849–1853].
Does radix sorting beat merging? One important consequence of the duality
principle is that radix sorting is usually inferior to merge sorting. This happens
because the technique of replacement selection gives merge sorting a definite
advantage; there is no apparent way to arrange radix sorts so that we can make
use of internal sorts encompassing more than one memory load at a time. Indeed,
the oscillating radix sort will often produce subfiles that are somewhat smaller
than one memory load, so the distribution pattern will correspond to a tree with
many more external nodes than would be present if merging and replacement
selection were used. Consequently the external path length of the tree — the
sorting time — will be increased. (See exercise 5.3.1–33.)

On the other hand, external radix sorting does have its uses. Suppose,
for example, that we have a file containing the names of all employees of a
large corporation, in alphabetic order; the corporation has 10 divisions, and
it is desired to sort the file by division, retaining the alphabetic order of the
employees in each division. This is a perfect situation in which to apply a stable
radix sort, if the file is long, since the number of records that belong to each
of the 10 divisions is likely to be more than the number of records that would
be obtained in initial runs produced by replacement selection. In general, if the
range of key values is so small that the collection of records having a given key
is expected to fill the internal memory more than twice, it is wise to use a radix
sort technique.
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We have seen in Section 5.2.5 that internal radix sorting is superior to
merging, on certain high-speed computers, because the inner loop of the radix
sort algorithm avoids complicated branching. If the external memory is especially
fast, it may be impossible for such machines to merge data rapidly enough to
keep up with the input/output equipment. Radix sorting may therefore turn out
to be superior to merging in such a situation, especially if the keys are known to
be uniformly distributed.

EXERCISES
1. [20 ] The general T -tape balanced merge with parameter P , 1 ≤ P < T, was

defined near the beginning of Section 5.4. Show that this corresponds to a radix sort
based on a mixed-radix number system.

2. [M28 ] The text illustrates the three-tape polyphase radix sort for 21 keys. Gener-
alize to the case of Fn keys; explain what keys appear on what tapes at the end of each
phase. [Hint: Consider the Fibonacci number system, exercise 1.2.8–34.]

3. [M35 ] Extend the results of exercise 2 to the polyphase radix sort on four or more
tapes. (See exercise 5.4.2–10.)

4. [M23 ] Prove that Ashenhurst’s distribution pattern is the best way to sort 10
keys on four tapes without reading backwards, in the sense that the associated tree has
minimum external path length over all strongly 4-fifo trees. (Thus, it is essentially the
best method if we ignore rewind time.)

5. [15 ] Draw the 4-lifo tree corresponding to Mauchly’s read-backwards radix sort
for 10 keys.

x 6. [20 ] A certain file contains two-digit keys 00, 01, . . . , 99. After performing
Mauchly’s radix sort on the least significant digits, we can repeat the same scheme
on the most significant digits, interchanging the roles of tapes T2 and T4. In what
order will the keys finally appear on T2?

7. [21 ] Does the duality principle apply also to multireel files?

*5.4.8. Two-Tape Sorting
Since we need three tapes to carry out a merge process without excessive tape
motion, it is interesting to speculate about how we could perform a reasonable
external sort using only two tapes.

One approach, suggested by H. B. Demuth in 1956, is sort of a combined
replacement-selection and bubble sort. Assume that the input is on tape T1,
and begin by reading P + 1 records into memory. Now output the record whose
key is smallest, to tape T2, and replace it by the next input record. Continue
outputting a record whose key is currently the smallest in memory, maintaining
a selection tree or a priority queue of P + 1 elements. When the input is finally
exhausted, the largest P keys of the file will be present in memory; output them
in ascending order. Now rewind both tapes and repeat the process by reading
from T2 and writing to T1; each such pass puts at least P more records into
their proper place. A simple test can be built into the program that determines
when the entire file is in sort. At most ⌈(N − 1)/P ⌉ passes will be necessary.
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A few moments’ reflection shows that each pass of this procedure is essen-
tially equivalent to P consecutive passes of the bubble sort (Algorithm 5.2.2B). If
an element has P or more inversions, it will be smaller than everything in the tree
when it is input, so it will be output immediately — thereby losing P inversions.
If an element has fewer than P inversions, it will go into the selection tree and
will be output before all greater keys — thereby losing all its inversions. When
P = 1, this is exactly what happens in the bubble sort, by Theorem 5.2.2I.

The total number of passes will therefore be ⌈I/P ⌉, where I is the maximum
number of inversions of any element. By the theory developed in Section 5.2.2,
the average value of I is N −


πN/2 + 2/3 + O


1/
√

N

.

If the file is not too much larger than the memory size, or if it is nearly in
order to begin with, this order-P bubble sort will be fairly rapid; in fact, such a
method might be advantageous even when extra tape units are available, because
scratch tapes must be mounted by a human operator. But a two-tape bubble
sort will run quite slowly on fairly long, randomly ordered files, since its average
running time will be approximately proportional to N2.

Let us consider how this method might be implemented for the 100,000-
record example of Section 5.4.6. We need to choose P intelligently, in order to
compensate for interblock gaps while doing simultaneous reading, writing, and
computing. Since the example assumes that each record is 100 characters long
and that 100,000 characters will fit into memory, we can make room for two
input buffers and two output buffers of size B by setting

100(P + 1) + 4B = 100000. (1)

Using the notation of Section 5.4.6, the running time for each pass will be about

NCωτ(1 + ρ), ω = (B + γ)/B. (2)

Since the number of passes is inversely proportional to P , we want to choose B to
be a multiple of 100 that minimizes the quantity ω/P . Elementary calculus shows
that this occurs when B is approximately


24975γ + γ2 − γ, so we take B =

3000, P = 879. Setting N = 100000 in the formulas above shows that the number
of passes ⌈I/P ⌉ will be about 114, and the total estimated running time will be
approximately 8.57 hours (assuming for convenience that the initial input and
the final output also have B = 3000). This represents approximately 0.44 reelfuls
of data; a full reel would take about five times as long. Some improvements could
be made if the algorithm were interrupted periodically, writing the records with
largest keys onto an auxiliary tape that is dismounted, since such records are
merely copied back and forth once they have been put into order.

Application of quicksort. Another internal sorting method that traverses
the data in a nearly sequential manner is the partition exchange or quicksort
procedure, Algorithm 5.2.2Q. Can we adapt it to two tapes? [N. B. Yoash,
CACM 8 (1965), 649.]

It is not difficult to see how this can indeed be done, using backward reading.
Assume that the two tapes are numbered 0 and 1, and imagine that the file is
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laid out as follows:
Tape 0 Tape 1

Beginning
of tape
(“bottom”)

Beginning
of tape

(“bottom”)

Current
position
(“top”)

Current
position
(“top”)

Each tape serves as a stack; putting them together like this makes it possible to
view the file as a linear list in which we can move the current position left or
right by copying from one stack to the other. The following recursive subroutines
define a suitable sorting procedure:
• SORT00 [Sort the top subfile on tape 0 and return it to tape 0].
If the subfile fits in the internal memory, sort it internally and return it to tape.
Otherwise select one record R from the subfile, and let its key be K. Reading
backwards on tape 0, copy all records whose key is > K, forming a new subfile
on the top of tape 1. Now read forward on tape 0, copying all records whose key
is = K onto tape 1. Then read backwards again, copying all records whose key is
< K onto tape 1. Complete the sort by executing SORT10 on the < K keys, then
copying the = K keys to tape 0, and finally executing SORT10 on the > K keys.
• SORT01 [Sort the top subfile on tape 0 and write it on tape 1].
Same as SORT00, but the final “SORT10” is changed to “SORT11” followed by
copying the ≤ K keys to tape 1.
• SORT10 [Sort the top subfile on tape 1 and write it on tape 0].
Same as SORT01, interchanging 0 with 1 and < with >.
• SORT11 [Sort the top subfile on tape 1 and return it to tape 1].
Same as SORT00, interchanging 0 with 1 and < with >.
The recursive nature of these subroutines can be handled without difficulty by
storing appropriate control information on the tapes.

The running time for this algorithm can be estimated as follows, if we assume
that the data are in random order, with negligible probability of equal keys. Let
M be the number of records that fit into internal memory. Let XN be the
average number of records read while applying SORT00 or SORT11 to a subfile of
N records, when N > M, and let YN be the corresponding quantity for SORT01
or SORT10. Then we have

XN =
 0, if N ≤M ;

3N + 1 + 1
N


0≤k<N (Yk + YN−1−k), if N > M ;

YN =
 0, if N ≤M ;

3N + 2 + 1
N


0≤k<N (Yk + XN−1−k + k), if N > M.

(3)

The solution to these recurrences (see exercise 2) shows that the total amount of
tape reading during the external partitioning phases will be 6 2

3 N ln N + O(N),
on the average, as N →∞. We also know from Eq. 5.2.2–(25) that the average
number of internal sort phases will be 2(N + 1)/(M + 2)− 1.
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If we apply this analysis to the 100,000-record example of Section 5.4.6,
using 25,000-character buffers and assuming that the sorting time is 2nCωτ
for a subfile of n ≤ M = 1000 records, we obtain an average sorting time of
approximately 103 minutes (including the final rewind as in Chart A). Thus the
quicksort method isn’t bad, on the average; but of course its worst case turns
out to be even more awful than the bubble sort discussed above. Randomization
will make the worst case extremely unlikely.

Radix sorting. The radix exchange method (Algorithm 5.2.2R) can be adapted
to two-tape sorting in a similar way, since it is so much like quicksort. The trick
that makes both of these methods work is the idea of reading a file more than
once, something we never did in our previous tape algorithms.

The same trick can be used to do a conventional least-significant-digit-first
radix sort on two tapes. Given the input data on T1, we copy all records onto
T2 whose key ends with 0 in binary notation; then after rewinding T1 we read it
again, copying the records whose key ends with 1. Now both tapes are rewound
and a similar pair of passes is made, interchanging the roles of T1 and T2, and
using the second least significant binary digit. At this point T1 will contain all
records whose keys are (. . . 00)2, followed by those whose keys are (. . . 01)2, then
(. . . 10)2, then (. . . 11)2. If the keys are b bits long, we need only 2b passes over
the file in order to complete the sort.

Such a radix sort could be applied only to the leading b bits of the keys, for
some judiciously chosen number b; that would reduce the number of inversions
by a factor of about 2b, if the keys were uniformly distributed, so a few passes of
the P -way bubble sort could then be used to complete the job. This approach
reads tape in the forward direction only.

A novel but somewhat more complicated approach to two-tape distribution
sorting has been suggested by A. I. Nikitin and L. I. Sholmov [Kibernetika 2, 6
(1966), 79–84]. Counts are made of the number of keys having each possible
configuration of leading bits, and artificial keys κ1, κ2, . . . , κM based on these
counts are constructed so that the number of actual keys lying between κi and
κi+1 is between predetermined limits P1 and P2, for each i. Thus, M lies between
⌈N/P2⌉ and ⌈N/P1⌉. If the leading bit counts do not give sufficient information
to determine such κ1, κ2, . . . , κM, one or more further passes are made to count
the frequency of less significant bit patterns, for certain configurations of most
significant bits. After the table of artificial keys κ1, κ2, . . . , κM has been con-
structed, 2⌈lg M⌉ further passes will suffice to complete the sort. (This method
requires memory space proportional to N, so it can’t be used for external sorting
as N →∞. In practice we would not use the technique for multireel files, so M
will be comparatively small and the table of artificial keys will fit comfortably
in memory.)

Simulation of more tapes. F. C. Hennie and R. E. Stearns have devised a
general technique for simulating k tapes on only two tapes, in such a way that
the tape motion required is increased by a factor of only O(log L), where L is the
maximum distance to be traveled on any one tape [JACM 13 (1966), 533–546].
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Fig. 86. Layout of tape T1 in the Hennie–Stearns construction; nonblank zones are
shaded.

Their construction can be simplified slightly in the case of sorting, as in the
following method suggested by R. M. Karp.

We shall simulate an ordinary four-tape balanced merge, using two tapes T1
and T2. The first of these, T1, holds the simulated tape contents in a way that
may be diagrammed as in Fig. 86; we imagine that the data is written in four
“tracks,” one for each simulated tape. (In actual fact the tape doesn’t have such
tracks; blocks 1, 5, 9, 13, . . . are thought of as Track 1, blocks 2, 6, 10, 14, . . .
as Track 2, etc.) The other tape, T2, is used only for auxiliary storage, to help
move things around on T1.

The blocks of each track are divided into zones, containing, respectively,
1, 2, 4, 8, . . . , 2k, . . . blocks per zone. Zone k on each track is either filled with
exactly 2k blocks of data, or it is completely blank. In Fig. 86, for example,
Track 1 has data in zones 1 and 3; Track 2 in zones 0, 1, 2; Track 3 in zones 0
and 2; Track 4 in zone 1; and the other zones are blank.

Suppose that we are merging data from Tracks 1 and 2 to Track 3. The
internal computer memory contains two buffers used for input to a two-way
merge, plus a third buffer for output. When the input buffer for Track 1 becomes
empty, we can refill it as follows: Find the first nonempty zone on Track 1, say
zone k, and copy its first block into the input buffer; then copy the other 2k − 1
blocks of data onto T2, and move them to zones 0, 1, . . . , k−1 of Track 1. (Zones
0, 1, . . . , k−1 are now full and zone k is blank.) An analogous procedure is used
to refill the input buffer for Track 2, whenever it becomes empty. When the
output buffer is ready to be written on Track 3, we reverse the process, scanning
across T1 to find the first blank zone on Track 3, say zone k, while copying the
data from zones 0, 1, . . . , k−1 onto T2. The data on T2, augmented by the
contents of the output buffer, is now used to fill zone k of Track 3.

This procedure requires the ability to write in the middle of tape T1, without
destroying subsequent information on that tape. As in the case of read-forward
oscillating sort (Section 5.4.5), it is possible to do this reliably if suitable pre-
cautions are taken.

The amount of tape motion required to bring 2l − 1 blocks of Track 1 into
memory is


0≤k<l 2l−1−k · c · 2k = c l2l−1, for some constant c, since we scan up

to zone k only once in every 2k steps. Thus each merge pass requires O(N log N)
steps. Since there are O(log N) passes in a balanced merge, the total time to
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sort is guaranteed to be O

N(log N)2 in the worst case; this is asymptotically

much better than the worst case of quicksort.
But this method wouldn’t work very well if we applied it to the 100,000-

record example of Section 5.4.6, since the information specified for tape T1 would
overflow the contents of one tape reel. Even if we ignore this fact, and if we use
optimistic assumptions about read/write/compute overlap and interblock gap
lengths, etc., we find that roughly 37 hours would be required to complete the
sort! So this method is purely of academic interest; the constant in O


N(log N)2

is much too high to be satisfactory when N is in a practical range.

One-tape sorting. Could we live with only one tape? It is not difficult to see
that the order-P bubble sort described above could be converted into a one-tape
sort, but the result would be ghastly.

H. B. Demuth [Ph.D. thesis (Stanford University, 1956), 85] observed that a
computer with bounded internal memory cannot reduce the number of inversions
of a permutation by more than a bounded amount as it moves a bounded distance
on tape; hence every one-tape sorting algorithm must take at least N2d units of
time on the average, for some positive constant d that depends on the computer
configuration.

R. M. Karp has pursued this topic in a very interesting way, discovering an
essentially optimum way to sort with one tape. It is convenient to discuss Karp’s
algorithm by reformulating the problem as follows: What is the fastest way
to transport people between floors using a single elevator? [See Combinatorial
Algorithms, edited by Randall Rustin (Algorithmics Press, 1972), 17–21.]

Consider a building with n floors, having room for exactly b people on each
floor. The building contains no doors, windows, or stairs, but it does have an
elevator that can stop on each floor. There are bn people in the building, and
exactly b of them want to be on each particular floor. The elevator holds at most
m people, and it takes one unit of time to go from floor i to floor i ± 1. We
wish to find the quickest way to get all the people onto the proper floors, if the
elevator is required to start and finish on floor 1.

The connection between this elevator problem and one-tape sorting is not
hard to see: The people are the records and the building is the tape. The floors
are individual blocks on the tape, and the elevator is the internal computer
memory. A computer program has more flexibility than an elevator operator
(it can, for example, duplicate people, or temporarily chop them into two parts
on different floors, etc.); but the solution below solves the problem in the fastest
conceivable time without doing such operations.

The following two auxiliary tables are required by Karp’s algorithm.

uk, 1 ≤ k ≤ n: Number of people on floors ≤ k whose destination is > k;
dk, 1 ≤ k ≤ n: Number of people on floors ≥ k whose destination is < k.

(4)

When the elevator is empty, we always have uk = dk+1 for 1 ≤ k < n, since there
are b people on every floor; the number of misfits on floors {1, . . . , k} must equal
the corresponding number on floors {k+1, . . . , n}. By definition, un = d1 = 0.
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K1. Move up K2. Still
going up? K3. Move down

K4. Still
going down?

uk = 0

uk > 0 k > 1, uk−1 > 0

k > 1, uk−1 = 0
or k = 1, u1 > 0

k = 1, u1 = 0

Fig. 87. Karp’s elevator algorithm.

It is clear that the elevator must make at least ⌈uk/m⌉ trips from floor k
to floor k + 1, for 1 ≤ k < n, since only m passengers can ascend on each trip.
Similarly it must make at least ⌈dk/m⌉ trips from floor k to floor k−1. Therefore
the elevator must necessarily take at least

n
k=1


⌈uk/m⌉+ ⌈dk/m⌉


(5)

units of time on any correct schedule. Karp discovered that this lower bound
can actually be achieved, when u1, . . . , un−1 are nonzero.

Theorem K. If uk > 0 for 1 ≤ k < n, there is an elevator schedule that delivers
everyone to the correct floor in the minimum time (5).

Proof. Assume that there are m extra people in the building; they start in
the elevator and their destination floor is artificially set to 0. The elevator can
operate according to the following algorithm, starting with k (the current floor)
equal to 1:
K1. [Move up.] From among the b + m people currently in the elevator or on

floor k, those m with the highest destinations get into the elevator, and the
others remain on floor k.

Let there be u people now in the elevator whose destination is > k,
and d whose destination is ≤ k. (It will turn out that u = min(m, uk);
if uk < m we may therefore be transporting some people away from their
destination. This represents their sacrifice to the common good.) Decrease
uk by u, increase dk+1 by d, and then increase k by 1.

K2. [Still going up?] If uk > 0, return to step K1.
K3. [Move down.] From among the b + m people currently in the elevator or on

floor k, those m with the lowest destinations get into the elevator, and the
others remain on floor k.

Let there be u people now in the elevator whose destination is ≥ k, and
d whose destination is < k. (It will always turn out that u = 0 and d = m,
but the algorithm is described here in terms of general u and d in order to
make the proof a little clearer.) Decrease dk by d, increase uk−1 by u, and
then decrease k by 1.
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Fig. 88. An optimum way to rearrange people using a small, slow elevator. (People
are each represented by the number of their destination floor.)

K4. [Still going down?] If k > 1 and uk−1 > 0, return to step K3. If k = 1
and u1 = 0, terminate the algorithm (everyone has arrived safely and the
m “extras” are back in the elevator). Otherwise return to step K2.

Figure 88 shows an example of this algorithm, with a nine-floor building and
b = 2, m = 3. Note that one of the 6s is temporarily transported to floor 7, in
spite of the fact that the elevator travels the minimum possible distance. The
idea of testing uk−1 in step K4 is the crux of the algorithm, as we shall see.

To verify the validity of this algorithm, we note that steps K1 and K3 always
keep the u and d tables (4) up to date, if we regard the people in the elevator as
being on the “current” floor k. It is now possible to prove by induction that the
following properties hold at the beginning of each step:

ul = dl+1, for k ≤ l < n; (6)
ul = dl+1 −m, for 1 ≤ l < k; (7)

ul+1 = 0, if ul = 0 and k ≤ l < n. (8)

Furthermore, at the beginning of step K1, the min (uk, m) people with highest
destinations, among all people on floors ≤ k with destination > k, are in the
elevator or on floor k. At the beginning of step K3, the min (dk, m) people with
lowest destinations, among all people on floors ≥ k with destination < k, are in
the elevator or on floor k.

From these properties it follows that the parenthesized remarks in steps K1
and K3 are valid. Each execution of step K1 therefore decreases ⌈uk/m⌉ by 1
and leaves ⌈dk+1/m⌉ unchanged; each execution of K3 decreases ⌈dk/m⌉ by 1
and leaves ⌈uk−1/m⌉ unchanged. The algorithm must therefore terminate in a
finite number of steps, and everybody must then be on the correct floor because
of (6) and (8).
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When uk = 0 and uk+1 > 0 we have a “disconnected” situation; the elevator
must journey up to floor k + 1 in order to rearrange the people up there, even
though nobody wants to move from floors ≤ k to floors ≥ k + 1. Without loss
of generality, we may assume that un−1 > 0; then every valid elevator schedule
must include at least

2


1≤k<n

max

1, ⌈uk/m⌉


(9)

moves, since we require the elevator to return to floor 1. A schedule achieving
this lower bound is readily constructed (exercise 4).

EXERCISES
1. [20 ] The order-P bubble sort discussed in the text uses only forward reading and

rewinding. Can the algorithm be modified to take advantage of backward reading?
2. [M26 ] Find explicit closed-form solutions for the numbers XN, YN defined in (3).

[Hint: Study the solution to Eq. 5.2.2–(19).]
3. [38 ] Is there a two-tape sorting method, based only on comparisons of keys (not

digital properties), whose tape motion is O(N logN) in the worst case, when sorting
N records? [Quicksort achieves this on the average, but not in the worst case, and the
Hennie–Stearns method (Fig. 86) achieves O(N(logN)2).]

4. [M23 ] In the elevator problem, suppose there are indices p and q, with q ≥ p+ 2,
up > 0, uq > 0, and up+1 = · · · = uq−1 = 0. Explain how to construct a schedule
requiring at most (9) units of time.

x 5. [M23 ] True or false: After step K1 of the algorithm in Theorem K, nobody on
the elevator has a lower destination than any person on floors < k.

6. [M30 ] (R. M. Karp.) Generalize the elevator problem (Fig. 88) to the case that
there are bj passengers initially on floor j, and b′j passengers whose destination is floor j,
for 1≤ j ≤ n. Show that a schedule exists that takes 2

n−1
k=1 max(1, ⌈uk/m⌉, ⌈dk+1/m⌉)

units of time, never allowing more than max(bj , b
′
j) passengers to be on floor j at any

one time. [Hint: Introduce fictitious people, if necessary, to make bj = b′j for all j.]
7. [M40 ] (R. M. Karp.) Generalize the problem of exercise 6, replacing the linear

path of an elevator by a network of roads to be traveled by a bus, given that the network
forms any free tree. The bus has finite capacity, and the goal is to transport passengers
to their destinations in such a way that the bus travels a minimum distance.

8. [M32 ] Let b = 1 in the elevator problem treated in the text. How many permu-
tations of the n people on the n floors will make uk ≤ 1 for 1 ≤ k ≤ n in (4)? [For
example, 3 1 4 5 9 2 6 8 7 is such a permutation.]

x 9. [M25 ] Find a significant connection between the “cocktail-shaker sort” described
in Section 5.2.2, Fig. 16, and the numbers u1, u2, . . . , un of (4) in the case b = 1.
10. [20 ] How would you sort a multireel file with only two tapes?

*5.4.9. Disks and Drums
So far we have considered tapes as the vehicles for external sorting, but more
flexible types of mass storage devices are generally available. Although such
“bulk memory” or “direct-access storage” units come in many different forms,
they may be roughly characterized by the following properties:
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i) Any specified part of the stored information can be accessed quickly.
ii) Blocks of consecutive words can be transmitted rapidly between the internal

and external memory.
Magnetic tape satisfies (ii) but not (i), because it takes a long time to get from
one end of a tape to the other.

Every external memory unit has idiosyncrasies that ought to be studied
carefully before major programs are written for it; but technology changes so
rapidly, it is impossible to give a complete discussion here of all the available
varieties of hardware. Therefore we shall consider only some typical memory
devices that illustrate useful approaches to the sorting problem.

One of the most common types of external memories satisfying (i) and (ii) is
a disk device (see Fig. 89). Data is kept on a number of rapidly rotating circular
disks, covered with magnetic material; a comb-like access arm, containing one
or more “read/write heads” for each disk surface, is used to store and retrieve
the information. Each individual surface is divided into concentric rings called
tracks, so that an entire track of data passes a read/write head every time the
disk completes one revolution. The access arm can move in and out, shifting
the read/write heads from track to track; but this motion takes time. A set
of tracks that can be read or written without repositioning the access arm is
called a cylinder. For example, Fig. 89 illustrates a disk unit that has just one
read/write head per surface; the light gray circles show one of the cylinders,
consisting of all tracks currently being scanned by the read/write heads.

Disks

Access
arm

Fig. 89. A disk device.

To fix the ideas, let us consider hypothetical MIXTEC disk units, for which

1 track = 5000 characters
1 cylinder = 20 tracks

1 disk unit = 200 cylinders

Such a disk unit contains 20 million characters, slightly less than the amount
of data that can be stored on a single MIXT magnetic tape. On some machines,
tracks near the center have fewer characters than tracks near the rim; this tends
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to make the programming much more complicated, and MIXTEC fortunately
avoids such problems. (See Section 5.4.6 for a discussion of MIXT tapes. As
in that section, we are studying classical techniques by considering machine
characteristics that were typical of the early 1970s; modern disks are much bigger
and faster.)

The amount of time required to read or write on a disk device is essentially
the sum of three quantities:

• seek time (the time to move the access arm to the proper cylinder);
• latency time (rotational delay until the read/write head reaches the right spot);
• transmission time (rotational delay while the data passes the read/write head).

On MIXTEC devices the seek time required to go from cylinder i to cylinder j is
25+ 1

2 |i−j| milliseconds. If i and j are randomly selected integers between 1 and
200, the average value of |i− j| is 2

201
3

/2002 ≈ 66.7, so the average seek time is

about 60 ms. MIXTEC disks rotate once every 25 ms, so the latency time averages
about 12.5 ms. The transmission time for n characters is (n/5000) × 25 ms =
5n µs. (This is about 3 1

3 times as fast as the transmission rate of the MIXT tapes
that were used in the examples of Section 5.4.6.)

Thus the main differences between MIXTEC disks and MIXT tapes are these:
a) Tapes can only be accessed sequentially.
b) Individual disk operations tend to require significantly more overhead (seek

time + latency time compared to stop/start time).
c) The disk transmission rate is faster.

By using clever merge patterns on tape, we were able to compensate somewhat
for disadvantage (a). Our goal now is to think of some clever algorithms for disk
sorting that will compensate for disadvantage (b).

Overcoming latency time. Let us consider first the problem of minimizing
the delays caused by the fact that the disks aren’t always positioned properly
when we want to start an I/O command. We can’t make the disk spin faster,
but we can still apply some tricks that reduce or even eliminate all of the latency
time. The addition of more access arms would obviously help, but that would
be an expensive hardware modification. Here are some software ideas:
• If we read or write several tracks of a cylinder at a time, we avoid the

latency time (and the seek time) on all tracks but the first. In general it is often
possible to synchronize the computing time with the disk movement in such a
way that a sequence of input/output instructions can be carried out without
latency delays.
• Consider the problem of reading half a track of data (Fig. 90): If the read

command begins when the heads are at axis A, there is no latency delay, and the
total time for reading is just the transmission time, 1

2 × 25 ms. If the command
begins with the heads at B, we need 1

4 of a revolution for latency and 1
2 for

transmission, totalling 3
4 × 25 ms. The most interesting case occurs when the
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Half-track
of data

A

B

C

Fig. 90. Analysis of the latency time when reading half of a track.

heads are initially at C: With proper hardware and software we need not waste
3
4 of a revolution for latency delay. Reading can begin immediately, into the
second half of the input buffer; then after a 1

2 ×25 ms pause, reading can resume
into the first half of the buffer, so that the instruction is completed when axis C
is reached again. In a similar manner, we can ensure that the total latency plus
transmission time will never exceed the time for one revolution, regardless of the
initial position of the disk. The average amount of latency delay is reduced by
this scheme from half a revolution to 1

2 (1− x2) of a revolution, if we are reading
or writing a given fraction x of a track, for 0 < x ≤ 1. When an entire track is
being read or written (x = 1), this technique eliminates all the latency time.

Drums: The no-seek case. Some external memory units, traditionally called
drum memories, eliminate the seek time by having one read/write head for every
track. If the technique of Fig. 90 is employed on such devices, both seek time
and latency time reduce to zero, provided that we always read or write a track
at a time; this is the ideal situation in which transmission time is the only
limiting factor.

Let us consider again the example application of Section 5.4.6, sorting
100,000 records of 100 characters each, with a 100,000-character internal memory.
The total amount of data to be sorted fills half of a MIXTEC disk. It is usually
impossible to read and write simultaneously on a single disk unit; we shall assume
that two disks are available, so that reading and writing can overlap each other.
For the moment we shall assume, in fact, that the disks are actually drums,
containing 4000 tracks of 5000 characters each, with no seek time required.

What sorting algorithm should be used? The method of merging is a fairly
natural choice; other methods of internal sorting do not lend themselves so well
to a disk implementation, except for the radix techniques of Section 5.2.5. The
considerations of Section 5.4.7 show that radix sorting is usually inferior to
merging for general-purpose applications, because the duality theorem of that
section applies to disks as well as to tapes. Radix sorting does have a strong
advantage, however, when the keys are uniformly distributed and many disks
can be used in parallel, because an initial distribution by the most significant
digits of the keys will divide the work up into independent subproblems that
need no further communication. (See, for example, R. C. Agarwal, SIGMOD
Record 25, 2 (June 1996), 240–246.)
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We will concentrate on merge sorting in the following discussion. To begin
a merge sort for the stated problem we can use replacement selection, with two
5000-character input buffers and two 5000-character output buffers. In fact, it is
possible to reduce this to three 5000-character buffers, if records in the current
input buffer are replaced by records that come off the selection tree. That leaves
85,000 characters (850 records) for a selection tree, so one pass over our example
data will form about 60 initial runs. (See Eq. 5.4.6–(3).) This pass takes only
about 50 seconds, if we assume that the internal processing time is fast enough
to keep up with the input/output rate, with one record moving to the output
buffer every 500 microseconds. If the input to be sorted appeared on a MIXT
tape, instead of a drum, this pass would be slower, governed by the tape speed.

With two drums and full-track reading/writing, it is not hard to see that
the total transmission time for P -way merging is minimized if we let P be as
large as possible. Unfortunately we can’t simply do a 60-way merge on all of the
initial runs, since there isn’t room for 60 buffers in memory. (A buffer of fewer
than 5000 characters would introduce unwanted latency time. Remember that
we are still pretending to be living in the 1970s, when internal memory space was
significantly limited.) If we do P -way merges, passing all the data from one drum
to the other so that reading and writing are overlapped, the number of merge
passes is


logP 60


, so we may complete the job in two passes if 8 ≤ P ≤ 59.

The smallest such P reduces the amount of internal computing, so we choose
P = 8; if 65 initial runs had been formed we would take P = 9. If 82 or more
initial runs had been formed, we could take P = 10, but since there is room
for only 18 input buffers and 2 output buffers there would be a possibility of
hangup during the merge (see Algorithm 5.4.6F); it may be better in such a case
to do two partial passes over a small portion of the data, reducing the number
of initial runs to 81 or less.

Under our assumptions, both of the merging passes will take about 50
seconds, so the entire sort in this ideal situation will be completed in just 2.5
minutes (plus a few seconds for bookkeeping, initialization, etc.). This is six
times faster than the best six-tape sort considered in Section 5.4.6; the reasons
for this speedup are the improved external/internal transmission rate (3.5 times
faster), the higher order of merge (we can’t do an eight-way tape merge unless we
have nine or more tapes), and the fact that the output was left on disk (no final
rewind, etc., was necessary). If the initial input and sorted output were required
to be on MIXT tapes, with the drums used for merging only, the corresponding
sorting time would have been about 8.2 minutes.

If only one drum were available instead of two, the input-output time would
take twice as long, since reading and writing must be done separately. (In fact,
the input-output operations might take three times as long, since we would be
overwriting the initial input data; in such a case it is prudent to follow each write
by a “read-back check” operation, lest some of the input data be irretrievably
lost, if the hardware does not provide automatic verification of written informa-
tion.) But some of this excess time can be recovered because we can use partial
pass methods that process some data records more often than others. The two-
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drum case requires all data to be processed an even number or an odd number
of times, but the one-drum case can use more general merge patterns.

We observed in Section 5.4.4 that merge patterns can be represented by trees,
and that the transmission time corresponding to a merge pattern is proportional
to the external path length of its tree. Only certain trees (T -lifo or strongly
T -fifo) could be used as efficient tape merging patterns, because some runs get
buried in the middle of a tape as the merging proceeds. But on disks or drums,
all trees define usable merge patterns if the degrees of their internal nodes are
not too large for the available internal memory size.

Therefore we can minimize transmission time by choosing a tree with mini-
mum external path length, such as a complete P -ary tree where P is as large as
possible. By Eq. 5.4.4–(9), the external path length of such a tree is equal to

qS −

(P q − S)/(P − 1)


, q =


logP S


, (1)

if there are S external nodes (leaves).
It is particularly easy to design an algorithm that merges according to

the complete P -ary tree pattern. See, for example, Fig. 91, which shows the
case P = 3, S = 6. First we add dummy runs, if necessary, to make S ≡ 1
(modulo P − 1); then we combine runs according to a first-in-first-out discipline,
at every stage merging the P oldest runs at the front of the queue into a single
run that is placed at the rear.

12345

678

9

0 0 1 2 3 4 5 6 7 8 9

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Fig. 91. Complete ternary tree with six leaves, and the corresponding merge pattern.

The complete P -ary tree gives an optimum pattern if all of the initial runs
are the same length, but we can often do better if some runs are longer than
others. An optimum pattern for this general situation can be constructed without
difficulty by using Huffman’s method (exercise 2.3.4.5–10), which may be stated
in merging language as follows: “First add (1− S) mod (P − 1) dummy runs of
length 0. Then repeatedly merge together the P shortest existing runs until only
one run is left.” When all initial runs have the same length this method reduces
to the FIFO discipline described above.

In our 100,000-record example we can do nine-way merging, since 18 input
buffers and two output buffers will fit in memory and Algorithm 5.4.6F will
overlap all compute time. The complete 9-ary tree with 60 leaves corresponds
to a merging pattern with 1 29

30 passes, if all initial runs have the same length.
The total sorting time with one drum, using read-back check after every write,
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therefore comes to about 7.4 minutes. A higher value of P may reduce this
running time slightly; but the situation is complicated because “reading hangup”
might occur when the buffers become too full or too empty.

The influence of seek time. Our discussion shows that it is relatively easy to
construct optimum merging patterns for drums, because seek time and latency
time can be essentially nonexistent. But when disks are used with small buffers
we often spend more time seeking information than reading it, so the seek time
has a considerable influence on the sorting strategy. Decreasing the order of
merge, P , makes it possible to use larger buffers, so fewer seeks are required;
this often compensates for the extra transmission time demanded by the smaller
value of P .

Seek time depends on the distance traveled by the access arm, and we could
try to arrange things so that this distance is minimized. For example, it may be
wise to sort the records within cylinders first. However, large-scale merging
requires a good deal of jumping around between cylinders (see exercise 2).
Furthermore, the multiprogramming capability of modern operating systems
means that users tend to lose control over the position of disk access arms.
We are often justified, therefore, in assuming that each disk command involves
a “random” seek.

Our goal is to discover a merge pattern that achieves the best balance
between seek time and transmission time. For this purpose we need some way
to estimate the goodness of any particular tree with respect to a particular
hardware configuration. Consider, for example, the tree in Fig. 92; we want to
estimate how long it will take to carry out the corresponding merge, so that we
can compare this tree to other trees.

In the following discussion we shall make some simple assumptions about
disk merging, in order to illustrate some of the general ideas. Let us suppose that
(i) it takes 72.5 + 0.005n milliseconds to read or write n characters; (ii) 100,000
characters of internal memory are available for working storage; (iii) an average
of 0.004 milliseconds of computation time are required to transmit each character
from input to output; (iv) there is to be no overlap between reading, writing,
or computing; and (v) the buffer size used on output need not be the same as
the buffer size used to read the data on the following pass. An analysis of the
sorting problem under these simple assumptions will give us some insights when
we turn to more complicated situations.

If we do a P -way merge, we can divide the internal working storage into P +1
buffer areas, P for input and one for output, with B = 100000/(P +1) characters
per buffer. Suppose the files being merged contain a total of L characters; then
we will do approximately L/B output operations and about the same number
of input operations, so the total merging time under our assumptions will be
approximately

2


72.5 L

B
+ 0.005L


+ 0.004L = (0.00145P + 0.01545)L (2)

milliseconds.
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Fig. 92. A tree whose external path length is 16 and whose degree path length is 52.

In other words, a P -way merge of L characters takes about (αP + β)L units
of time, for some constants α and β depending on the seek time, latency time,
compute time, and memory size. This formula leads to an interesting way to
construct good merge patterns for disks. Consider Fig. 92, for example, and
assume that all initial runs (represented by square leaf nodes) have length L0.
Then the merges at nodes 9 and 10 each take (2α + β)(2L0) units of time, the
merge at node 11 takes (3α + β)(4L0), and the final merge at node 12 takes
(4α + β)(8L0). The total merging time therefore comes to (52α + 16β)L0 units.
The coefficient “16” here is well-known to us, it is simply the external path
length of the tree. The coefficient “52” of α is, however, a new concept, which
we may call the degree path length of the tree; it is the sum, taken over all leaf
nodes, of the internal-node degrees on the path from the leaf to the root. For
example, in Fig. 92 the degree path length is

(2 + 4) + (2 + 4) + (3 + 4) + (2 + 3 + 4) + (2 + 3 + 4) + (3 + 4) + (4) + (4)
= 52.

If T is any tree, let D(T ) and E(T ) denote its degree path length and its
external path length, respectively. Our analysis may be summarized as follows:

Theorem H. If the time required to do a P -way merge on L characters has
the form (αP + β)L, and if there are S equal-length runs to be merged, the best
merge pattern corresponds to a tree T for which αD(T )+ βE(T ) is a minimum,
over all trees having S leaves.
(This theorem was implicitly contained in an unpublished paper that George U.
Hubbard presented at the ACM National Conference in 1963.)

Let α and β be fixed constants; we shall say a tree is optimal if it has the
minimum value of αD(T ) + βE(T ) over all trees, T , with the same number of
leaves. It is not difficult to see that all subtrees of an optimal tree are optimal,
and therefore we can construct optimal trees with n leaves by piecing together
optimal trees with < n leaves.
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Theorem K. Let the sequence of numbers Am(n) be defined for 1 ≤ m ≤ n by
the rules

A1(1) = 0; (3)

Am(n) = min
1≤k≤n/m


A1(k) + Am−1(n− k)


, for 2 ≤ m ≤ n; (4)

A1(n) = min
2≤m≤n


αmn + βn + Am(n)


, for n ≥ 2. (5)

Then A1(n) is the minimum value of αD(T ) + βE(T ), over all trees T with
n leaves.

Proof. Equation (4) implies that Am(n) is the minimum value of A1(n1) + · · ·+
A1(nm) taken over all positive integers n1, . . . , nm such that n1 + · · ·+ nm = n.
The result now follows by induction on n.

The recurrence relations (3), (4), (5) can also be used to construct the
optimal trees themselves: Let km(n) be a value for which the minimum occurs
in the definition of Am(n). Then we can construct an optimal tree with n leaves
by joining m = k1(n) subtrees at the root; the subtrees are optimal trees with
km(n), km−1


n − km(n)


, km−2


n − km(n) − km−1(n − km(n))


, . . . leaves,

respectively.
For example, Table 1 illustrates this construction when α = β = 1. A com-

pact specification of the corresponding optimal trees appears at the right of the
table; the entry “4:9:9” when n = 22 means, for example, that an optimal tree
T22 with 22 leaves may be obtained by combining T4, T9, and T9 (see Fig. 93).
Optimal trees are not unique; for instance, 5:8:9 would be just as good as 4:9:9.

Fig. 93. An optimum way to merge 22 initial runs of equal length, when α = β in
Theorem H. This pattern minimizes the seek time, under the assumptions leading to
Eq. (2) in the text.

Our derivation of (2) shows that the relation α ≤ β will hold whenever
P + 1 equal buffer areas are used. The limiting case α = β, shown in Table 1
and Fig. 93, occurs when the seek time itself is to be minimized without regard
to transmission time.

Returning to our original application, we still haven’t considered how to
get the initial runs in the first place; without read/write/compute overlap,
replacement selection loses some of its advantages. Perhaps we should fill the
entire internal memory, sort it, and output the results; such input and output
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Table 1
OPTIMAL TREE CHARACTERISTICS Am(n), km(n) WHEN α = β = 1

m  
n 1 2 3 4 5 6 7 8 9 10 11 12 Tree n

1 0,0 — 1
2 6,2 0,1 1:1 2
3 12,3 6,1 0,1 1:1:1 3
4 20,4 12,1 6,1 0,1 1:1:1:1 4
5 30,5 18,2 12,1 6,1 0,1 1:1:1:1:1 5
6 42,2 24,3 18,1 12,1 6,1 0,1 3:3 6
7 52,3 32,3 24,1 18,1 12,1 6,1 0,1 1:3:3 7
8 62,3 40,4 30,2 24,1 18,1 12,1 6,1 0,1 2:3:3 8
9 72,3 50,4 36,3 30,1 24,1 18,1 12,1 6,1 0,1 3:3:3 9

10 84,3 60,5 44,3 36,1 30,1 24,1 18,1 12,1 6,1 0,1 3:3:4 10
11 96,3 72,4 52,3 42,2 36,1 30,1 24,1 18,1 12,1 6,1 0,1 3:4:4 11
12 108,3 82,4 60,4 48,3 42,1 36,1 30,1 24,1 18,1 12,1 6,1 0,1 4:4:4 12
13 121,4 92,4 70,4 56,3 48,1 42,1 36,1 30,1 24,1 18,1 12,1 6,1 3:3:3:4 13
14 134,4 102,5 80,4 64,3 54,2 48,1 42,1 36,1 30,1 24,1 18,1 12,1 3:3:4:4 14
15 147,4 114,5 90,4 72,3 60,3 54,1 48,1 42,1 36,1 30,1 24,1 18,1 3:4:4:4 15
16 160,4 124,7 102,4 80,4 68,3 60,1 54,1 48,1 42,1 36,1 30,1 24,1 4:4:4:4 16
17 175,4 134,8 112,4 90,4 76,3 66,2 60,1 54,1 48,1 42,1 36,1 30,1 4:4:4:5 17
18 190,4 144,9 122,4 100,4 84,3 72,3 66,1 60,1 54,1 48,1 42,1 36,1 4:4:5:5 18
19 205,4 156,9 132,5 110,4 92,3 80,3 72,1 66,1 60,1 54,1 48,1 42,1 4:5:5:5 19
20 220,4 168,9 144,4 120,5 100,4 88,3 78,2 72,1 66,1 60,1 54,1 48,1 5:5:5:5 20
21 236,5 180,9 154,4 132,4 110,4 96,3 84,3 78,1 72,1 66,1 60,1 54,1 4:4:4:4:5 21
22 252,3 192,10 164,4 142,4 120,4 104,3 92,3 84,1 78,1 72,1 66,1 60,1 4:9:9 22
23 266,3 204,11 174,5 152,4 130,4 112,3 100,3 90,2 84,1 78,1 72,1 66,1 5:9:9 23
24 282,3 216,12 186,5 162,5 140,4 120,4 108,3 96,3 90,1 84,1 78,1 72,1 5:9:10 24
25 296,3 229,12 196,7 174,4 150,5 130,4 116,3 104,3 96,1 90,1 84,1 78,1 7:9:9 25

operations can each be done with one seek. Or perhaps we are better off using,
say, 20 percent of the memory as a combination input/output buffer, and doing
replacement selection. This requires five times as many seeks (an extra 60
seconds or so!), but it reduces the number of initial runs from 100 to 64; the reduc-
tion would be more dramatic if the input file were pretty much in order already.

If we decide not to use replacement selection, the optimum tree for S = 100,
α = 0.00145, β = 0.01545 [see (2)] turns out to be rather prosaic: It is simply a
10-way merge, completed in two passes over the data. Allowing 30 seconds for
internal sorting (100 quicksorts, say), the initial distribution pass takes about
2.5 minutes, and the merge passes each take almost 5 minutes, for a total of
12.4 minutes. If we decide to use replacement selection, the optimal tree for
S = 64 turns out to be equally uninteresting (two 8-way merge passes); the initial
distribution pass takes about 3.5 minutes, the merge passes each take about 4.5
minutes, and the estimated total time comes to 12.6 minutes. Remember that
both of these methods give up virtually all read/write/compute overlap in order
to have larger buffers, reducing seek time. None of these estimated times includes
the time that might be necessary for read-back check operations.

In practice the final merge pass tends to be quite different from the others;
for example, the output is often expanded and/or written onto tape. In such
cases the tree pattern should be chosen using a different optimality criterion at
the root.
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*A closer look at optimal trees. It is interesting to examine the extreme case
β = 0 in Theorems H and K, even though practical situations usually lead to
parameters with 0 ≤ α ≤ β. What tree with n leaves has the smallest possible
degree path length? Curiously it turns out that three-way merging is best.
Theorem L. The degree path length of a tree with n leaves is never less than

f(n) =


3qn + 2(n− 3q), if 2 · 3q−1 ≤ n ≤ 3q;
3qn + 4(n− 3q), if 3q ≤ n ≤ 2 · 3q.

(6)

Ternary trees Tn defined by the rules

T1 = , T2 = , Tn =

T⌊n
3

⌋ T⌊n+1

3

⌋ T⌊n+2

3

⌋ (7)

have the minimum degree path length.
Proof. It is important to observe that f(n) is a convex function, namely that

f(n + 1)− f(n) ≥ f(n)− f(n− 1) for all n ≥ 2. (8)
The relevance of this property is due to the following lemma, which is dual to
the result of exercise 2.3.4.5–17.
Lemma C. A function g(n) defined on the positive integers satisfies

min
1≤k<n


g(k) + g(n− k)


= g


⌊n/2⌋


+ g


⌈n/2⌉


, n ≥ 2, (9)

if and only if it is convex.
Proof. If g(n + 1)− g(n) < g(n)− g(n− 1) for some n ≥ 2, we have g(n + 1) +
g(n − 1) < g(n) + g(n), contradicting (9). Conversely, if (8) holds for g, and if
1 ≤ k < n−k, we have g(k +1)+g(n−k−1) ≤ g(k)+g(n−k) by convexity.

The latter part of Lemma C’s proof can be extended for any m ≥ 2 to show
that

min
n1+···+nm=n
n1,...,nm≥1


g(n1) + · · ·+ g(nm)


= g


⌊n/m⌋


+ g


⌊(n + 1)/m⌋


+ · · ·+ g


⌊(n + m− 1)/m⌋


(10)

whenever g is convex. Let
fm(n) = f


⌊n/m⌋


+ f


⌊(n + 1)/m⌋


+ · · ·+ f


⌊(n + m− 1)/m⌋


; (11)

the proof of Theorem L is completed by proving that f3(n) + 3n = f(n) and
fm(n) + mn ≥ f(n) for all m ≥ 2. (See exercise 11.)

It would be very nice if optimal trees could always be characterized neatly
as in Theorem L. But the results we have seen for α = β in Table 1 show that
the function A1(n) is not always convex. In fact, Table 1 is sufficient to disprove
most simple conjectures about optimal trees! We can, however, salvage part of
Theorem L in the general case; M. Schlumberger and J. Vuillemin have shown
that large orders of merge can always be avoided:
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Theorem M. Given α and β as in Theorem H, there exists an optimal tree in
which the degree of every node is at most

d(α, β) =


min
k≥1


k +


1 + 1

k


1 + β

α


. (12)

Proof. Let n1, . . . , nm be positive integers such that n1 + · · ·+ nm = n, A(n1) +
· · · + A(nm) = Am(n), and n1 ≤ · · · ≤ nm, and assume that m ≥ d(α, β) + 1.
Let k be the value that minimizes (12); we shall show that

αn(m− k) + βn + Am−k(n) ≤ αnm + βn + Am(n), (13)

hence the minimum value in (5) is always achieved for some m ≤ d(α, β).
By definition, since m ≥ k + 2, we must have

Am−k(n) ≤ A1(n1 +· · ·+nk+1)+A1(nk+2)+· · ·+A1(nm)
≤ α(n1 +· · ·+nk+1)(k+1)+β(n1 +· · ·+nk+1)+A1(n1)+· · ·+A1(nm)
=


α(k+1)+β


(n1 +· · ·+nk+1)+Am(n)

≤

α(k+1)+β


(k+1)n/m+Am(n),

and (13) now follows easily. (Careful inspection of this proof shows that (12) is
best possible, in the sense that some optimal trees must have nodes of degree
d(α, β); see exercise 13.)

The construction in Theorem K needs O(N2) memory cells and O(N2 log N)
steps to evaluate Am(n) for 1 ≤ m ≤ n ≤ N ; Theorem M shows that only O(N)
cells and O(N2) steps are needed. Schlumberger and Vuillemin have discovered
several more very interesting properties of optimal trees [Acta Informatica 3
(1973), 25–36]. Furthermore the asymptotic value of A1(n) can be worked out
as shown in exercise 9.

*Another way to allocate buffers. David E. Ferguson [CACM 14 (1971),
476–478] pointed out that seek time can be reduced if we don’t make all buffers
the same size. The same idea occurred at about the same time to several other
people [S. J. Waters, Comp. J. 14 (1971), 109–112; Ewing S. Walker, Software
Age 4 (August–September, 1970), 16–17].

Suppose we are doing a four-way merge on runs of equal length L0, with
M characters of memory. If we divide the memory into equal buffers of size
B = M/5, we need about L0/B seeks on each input file and 4L0/B seeks for the
output, totalling 8L0/B = 40L0/M seeks. But if we use four input buffers of
size M/6 and one output buffer of size M/3, we need only about 4× (6L0/M) +
4× (3L0/M) = 36L0/M seeks! The transmission time is the same in both cases,
so we haven’t lost anything by the change.

In general, suppose that we want to merge sorted files of lengths L1, . . . , LP

into a sorted file of length

LP+1 = L1 + · · ·+ LP ,
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and assume that a buffer of size Bk is being used for the kth file. Thus

B1 + · · ·+ BP + BP+1 = M, (14)

where M is the total size of available internal memory. The number of seeks will
be approximately

L1

B1
+ · · ·+ LP

BP
+ LP+1

BP+1
. (15)

Let’s try to minimize this quantity, subject to condition (14), assuming for
convenience that the Bk’s don’t have to be integers. If we increase Bj by δ
and decrease Bk by the same amount, the number of seeks changes by

Lj

Bj + δ
− Lj

Bj
+ Lk

Bk − δ
− Lk

Bk
=


Lk

Bk(Bk − δ) −
Lj

Bj(Bj + δ)


δ,

so the allocation can be improved if Lj/B2
j ̸= Lk/B2

k. Therefore we get the
minimum number of seeks only if

L1

B2
1

= · · · = LP

B2
P

= LP+1

B2
P+1

. (16)

Since a minimum does exist it must occur when

Bk =


Lk M


L1 + · · ·+


LP+1

, 1 ≤ k ≤ P + 1; (17)

these are the only values of B1, . . . , BP+1 that satisfy both (14) and (16). Plug-
ging (17) into (15) gives a fairly simple formula for the total number of seeks,

L1 + · · ·+


LP+1
2

/M, (18)

which may be compared with the number (P + 1)(L1 + · · ·+ LP+1)/M obtained
if all buffers are equal in length. By exercise 1.2.3–31, the improvement is

1≤j<k≤P+1

√
Lj −

√
Lk

2
/M.

Unfortunately formula (18) does not lend itself to an easy determination of
optimum merge patterns as in Theorem K (see exercise 14).

The use of chaining. M. A. Goetz [CACM 6 (1963), 245–248] has suggested
an interesting way to avoid seek time on output, by linking individual tracks
together. His idea requires a fairly fancy set of disk storage management routines,
but it applies to many problems besides sorting, and it may therefore be a very
worthwhile technique for general-purpose use.

The concept is simple: Instead of allocating tracks sequentially within cyl-
inders of the disk, we link them together and maintain lists of available space,
one for each cylinder. When it is time to output a track of information, we write
it on the current cylinder (wherever the access arm happens to be), unless that
cylinder is full. In this way the seek time usually disappears.
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The catch is that we can’t store a link-to-next-track within the track itself,
since the necessary information isn’t known at the right time. (We could store a
link-to-previous-track and read the file backwards on the next pass, if that were
suitable.) A table of link addresses for the tracks of each file can be maintained
separately, because it requires comparatively little space. The available space
lists can be represented compactly by using bit tables, with 1000 bits specifying
the availability or unavailability of 1000 tracks.
Forecasting revisited. Algorithm 5.4.6F shows that we can forecast which
input buffer of a P -way merge will empty first, by looking at the last keys in
each buffer. Therefore we can be reading and computing at the same time.
That algorithm uses floating input buffers, not dedicated to a particular file; so
the buffers must all be the same size, and the buffer allocation technique above
cannot be used. But the restriction to a uniform buffer size is no great loss, since
computers now have much larger internal memories than they used to. Nowadays
a natural buffer size, such as the capacity of a full disk track, often suggests itself.

Let us therefore imagine that the P runs to be merged each consist of a
sequence of data blocks, where each block (except possibly the last) contains
exactly B records. D. L. Whitlow and A. Sasson developed an interesting
algorithm called SyncSort [U.S. Patent 4210961 (1980)], which improves on
Algorithm 5.4.6F by needing only three buffers of size B together with a memory
pool holding PB records and PB pointers. By contrast, Algorithm 5.4.6F
requires 2P input buffers and 2 output buffers, but no pointers.

SyncSort begins by reading the first block of each run and putting these PB
records into the memory pool. Each record in the memory pool is linked to its
successor in the run it belongs to, except that the final record in each block has
no successor as yet. The smallest of the keys in those final records determines
the run that will need to replenished first, so we begin to read the second block
of that run into the first buffer. Merging begins as soon as that second block has
been read; by looking at its final key we can accurately forecast the next relevant
block, and we can continue in the same way to prefetch exactly the right blocks
to input, just before they are needed.

The three SyncSort buffers are arranged in a circle. As merging proceeds,
the computer is processing data in the current buffer, while input is being read
into the next buffer and output is being written from the third. The merging
algorithm exchanges each record in the current buffer with the next record of
output, namely the record in the memory pool that has the smallest key. The
selection tree and the successor links are also updated appropriately as we make
each exchange. Once the end of the current buffer is reached, we are ready to
rotate the buffer circle: The reading buffer becomes current, the writing buffer
is used for reading, and we begin to write from the former current buffer.

Many extensions of this basic idea are possible, depending on hardware
capabilities. For example, we might use two disks, one for reading and one for
writing, so that input and output and merging can all take place simultaneously.
Or we might be able to overlap seek time by extending the circle to four or more
buffers, as in Fig. 26 of Section 1.4.4, and deviating from the forecast input order.
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Using several disks. Disk devices once were massive both in size and weight,
but they became dramatically smaller, lighter, and less expensive during the
late 1980s — although they began to hold more data than ever before. Therefore
people began to design algorithms for once-unimaginable clusters of 5 or 10 or
50 disk devices or for even larger disk farms.

One easy way to gain speed with additional disks is to use the technique
of disk striping for large files. Suppose we have D disk units, numbered 0, 1,
. . . , D − 1, and consider a file that consists of L blocks a0a1 . . . aL−1. Striping
this file on D disks means that we put block aj on disk number j mod D; thus,
disk 0 holds a0aDa2D . . . , disk 1 holds a1aD+1a2D+1 . . . , etc. Then we can
perform D reads or D writes simultaneously on D-block groups a0a1 . . . aD−1,
aDaD+1 . . . a2D−1, . . . , which are called superblocks. The individual blocks of
each superblock should be on corresponding cylinders on different disks so that
the seek time will be the same on each unit. In essence, we are acting as if we
had a single disk unit with blocks and buffers of size DB, but the input and
output operations run up to D times faster.

An elegant improvement on superblock striping can be used when we’re
doing 2-way merging, or in general whenever we want to match records with
equal keys in two files that are in order by keys. Suppose the blocks a0a1a2 . . . of
the first file are striped on D disks as above, but the blocks b0b1b2 . . . of the other
file are striped in the reverse direction, with block bj on disk (D− 1− j) mod D.
For example, if D = 5 the blocks aj appear respectively on disks 0, 1, 2, 3, 4,
0, 1, . . . , while the blocks bj for j ≥ 0 appear on 4, 3, 2, 1, 0, 4, 3, . . . . Let αj

be the last key of block aj and let βj be the last key of block bj . By examining
the α’s and β’s we can forecast the sequence in which we will want to read the
data blocks; this sequence might, for example, be

a0b0a1a2b1 a3a4b2a5a6 a7a8b3 b4 b5 b6 b7 b8 b9b10 . . . .

These blocks appear respectively on disks

0 4 1 2 3 3 4 2 0 1 2 3 1 0 4 3 2 1 0 4 . . .

when D = 5, and if we read them five at a time we will be inputting successively
from disks {0, 4, 1, 2, 3}, {3, 4, 2, 0, 1}, {2, 3, 1, 0, 4}, {3, 2, 1, 0, 4}, . . . ; there will
never be a conflict in which we need to read two blocks from the same disk at the
same time! In general, with D disks we can read D at a time without conflict,
because the first group will have k blocks a0 . . . ak−1 on disks 0 through k−1 and
D−k blocks b0 . . . bD−k−1 on disks D− 1 through k, for some k; then we will be
poised to continue in the same way but with disk numbers shifted cyclically by k.

This trick is well known to card magicians, who call it the Gilbreath principle;
it was invented during the 1960s by Norman Gilbreath [see Martin Gardner,
Mathematical Magic Show (New York: Knopf, 1977), Chapter 7; N. Gilbreath,
Genii 52 (1989), 743–744]. We need to know the α’s and β’s, to decide what
blocks should be read next, but that information takes up only a small fraction of
the space needed by the a’s and b’s, and it can be kept in separate files. Therefore
we need fewer buffers to keep the input going at full speed (see exercise 23).
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Randomized striping. If we want to do P -way merging with D disks when
P and D are large, we cannot keep reading the information simultaneously from
D disks without conflict unless we have a large number of buffers, because there
is no analog of the Gilbreath principle when P > 2. No matter how we allocate
the blocks of a file to disks, there will be a chance that we might need to read
many blocks into memory before we are ready to use them, because the blocks
that we really need might all happen to reside on the same disk.

Suppose, for example, that we want to do 8-way merging on 5 disks, and
suppose that the blocks a0a1a2 . . . , b0b1b2 . . . , . . . , h0h1h2 . . . of 8 runs have
been striped with aj on disk j mod D, bj on disk (j + 1) mod D, . . . , hj on disk
(j + 7) mod D. We might need to access these blocks in the order

a0b0 c0d0e0 f0g0h0d1e1 d2e2d3a1f1 b1g1a2f2e3 d4c1h1b2g2 a3f3e4d5d6 . . . ; (19)

then they appear on the respective disks

0 1 2 3 4 0 1 2 4 0 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 . . . , (20)

so our best bet is to input them as follows:
Time 1 Time 2 Time 3 Time 4 Time 5

a0b0 c0d0e0 f0g0h0c1d1 e1e2 b1h1d6 d2d3g1b2 ? ? a1a2g2 ?
Time 6 Time 7 Time 8 Time 9

? f1f2a3 ? ? ? e3f3 ? ? ? d4e4 ? ? ? ? d5 ? (21)

By the time we are able to look at block d5, we need to have read d6 as well as
15 blocks of future data denoted by “?”, because of congestion on disk 3. And
we will not yet be done with the seven buffers containing remnants of a3, b2, c1,
e4, f3, g2, and h1; so we will need buffer space for at least (16 + 8 + 5)B input
records in this particular example.

The simple superblock approach to disk striping would proceed instead to
read blocks a0a1a2a3a4 at time 1, b0b1b2b3b4 at time 2, . . . , h0h1h2h3h4 at time 8,
then d5d6d7d8d9 at time 9 (since d5d6d7d8d9 is the superblock needed next), and
so on. Using the SyncSort strategy, it would require buffers for (P + 3)DB
records and PDB pointers in memory. The more versatile approach indicated
above can be shown to need only about half as much buffer space; but the
memory requirement is still approximately proportional to PDB when P and D
are large (see exercise 24).

R. D. Barve, E. F. Grove, and J. S. Vitter [Parallel Computing 23 (1997),
601–631] showed that a slight modification of the independent-block approach
leads to an algorithm that keeps the disk input/output running at nearly its full
speed while needing only O(P + D log D) buffer blocks instead of Ω(PD). Their
technique of randomized striping puts block j of run k on disk (xk + j) mod D,
where xk is a random integer selected just before run k is first written. Instead
of insisting that D blocks are constantly being input, one from each disk, they
introduced a simple mechanism for holding back when there isn’t enough space
to keep reading ahead on certain disks, and they proved that their method is
asymptotically optimal.
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To do P -way merging on D disks with randomized striping, we can maintain
2D + P + Q− 1 floating input buffers, each holding a block of B records. Input
is typically being read into D of these buffers, called active read buffers, while P
of the others contain the leading blocks from which records are currently being
merged; these are called active merge buffers. The remaining D +Q−1 “scratch
buffers” are either empty or they hold prefetched data that will be needed later;
Q is a nonnegative parameter that can be increased in order to lessen the chance
that reading will be held back on any of the disks.

The blocks of all runs can be arranged into chronological order as in (19):
First we list block 0 of each run, then we list the others by determining the order
in which active merge buffers will become empty. As explained above, this order
is determined by the final keys in each block, so we can readily forecast which
blocks ought to be prefetched first.

Let’s consider example (19) again, with P = 8, D = 5, and Q = 4. Now we
will have only 2D + P + Q − 1 = 21 input buffer blocks to work with instead
of the 29 that were needed above for maximum-speed reading. We will use the
offsets

x1 = 3, x2 = 1, x3 = 4, x4 = 1, x5 = 0, x6 = 4, x7 = 2, x8 = 1 (22)

(suggested by the decimal digits of π) for runs a, b, . . . , h; thus the respective
disks contain
Disk Blocks
0: e0 f1 a2 d4c1 . . .
1: b0 d0 h0 e1 f2 a3 d5 . . .
2: g0 d1 e2 b1 h1 f3 d6 . . .
3: a0 d2 g1 e3 b2 . . .
4: c0 f0 d3a1 g2 e4 . . .

(23)

if we list their blocks in chronological order. The “random” offsets of (22),
together with sequential striping within each run, will tend to minimize the
congestion of any particular chronological sequence. The actual processing now
goes like this:

Active reading Active merging Scratch Waiting for
Time 1 e0 b0g0a0c0 −−−−−−−− (−−−−−−−−) a0
Time 2 f1d0d1d2f0 a0−−−−−−− b0 c0(e0g0−−−−) d0
Time 3 a2h0e2g1d3 a0b0 c0d0−−−− e0f0g0(d1d2f1−−) h0
Time 4 a2e1 b1g1a1 a0b0 c0d0e0f0g0h0 d1(d2e2d3f1g1a2−) e1
Time 5 d4f2h1e3g2 a0b0 c0d1e1f0g0h0 d2e2d3a1f1b1g1a2() f2
Time 6 c1a3f3b2 e4 a2b1 c0d3e2f2g1h0 e3d4(h1g2−−−−) c1
Time 7 ? d5d6 ? ? a2b1 c1d4e3f2g1h0 h1b2g2a3f3e4(−−) d5

(24)

At each unit of time we are waiting for the chronologically first block that is
not yet merged and not yet in a scratch buffer; this is one of the blocks that is
currently being input to an active read buffer. We assume that the computer
is much faster than the disks; thus, all blocks before the one we are waiting for
will have already entered the merging process before input is complete. We also
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assume that sufficient output buffers are available so that merging will not be
delayed by the lack of a place to place the output (see exercise 26). When a round
of input is complete, the block we were waiting for is immediately classified as an
active merge buffer, and the empty merge buffer it replaces will be used for the
next active reading. The other D−1 active read buffers now trade places with the
D−1 least important scratch buffers; scratch buffers are ranked by chronological
order of their contents. On the next round we will wait for the first unmerged
block that isn’t present in the scratch buffers. Any scratch buffers preceding that
block in chronological order will become part of the active merge before the next
input cycle, but the others — shown in parentheses above — will be carried over
and they will remain as scratch buffers on the next round. However, at most Q
of the buffers in parentheses can be carried over, because we will need to convert
D− 1 scratch buffers to active read status immediately after the input is ready.
Any additional scratch buffers are effectively blanked out, as if they hadn’t been
read. This blanking-out occurs at Time 4 in (24): We cannot carry all six of
the blocks d2e2d3f1g1a2 over to Time 5, because Q = 4, so we reread g1 and a2.
Otherwise the reading operations in this example take place at full speed.

Exercise 29 proves that, given any chronological sequence of runs to be
merged, the method of randomized striping will achieve the minimum number
of disk reads within a factor of r(D, Q + 2), on the average, where the function r
is tabulated in Table 2. For example, if D = 4 and Q = 18, the average time
to do a P -way merge on L blocks of data with 4 disks and P + 25 input buffers
will be at most the time to read r(4, 20)L/D ≈ 1.785L/4 blocks on a single disk.
This theoretical upper bound is quite conservative; in practice the performance
is even better, very near the optimum time L/4.

Table 2
GUARANTEES ON THE PERFORMANCE OF RANDOMIZED STRIPING

r(d, d) r(d, 2d) r(d, 3d) r(d, 4d) r(d, 5d) r(d, 6d) r(d, 7d) r(d, 8d) r(d, 9d) r(d, 10d)

d = 2 1.500 1.500 1.499 1.467 1.444 1.422 1.393 1.370 1.353 1.339
d = 4 2.460 2.190 1.986 1.888 1.785 1.724 1.683 1.633 1.597 1.570
d = 8 3.328 2.698 2.365 2.183 2.056 1.969 1.889 1.836 1.787 1.743
d = 16 4.087 3.103 2.662 2.434 2.277 2.156 2.067 1.997 1.933 1.890
d = 32 4.503 3.392 2.917 2.654 2.458 2.319 2.218 2.130 2.062 2.005
d = 64 5.175 3.718 3.165 2.847 2.613 2.465 2.346 2.249 2.174 2.107
d = 128 5.431 3.972 3.356 2.992 2.759 2.603 2.459 2.358 2.273 2.201
d = 256 5.909 4.222 3.536 3.155 2.910 2.714 2.567 2.464 2.363 2.289
d = 512 6.278 4.455 3.747 3.316 3.024 2.820 2.675 2.556 2.450 2.375
d = 1024 6.567 4.689 3.879 3.434 3.142 2.937 2.780 2.639 2.536 2.452

Will keysorting help? When records are long and keys are short, it is very
tempting to create a new file consisting simply of the keys together with a serial
number specifying their original file location. After sorting this key file, we can
replace the keys by the successive numbers 1, 2, . . . ; the new file can then be
sorted by original file location and we will have a convenient specification of how
to unshuffle the records for the final rearrangement. Schematically, the process
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has the following form:

i) Original file (K1, I1)(K2, I2) . . . (KN , IN ) long
ii) Key file (K1, 1)(K2, 2) . . . (KN , N) short
iii) Sorted (ii) (Kp1 , p1)(Kp2 , p2) . . . (KpN

, pN ) short
iv) Edited (iii) (1, p1)(2, p2) . . . (N, pN ) short
v) Sorted (iv) (q1, 1)(q2, 2) . . . (qN , N) short
vi) Edited (i) (q1, I1)(q2, I2) . . . (qN , IN ) long

Here pj = k if and only if qk = j. The two sorting processes in (iii) and (v) are
comparatively fast (perhaps even internal sorts), since the records aren’t very
long. In stage (vi) we have reduced the problem to sorting a file whose keys are
simply the numbers {1, 2, . . . , N}; each record now specifies exactly where it is
to be moved.

The external rearrangement problem that remains after stage (vi) seems
trivial, at first glance; but in fact it is rather difficult, and no really good
algorithms (significantly better than sorting) have yet been found. We could
obviously do the rearrangement in N steps, moving one record at a time; for
large enough N this is better than the N log N of a sorting method. But N is
never that large; N is, however, sufficiently large that N seeks are unthinkable.

A radix sorting method can be used efficiently on the edited records of (vi),
since their keys have a perfectly uniform distribution. On modern computers, the
processing time for an eight-way distribution is much faster than the processing
time for an eight-way merge; hence a distribution sort is probably the best
procedure. (See Section 5.4.7, and see also exercise 19.)

On the other hand, it seems wasteful to do a full sort after the keys have
already been sorted. One reason the external rearrangement problem is unex-
pectedly difficult has been discovered by R. W. Floyd, who found a nontrivial
lower bound on the number of seeks required to rearrange records on a disk device
[Complexity of Computer Computations (New York: Plenum, 1972), 105–109].

It is convenient to describe Floyd’s result in terms of the elevator problem of
Section 5.4.8; but this time we want to find an elevator schedule that minimizes
the number of stops, instead of minimizing the distance traveled. Minimizing
the number of stops is not precisely equivalent to finding the minimum-seek
rearrangement algorithm, since a stop combines input to the elevator with output
from the elevator; but the stop-minimization criterion is close enough to indicate
the basic ideas.

We shall make use of the “discrete entropy” function

F (n) =


1<k≤n


⌈lg k⌉+ 1


= B(n) + n− 1 = n⌈lg n⌉ − 2⌈lg n⌉ + n, (25)

where B(n) is the binary insertion function, Eq. 5.3.1–(3). By Eq. 5.3.1–(34),
F (n) is the minimum external path length of a binary tree with n leaves, and

n lg n ≤ F (n) ≤ n lg n + 0.0861n. (26)
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Since F (n) is convex and satisfies F (n) = n + F

⌊n/2⌋


+ F


⌈n/2⌉


, we know

by Lemma C above that

F (n) ≤ F (k) + F (n− k) + n, for 0 ≤ k ≤ n. (27)

This relation is also evident from the external path length characterization of F ;
it is the crucial fact we need in the following argument.

As in Section 5.4.8 we shall assume that each floor holds b people, the
elevator holds m people, and there are n floors. Let sij be the number of people
currently on floor i whose destination is floor j. The togetherness rating of any
configuration of people in the building is defined to be the sum


1≤i,j≤n F (sij).

For example, assume that b = m = n = 6 and that the 36 people are initially
scattered among the floors as follows:

␣␣␣␣␣␣
123456 123456 123456 123456 123456 123456 (28)

The elevator is empty, sitting on floor 1; “␣” denotes a vacant position. Each
floor contains one person with each possible destination, so all sij are 1 and the
togetherness rating is zero. If the elevator now transports six people to floor 2,
we have the configuration

123456
␣␣␣␣␣␣ 123456 123456 123456 123456 123456 (29)

and the togetherness rating becomes 6F (0) + 24F (1) + 6F (2) = 12. Suppose the
elevator now carries 1, 1, 2, 3, 3, and 4 to floor 3:

112334
␣␣␣␣␣␣ 245566 123456 123456 123456 123456 (30)

The togetherness rating has jumped to 4F (2) + 2F (3) = 18. When all people
have finally been transported to their destinations, the togetherness rating will
be 6F (6) = 96.

Floyd observed that the togetherness rating can never increase by more than
b+m at each stop, since a set of s equal-destination people joining with a similar
set of size s′ improves the rating by F (s + s′)−F (s)−F (s′) ≤ s + s′. Therefore
we have the following result.

Theorem F. Let t be the togetherness rating of an initial configuration of
bn people, in terms of the definitions above. The elevator must make at least

(F (b)n− t)/(b + m)


stops in order to bring them all to their destinations.
Translating this result into disk terminology, let there be bn records, with

b per block, and suppose the internal memory can hold m records at a time.
Every disk read brings one block into memory, every disk write stores one block,
and sij is the number of records in block i that belong in block j. If n ≥ b,
there are initial configurations in which all the sij are ≤ 1; so t = 0 and at least
f(b)n/(b + m) ≈ (bn lg b)/m block-reading operations are necessary to rearrange
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the records. (The factor lg b makes this lower bound nontrivial when b is large.)
Exercise 17 derives a substantially stronger lower bound for the common case
that m is substantially larger than b.

EXERCISES
1. [M22 ] The text explains a method by which the average latency time required to

read a fraction x of a track is reduced from 1
2 to 1

2 (1 − x2) revolutions. This is the
minimum possible value, when there is one access arm. What is the corresponding
minimum average latency time if there are two access arms, 180◦ apart, assuming that
only one arm can transmit data at any one time?

2. [M30 ] (A. G. Konheim.) The purpose of this problem is to investigate how far the
access arm of a disk must move while merging files that are allocated “orthogonally”
to the cylinders. Suppose there are P files, each containing L blocks of records, and
assume that the first block of each file appears on cylinder 1, the second on cylinder 2,
etc. The relative order of the last keys in each block governs the access arm motion
during the merge, hence we may represent the situation in the following mathematically
tractable way: Consider a set of PL ordered pairs

(a11, 1) (a21, 1) . . . (aP 1, 1)
(a12, 2) (a22, 2) . . . (aP 2, 2)

...
...

...
(a1L, L) (a2L, L) . . . (aPL, L)

where the set {aij | 1 ≤ i ≤ P, 1 ≤ j ≤ L} consists of the numbers {1, 2, . . . , PL} in
some order, and where aij < ai(j+1) for 1 ≤ j < L. (Rows represent cylinders, columns
represent input files.) Sort the pairs on their first components and let the resulting
sequence be (1, j1) (2, j2) . . . (PL, jPL). Show that, if each of the (PL)!/L!P choices of
the aij is equally likely, the average value of

|j2 − j1|+ |j3 − j2|+ · · ·+ |jPL − jPL−1|

is

(L− 1)


1 + (P − 1)22L−2
2L

L


.

[Hint: See exercise 5.2.1–14.] Notice that as L→∞ this value is asymptotically equal
to 1

4 (P − 1)L
√
πL+O(PL).

3. [M15 ] Suppose the internal memory is limited so that 10-way merging is not
feasible. How can recurrence relations (3), (4), (5) be modified so that A1(n) is the
minimum value of αD(T ) + βE(T ), over all n-leaved trees T having no internal nodes
of degree greater than 9?

x 4. [M21 ] Consider a modified form of the square root buffer allocation scheme, in
which all P of the input buffers have equal length, but the output buffer size should
be chosen so as to minimize seek time.

a) Derive a formula corresponding to (2), for the running time of an L-character
P -way merge.

b) Show that the construction in Theorem K can be modified in order to obtain a
merge pattern that is optimal according to your formula from part (a).
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5. [M20 ] When two disks are being used, so that reading on one is overlapped with
writing on the other, we cannot use merge patterns like that of Fig. 93 since some leaves
are at even levels and some are at odd levels. Show how to modify the construction of
Theorem K in order to produce trees that are optimal subject to the constraint that
all leaves appear on even levels or all on odd levels.

x 6. [22 ] Find a tree that is optimum in the sense of exercise 5, when n = 23 and
α = β = 1. (You may wish to use a computer.)

x 7. [M24 ] When the initial runs are not all the same length, the best merge pattern
(in the sense of Theorem H) minimizes αD(T ) + βE(T ), where D(T ) and E(T ) now
represent weighted path lengths: Weights w1, . . . , wn (corresponding to the lengths of
the initial runs) are attached to each leaf of the tree, and the degree sums and path
lengths are multiplied by the appropriate weights. For example, if T is the tree of
Fig. 92, we would have D(T ) = 6w1 + 6w2 + 7w3 + 9w4 + 9w5 + 7w6 + 4w7 + 4w8,
E(T ) = 2w1 + 2w2 + 2w3 + 3w4 + 3w5 + 2w6 + w7 + w8.

Prove that there is always an optimal pattern in which the shortest k runs are
merged first, for some k.

8. [49 ] Is there an algorithm that finds optimal trees for given α, β and weights
w1, . . . , wn, in the sense of exercise 7, taking only O(nc) steps for some c?

9. [HM39 ] (L. Hyafil, F. Prusker, J. Vuillemin.) Prove that, for fixed α and β,

A1(n) =


min
m≥2

αm+ β

logm


n logn+O(n)

as n→∞, where the O(n) term is ≥ 0.
10. [HM44 ] (L. Hyafil, F. Prusker, J. Vuillemin.) Prove that when α and β are fixed,
A1(n) = αmn + βn + Am(n) for all sufficiently large n, if m minimizes the coefficient
in exercise 9.
11. [M29 ] In the notation of (6) and (11), prove that fm(n)+mn ≥ f(n) for all m ≥ 2
and n ≥ 2, and determine all m and n for which equality holds.
12. [25 ] Prove that, for all n > 0, there is a tree with n leaves and minimum degree
path length (6), with all leaves at the same level.
13. [M24 ] Show that for 2 ≤ n ≤ d(α, β), where d(α, β) is defined in (12), the unique
best merge pattern in the sense of Theorem H is an n-way merge.
14. [40 ] Using the square root method of buffer allocation, the seek time for the
merge pattern in Fig. 92 would be proportional to (

√
2 +
√

4 +
√

1 +
√

1 +
√

8)2 +
(
√

1 +
√

1 +
√

2)2 + (
√

1 +
√

2 +
√

1 +
√

4)2 + (
√

1 +
√

1 +
√

2)2; this is the sum,
over each internal node, of (√n1 + · · ·+

√
nm +

√
n1 + · · ·+ nm )2, where that node’s

respective subtrees have (n1, . . . , nm) leaves. Write a computer program that generates
minimum-seek time trees having 1, 2, 3, . . . leaves, based on this formula.
15. [M22 ] Show that Theorem F can be improved slightly if the elevator is initially
empty and if F (b)n ̸= t: At least ⌈(F (b)n + m − t)/(b + m)⌉ stops are necessary in
such a case.
16. [23 ] (R. W. Floyd.) Find an elevator schedule that transports all the people
of (28) to their destinations in at most 12 stops. (Configuration (29) shows the situation
after one stop, not two.)
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x 17. [HM25 ] (R. W. Floyd, 1980.) Show that the lower bound of Theorem F can be
improved to

n(b lnn− ln b− 1)
lnn+ b(1 + ln(1 +m/b)) ,

in the sense that some initial configuration must require at least this many stops. [Hint:
Count the configurations that can be obtained after s stops.]
18. [HM26 ] Let L be the lower bound of exercise 17. Show that the average number
of elevator stops needed to take all people to their desired floors is at least L− 1, when
the (bn)! possible permutations of people into bn desks are equally likely.

x 19. [25 ] (B. T. Bennett and A. C. McKellar.) Consider the following approach to
keysorting, illustrated on an example file with 10 keys:

i) Original file: (50,I0)(08,I1)(51,I2)(06,I3)(90,I4)(17,I5)(89,I6)(27,I7)(65,I8)(42,I9)
ii) Key file: (50, 0)(08, 1)(51, 2)(06, 3)(90, 4)(17, 5)(89, 6)(27, 7)(65, 8)(42, 9)

iii) Sorted (ii): (06, 3)(08, 1)(17, 5)(27, 7)(42, 9)(50, 0)(51, 2)(65, 8)(89, 6)(90, 4)
iv) Bin assignments (see below): (2, 1)(2, 3)(2, 5)(2, 7)(2, 8)(2, 9)(1, 0)(1, 2)(1, 4)(1, 6)
v) Sorted (iv): (1, 0)(2, 1)(1, 2)(2, 3)(1, 4)(2, 5)(1, 6)(2, 7)(2, 8)(2, 9)

vi) (i) distributed into bins using (v):
Bin 1: (50, I0)(51, I2)(90, I4)(89, I6)
Bin 2: (08, I1)(06, I3)(17, I5)(27, I7)(65, I8)(42, I9)

vii) The result of replacement selection, reading first bin 2, then bin 1:
(06, I3)(08, I1)(17, I5)(27, I7)(42, I9)(50, I0)(51, I2)(65, I8)(89, I6)(90, I4)

The assignment of bin numbers in step (iv) is made by doing replacement selection
on (iii), from right to left, in decreasing order of the second component. The bin
number is the run number. The example above uses replacement selection with only
two elements in the selection tree; the same size tree should be used for replacement
selection in both (iv) and (vii). Notice that the bin contents are not necessarily in
sorted order!

Prove that this method will sort, namely that the replacement selection in (vii)
will produce only one run. (This technique reduces the number of bins needed in a
conventional keysort by distribution, especially if the input is largely in order already.)

x 20. [25 ] Modern hardware/software systems provide programmers with a virtual mem-
ory: Programs are written as if there were a very large internal memory, able to contain
all of the data. This memory is divided into pages, only a few of which are in the actual
internal memory at any one time; the others are on disks or drums. Programmers need
not concern themselves with such details, since the system takes care of everything;
new pages are automatically brought into memory when needed.

It would seem that the advent of virtual memory technology makes external sorting
methods obsolete, since the job can simply be done using the techniques developed for
internal sorting. Discuss this situation; in what ways might a hand-tailored external
sorting method be better than the application of a general-purpose paging technique
to an internal sorting method?

x 21. [M15 ] How many blocks of an L-block file go on disk j when the file is striped on
D disks?
22. [22 ] If you are merging two files with the Gilbreath principle and you want to
store the keys αj with the a blocks and the keys βj with the b blocks, in which block
should αj be placed in order to have the information available when it is needed?
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x 23. [20 ] How much space is needed for input buffers to keep input going continuously
when two-way merging is done by (a) superblock striping? (b) the Gilbreath principle?
24. [M36 ] Suppose P runs have been striped on D disks so that block j of run k
appears on disk (xk + j) modD. A P -way merge will read those blocks in some
chronological order such as (19). If groups of D blocks are to be input continuously, we
will read at time t the chronologically tth block stored on each disk, as in (21). What
is the minimum number of buffer records needed in memory to hold input data that
has not yet been merged, regardless of the chronological order? Explain how to choose
the offsets x1, x2, . . . , xP so that the fewest buffers are needed in the worst case.
25. [23 ] Rework the text’s example of randomized striping for the case Q = 3 instead
of Q = 4. What buffer contents would occur in place of (24)?
26. [26 ] How many output buffers will guarantee that a P -way merge with random-
ized striping will never have to pause for lack of a place in internal memory to put
newly merged output? Assume that the time to write a block equals the time to read
a block.
27. [HM27 ] (The cyclic occupancy problem.) Suppose n empty urns have been ar-
ranged in a circle and assigned the numbers 0, 1, . . . , n − 1. For k = 1, 2, . . . , p, we
throw mk balls into urns (Xk + j) mod n for j = 0, 1, . . . , mk − 1, where the integers
Xk are chosen at random. Let Sn(m1, . . . ,mp) be the number of balls in urn 0, and let
En(m1, . . . ,mp) be the expected number of balls in the fullest urn.

a) Prove that En(m1, . . . ,mp) ≤
m

t=1 min(1, nPr(Sn(m1, . . . ,mp) ≥ t)), where
m = m1 + · · ·+mp.

b) Use the tail inequality, Eq. 1.2.10–(25), to prove that

En(m1, . . . ,mp) ≤
m

t=1

min


1, n(1 + αt/n)m

(1 + αt)t


for any nonnegative real numbers α1, α2, . . . , αm. What values of α1, . . . , αm

give the best upper bound?
28. [HM47 ] Continuing exercise 27, is En(m1, . . . ,mp) ≥ En(m1 +m2,m3, . . . ,mp)?

x 29. [M30 ] The purpose of this exercise is to derive an upper bound on the average
time needed to input any sequence of blocks in chronological order by the randomized
striping procedure, when the blocks represent P runs and D disks. We say that
the block being waited for at each time step as the algorithm proceeds (see (24))
is “marked”; thus the total input time is proportional to the number of marked blocks.
Marking depends only on the chronological sequence of disk accesses (see (20)).

a) Prove that if Q + 1 consecutive blocks in chronological order have Nj blocks on
disk j, then at most max(N0, N1, . . . , ND−1) of those blocks are marked.

b) Strengthen the result of (a) by showing that it holds also for Q + 2 consecutive
blocks.

c) Now use the cyclic occupancy problem of exercise 27 to obtain an upper bound on
the average running time in terms of a function r(D,Q + 2) as in Table 2, given
any chronological order.

30. [HM30 ] Prove that the function r(d,m) of exercise 29 satisfies r(d, sd log d) =
1 +O(1/

√
s ) for fixed d as s→∞.

31. [HM48 ] Analyze randomized striping to determine its true average behavior, not
merely an upper bound, as a function of P , Q, and D. (Even the case Q = 0, which
needs an average of Θ(L/

√
D ) read cycles, is interesting.)



380 SORTING 5.5

5.5. SUMMARY, HISTORY, AND BIBLIOGRAPHY
Now that we have nearly reached the end of this enormously long chapter, we
had better “sort out” the most important facts that we have studied.

An algorithm for sorting is a procedure that rearranges a file of records so
that the keys are in ascending order. This orderly arrangement is useful because
it brings equal-key records together, it allows efficient processing of several files
that are sorted on the same key, it leads to efficient retrieval algorithms, and it
makes computer output look less chaotic.

Internal sorting is used when all of the records fit in the computer’s high
speed internal memory. We have studied more than two dozen algorithms for
internal sorting, in various degrees of detail; and perhaps we would be happier
if we didn’t know so many different approaches to the problem! It was fun to
learn all the techniques, but now we must face the horrible prospect of actually
deciding which method ought to be used in a given situation.

It would be nice if only one or two of the sorting methods would dominate
all of the others, regardless of the application or the computer being used. But
in fact, each method has its own peculiar virtues. For example, the bubble sort
(Algorithm 5.2.2B) has no apparent redeeming features, since there is always
a better way to do what it does; but even this technique, suitably generalized,
turns out to be useful for two-tape sorting (see Section 5.4.8). Thus we find
that nearly all of the algorithms deserve to be remembered, since there are some
applications in which they turn out to be best.

The following brief survey gives the highlights of the most significant al-
gorithms we have encountered for internal sorting. As usual, N stands for the
number of records in the given file.

1. Distribution counting, Algorithm 5.2D, is very useful when the keys have
a small range. It is stable (doesn’t affect the order of records with equal keys),
but requires memory space for counters and for 2N records. A modification that
saves N of these record spaces at the cost of stability appears in exercise 5.2–13.

2. Straight insertion, Algorithm 5.2.1S, is the simplest method to program,
requires no extra space, and is quite efficient for small N (say N ≤ 25). For
large N it is unbearably slow unless the input is nearly in order.

3. Shellsort, Algorithm 5.2.1D, is also quite easy to program, and uses
minimum memory space; and it is reasonably efficient for moderately large N
(say N ≤ 1000).

4. List insertion, Algorithm 5.2.1L, uses the same basic idea as straight
insertion, so it is suitable only for small N. Like the other list sorting methods
described below, it saves the cost of moving long records by manipulating links;
this is particularly advantageous when the records have variable length or are
part of other data structures.

5. Address calculation techniques are efficient when the keys have a known
(usually uniform) distribution; the principal variants of this approach are mul-
tiple list insertion (Program 5.2.1M), and MacLaren’s combined radix-insertion



5.5 SUMMARY, HISTORY, AND BIBLIOGRAPHY 381

method (discussed at the close of Section 5.2.5). The latter can be done with only
O
√

N


cells of additional memory. A two-pass method that learns a nonuniform
distribution is discussed in Theorem 5.2.5T.

6. Merge exchange, Algorithm 5.2.2M (Batcher’s method) and its cousin the
bitonic sort (exercise 5.3.4–10) are useful when a large number of comparisons
can be made simultaneously.

7. Quicksort, Algorithm 5.2.2Q (Hoare’s method) is probably the most useful
general-purpose technique for internal sorting, because it requires very little
memory space and its average running time on most computers beats that of
its competitors when it is well implemented. It can run very slowly in its worst
case, however, so a careful choice of the partitioning elements should be made
whenever nonrandom data are likely. Choosing the median of three elements, as
suggested in exercise 5.2.2–55, makes the worst-case behavior extremely unlikely
and also improves the average running time slightly.

8. Straight selection, Algorithm 5.2.3S, is a simple method especially suitable
when special hardware is available to find the smallest element of a list rapidly.

9. Heapsort, Algorithm 5.2.3H, requires minimum memory and is guaran-
teed to run pretty fast; its average time and its maximum time are both roughly
twice the average running time of quicksort.

10. List merging, Algorithm 5.2.4L, is a list sort that, like heapsort, is
guaranteed to be rather fast even in its worst case; moreover, it is stable with
respect to equal keys.

11. Radix sorting, using Algorithm 5.2.5R, is a list sort especially appropri-
ate for keys that are either rather short or that have an unusual lexicographic
collating sequence. The method of distribution counting (point 1 above) can also
be used, as an alternative to linking; such a procedure requires 2N record spaces,
plus a table of counters, but the simple form of its inner loop makes it especially
good for ultra-fast, “number-crunching” computers that have look-ahead control.
Caution: Radix sorting should not be used for small N !

12. Merge insertion, see Section 5.3.1, is especially suitable for very small
values of N, in a “straight-line-coded” routine; for example, it would be the
appropriate method in an application that requires the sorting of numerous
five- or six-record groups.

13. Hybrid methods, combining one or more of the techniques above, are also
possible. For example, merge insertion could be used for sorting short subfiles
that arise in quicksort.

14. Finally, an unnamed method appearing in the answer to exercise 5.2.1–3
seems to require the shortest possible sorting program. But its average running
time, proportional to N3, makes it the slowest sorting routine in this book!

Table 1 summarizes the speed and space characteristics of many of these
methods, when programmed for MIX. It is important to realize that the figures
in this table are only rough indications of the relative sorting times; they apply
to one computer only, and the assumptions made about input data are not
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A COMPARISON OF INTERNAL SORTING METHODS USING THE MIX COMPUTER

Running Time  
Method Reference St

ab
le

?
Le

ng
th

of
MI
X

co
de

Space Average Maximum N = 16 N = 1000 Notes

Comparison counting Ex. 5.2–5 Yes 22 N(1 + ϵ) 4N2 + 10N 5.5N2 1065 3992432 c
Distribution counting Ex. 5.2–9 Yes 26 2N + 1000ϵ 22N + 10010 22N 10362 32010 a
Straight insertion Ex. 5.2.1–33 Yes 10 N + 1 1.5N2 + 9.5N 3N2 412 1491928
Shellsort Prog. 5.2.1D No 21 N + ϵ lgN 3.9N7/6 + 10N lgN + 166N cN4/3 567 128758 d, h
List insertion Ex. 5.2.1–33 Yes 19 N(1 + ϵ) 1.25N2 + 13.25N 2.5N2 433 1248615 b, c
Multiple list insertion Prog. 5.2.1M No 18 N + ϵ(N + 100) .0175N2 + 18N 3.5N2 645 35246 b, c, f, i
Merge exchange Ex. 5.2.2–12 No 35 N 2.875N(lgN)2 4N(lgN)2 939 284366
Quicksort Prog. 5.2.2Q No 63 N + 2ϵ lgN 11.67N lnN − 1.74N ≥ 2N2 470 81486
Median-of-3 quicksort Ex. 5.2.2–55 No 100 N + 2ϵ lgN 10.63N lnN + 2.12N ≥ N2 487 74574 e
Radix exchange Prog. 5.2.2R No 45 N + 68ϵ 14.43N lnN + 23.9N 272N 1135 137614 g, i, j
Straight selection Prog. 5.2.3S No 15 N 2.5N2 + 3N lnN 3.25N2 853 2525287 j
Heapsort Prog. 5.2.3H No 30 N 23.08N lnN + 0.01N 24.5N lnN 1068 159714 h, j
List merge Prog. 5.2.4L Yes 44 N(1 + ϵ) 14.43N lnN + 4.92N 14.4N lnN 761 104716 b, c, j
Radix list sort Prog. 5.2.5R Yes 36 N + ϵ(N + 200) 32N + 4838 32N 4250 36838 b, c

a: Three-digit keys only.
b: Six-digit (that is, three-byte) keys only.
c: Output not rearranged; final sequence is specified implicitly by links or counters.
d: Increments chosen as in 5.2.1–(11); a slightly better sequence appears in exercise 5.2.1–29.
e: M = 9, using SRB; for the version with DIV, add 1.60N to the average running time.
f: M = 100 (the byte size).
g: M = 34, since 234 > 1010 > 233.
h: The average time is based on an empirical estimate, since the theory is incomplete.
i: The average time is based on the assumption of uniformly distributed keys.
j: Further refinements, mentioned in the text and exercises accompanying this program, would reduce the running time.
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completely consistent for all programs. Comparative tables such as this have
been given by many authors, with no two people reaching the same conclusions.
On the other hand, the timings do give at least an indication of the kind of
speed to be expected from each algorithm, when sorting a rather small array of
one-word records, since MIX is a fairly typical computer.

The “space” column in Table 1 gives some information about the amount
of auxiliary memory used by each program, in units of record length. Here
ϵ denotes the fraction of a record needed for one link field; thus, for example,
N(1 + ϵ) means that the method requires space for N records plus N link fields.

The asymptotic average and maximum times appearing in Table 1 give only
the leading terms that dominate for large N, assuming random input; c denotes
an unspecified constant. These formulas can often be misleading, so actual total
running times have also been listed, for sample runs of the program on two
particular sequences of input data. The case N = 16 refers to the sixteen keys
that appear in so many of the examples of Section 5.2; and the case N = 1000
refers to the sequence K1, K2, . . . , K1000 defined by

K1001 = 0; Kn−1 = (3141592621Kn + 2113148651) mod 1010.

A MIX program of reasonably high quality has been used to represent each algo-
rithm in the table, often incorporating improvements that have been suggested
in the exercises. The byte size for these runs was 100.

External sorting techniques are different from internal sorting, because they
must use comparatively primitive data structures, and because there is a great
emphasis on minimizing their input/output time. Section 5.4.6 summarizes the
interesting methods that have been developed for tape merging, and Section 5.4.9
discusses the use of disks and drums.

Of course, sorting isn’t the whole story. While studying all of these sorting
techniques, we have learned a good deal about how to handle data structures,
how to deal with external memories, and how to analyze algorithms; and perhaps
we have even learned a little about how to discover new algorithms.

Early developments. A search for the origin of today’s sorting techniques
takes us back to the nineteenth century, when the first machines for sorting
were invented. The United States conducts a census of all its citizens every ten
years, and by 1880 the problem of processing the voluminous census data was
becoming very acute; in fact, the total number of single (as opposed to married)
people was never tabulated that year, although the necessary information had
been gathered. Herman Hollerith, a 20-year-old employee of the Census Bureau,
devised an ingenious electric tabulating machine to meet the need for better
statistics-gathering, and about 100 of his machines were successfully used to
tabulate the 1890 census rolls.

Figure 94 shows Hollerith’s original battery-driven apparatus; of chief inter-
est to us is the “sorting box” at the right, which has been opened to show half of
the 26 inner compartments. The operator would insert a 6 5

8
′′ × 3 1

4
′′ punched card

into the “press” and lower the handle; this caused spring-actuated pins in the
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upper plate to make contact with pools of mercury in the lower plate, wherever
a hole was punched in the card. The corresponding completed circuits would
cause associated dials on the panel to advance by one unit; and furthermore,
one of the 26 lids of the sorting box would pop open. At this point the operator
would reopen the press, put the card into the open compartment, and close the
lid. One man reportedly ran 19071 cards through this machine in a single 6 1

2 -
hour working day, an average of about 49 cards per minute! (A typical operator
would work at about one-third this speed.)

Fig. 94. Hollerith’s original tabulating and sorting machine. (Photo courtesy of IBM
archives.)

Population continued its inexorable growth, and the original tabulator-
sorters were not fast enough to handle the 1900 census; so Hollerith devised
another machine to stave off another data processing crisis. His new device
(patented in 1901 and 1904) had an automatic card feed, and in fact it looked
essentially like modern card sorters. The story of Hollerith’s early machines
has been told in interesting detail by Leon E. Truesdell, The Development of
Punch Card Tabulation (Washington: U.S. Bureau of the Census, 1965); see also
the contemporary accounts in Columbia College School of Mines Quarterly 10
(1889), 238–255; J. Franklin Inst. 129 (1890), 300–306; The Electrical Engineer
12 (November 11, 1891), 521–530; J. Amer. Statistical Assn. 2 (1891), 330–
341, 4 (1895), 365; J. Royal Statistical Soc. 55 (1892), 326–327; Allgemeines
statistisches Archiv 2 (1892), 78–126; J. Soc. Statistique de Paris 33 (1892),
87–96; U.S. Patents 395781 (1889), 685608 (1901), 777209 (1904). Hollerith and
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another former Census Bureau employee, James Powers, went on to found rival
companies that eventually became part of IBM and Remington Rand corpora-
tions, respectively.

Hollerith’s sorting machine is, of course, the basis for radix sorting methods
now used in digital computers. His patent mentions that two-column numerical
items are to be sorted “separately for each column,” but he didn’t say whether
the units or the tens columns should be considered first. Patent number 518240
by John K. Gore in 1894, which described another early machine for sorting
cards, suggested starting with the tens column. The nonobvious trick of using
the units column first was presumably discovered by some anonymous machine
operator and passed on to others (see Section 5.2.5); it appears in the earliest
extant IBM sorter manual (1936). The first known mention of this right-to-left
technique is in a book by Robert Feindler, Das Hollerith-Lochkarten-Verfahren
(Berlin: Reimar Hobbing, 1929), 126–130; it was also mentioned at about the
same time in an article by L. J. Comrie, Transactions of the Office Machinery
Users’ Association (London: 1929–1930), 25–37. Incidentally, Comrie was the
first person to make the important observation that tabulating machines could
fruitfully be employed in scientific calculations, even though they were originally
designed for statistical and accounting applications. His article is especially
interesting because it gives a detailed description of the tabulating equipment
available in England in 1930. Sorting machines at that time processed 360 to
400 cards per minute, and could be rented for $9 per month.

The idea of merging goes back to another card-walloping machine, the
collator, which was a much later invention (1936). With its two feeding stations,
it could merge two sorted decks of cards into one, in only one pass; the technique
for doing this was clearly explained in the first IBM collator manual (April 1939).
[See Ralph E. Page, U.S. Patent 2359670 (1944).]

Then computers arrived on the scene, and sorting was intimately involved
in this development; in fact, there is evidence that a sorting routine was the
first program ever written for a stored-program computer. The designers of
EDVAC were especially interested in sorting, because it epitomized the potential
nonnumerical applications of computers; they realized that a satisfactory order
code should not only be capable of expressing programs for the solution of differ-
ence equations, it must also have enough flexibility to handle the combinatorial
“decision-making” aspects of algorithms. John von Neumann therefore prepared
programs for internal merge sorting in 1945, in order to test the adequacy of some
instruction codes he was proposing for the EDVAC computer. The existence
of efficient special-purpose sorting machines provided a natural standard by
which the merits of his proposed computer organization could be evaluated.
Details of this interesting development have been described in an article by D. E.
Knuth, Computing Surveys 2 (1970), 247–260; see also von Neumann’s Collected
Works 5 (New York: Macmillan, 1963), 196–214, for the final polished form of
his original sorting programs.

In Germany, K. Zuse independently constructed a program for straight inser-
tion sorting in 1945, as one of the simplest examples of linear list operations in his
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“Plankalkül” language. (This pioneering work remained unpublished for nearly
30 years; see Berichte der Gesellschaft für Mathematik und Datenverarbeitung
63 (Bonn: 1972), part 4, 84–85.)

The limited internal memory size planned for early computers made it
natural to think of external sorting as well as internal sorting, and a “Progress
Report on the EDVAC” prepared by J. P. Eckert and J. W. Mauchly of the
Moore School of Electrical Engineering (30 September 1945) pointed out that
a computer augmented with magnetic wire or tape devices could simulate the
operations of card equipment, achieving a faster sorting speed. This progress
report described balanced two-way radix sorting, and balanced two-way merging
(called “collating”), using four magnetic wire or tape units, reading or writing
“at least 5000 pulses per second.”

John Mauchly lectured on “Sorting and Collating” at the special session
on computing presented at the Moore School in 1946, and the notes of his
lecture constitute the first published discussion of computer sorting [Theory and
Techniques for the Design of Electronic Digital Computers, edited by G. W.
Patterson, 3 (1946), 22.1–22.20]. Mauchly began his presentation with an inter-
esting remark: “To ask that a single machine combine the abilities to compute
and to sort might seem like asking that a single device be able to perform both
as a can opener and a fountain pen.” Then he observed that machines capable of
carrying out sophisticated mathematical procedures must also have the ability
to sort and classify data, and he showed that sorting may even be useful in
connection with numerical calculations. He described straight insertion and
binary insertion, observing that the former method uses about N2/4 comparisons
on the average, while the latter never needs more than about N lg N. Yet binary
insertion requires a rather complex data structure, and he went on to show
that two-way merging achieves the same low number of comparisons using only
sequential accessing of lists. The last half of his lecture notes were devoted to a
discussion of partial-pass radix sorting methods that simulate digital card sorting
on four tapes, using fewer than four passes per digit (see Section 5.4.7).

Shortly afterwards, Eckert and Mauchly started a company that produced
some of the earliest electronic computers, the BINAC (for military applications)
and the UNIVAC (for commercial applications). Again the U.S. Census Bureau
played a part in this development, receiving the first UNIVAC. At this time it
was not at all clear that computers would be economically profitable; computing
machines could sort faster than card equipment, but they cost more. Therefore
the UNIVAC programmers, led by Frances E. Snyder, put considerable effort
into the design of high-speed external sorting routines, and their preliminary
programs also influenced the hardware design. According to their estimates, 100
million 10-word records could be sorted on UNIVAC in 9000 hours, or 375 days.

UNIVAC I, officially dedicated in July 1951, had an internal memory of 1000
12-character (72-bit) words. It was designed to read and write 60-word blocks
on tapes, at a rate of 500 words per second; reading could be either forward
or backward, and simultaneous reading, writing, and computing was possible.
In 1948, Snyder devised an interesting way to do two-way merging with perfect
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overlap of reading, writing, and computing, using six input buffers: Let there be
one “current buffer” and two “auxiliary buffers” for each input file; it is possible
to merge in such a way that, whenever it is time to output one block, the two
current input buffers contain a total of exactly one block’s worth of unprocessed
records. Therefore exactly one input buffer becomes empty while each output
block is being formed, and we can arrange to have three of the four auxiliary
buffers full at all times while we are reading into the other. This method is
slightly faster than the forecasting method of Algorithm 5.4.6F, since it is not
necessary to inspect the result of one input before initiating the next. [See
Collation Methods for the UNIVAC System (Eckert–Mauchly Computer Corp.,
1950), 2 volumes.]

The culmination of this work was a sort generator program, which was the
first major software routine ever developed for automatic programming. The user
would specify the record size, the positions of up to five keys in partial fields of
each record, and the sentinel keys that mark file’s end; then the sort generator
would produce a copyrighted sorting program for one-reel files. The first pass
of this program was an internal sort of 60-word blocks, using comparison count-
ing (Algorithm 5.2C); then came a number of balanced two-way merge passes,
reading backwards and avoiding tape interlock as described above. [See “Master
Generating Routine for 2-way Sorting” (Eckert–Mauchly Division of Remington
Rand, 1952); the first draft of this report was entitled “Master Prefabrication
Routine for 2-way Collation.” See also Frances E. [Snyder] Holberton, Sympo-
sium on Automatic Programming (Office of Naval Research, 1954), 34–39.]

By 1952, many approaches to internal sorting were well known in the pro-
gramming folklore, but comparatively little theory had been developed. Daniel
Goldenberg [“Time analyses of various methods of sorting data,” Digital Compu-
ter Laboratory memo M-1680 (Mass. Inst. of Tech., 17 October 1952)] coded five
different methods for the Whirlwind computer, and made best-case and worst-
case analyses of each program. When sorting one hundred 15-bit words on an
8-bit key, he found that the fastest method was to use a 256-word table, storing
each record into a unique position corresponding to its key, then compressing the
table. But this technique had an obvious disadvantage, since it would eliminate a
record whenever a subsequent one had the same key. The other four methods he
analyzed were ranked as follows: Straight two-way merging beat radix-2 sorting
beat straight selection beat bubble sort.

Goldenberg’s results were extended by Harold H. Seward in his 1954 Master’s
thesis [“Information sorting in the application of electronic digital computers to
business operations,” Digital Computer Lab. report R-232 (Mass. Inst. of Tech.,
24 May 1954; 60 pages)]. Seward introduced the ideas of distribution counting
and replacement selection; he showed that the first run in a random permutation
has an average length of e−1; and he analyzed external sorting as well as internal
sorting, on various types of bulk memories as well as tapes.

An even more noteworthy thesis — a Ph.D. thesis in fact — was written by
Howard B. Demuth in 1956 [“Electronic Data Sorting” (Stanford University,
October 1956), 92 pages; IEEE Trans. C-34 (1985), 296–310]. This work helped
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to lay the foundations of computational complexity theory. It considered three
abstract models of the sorting problem, using cyclic, linear, and random-access
memories; and optimal or near-optimal methods were developed for each model.
(See exercise 5.3.4–68.) Although no practical consequences flowed immediately
from Demuth’s thesis, it established important ideas about how to link theory
with practice.

Thus the history of sorting has been closely associated with many “firsts”
in computing: the first data-processing machines, the first stored programs, the
first software, the first buffering methods, the first work on algorithmic analysis
and computational complexity.

None of the computer-related documents mentioned so far actually appeared
in the “open literature”; in fact, most of the early history of computing appears
in comparatively inaccessible reports, because comparatively few people were
involved with computers at the time. Literature about sorting finally broke into
print in 1955–1956, in the form of three major survey articles.

The first paper was prepared by J. C. Hosken [Proc. Eastern Joint Computer
Conference 8 (1955), 39–55]. He began with an astute observation: “To lower
costs per unit of output, people usually increase the size of their operations. But
under these conditions, the unit cost of sorting, instead of falling, rises.” Hosken
surveyed all the available special-purpose equipment then being marketed, as
well as the methods of sorting on computers. His bibliography of 54 items was
based mostly on manufacturers’ brochures.

The comprehensive paper “Sorting on Electronic Computer Systems” by
E. H. Friend [JACM 3 (1956), 134–168] was a major milestone in the devel-
opment of sorting. Although numerous techniques have been developed since
1956, this paper is still remarkably up-to-date in many respects. Friend gave
careful descriptions of quite a few internal and external sorting algorithms,
and he paid special attention to buffering techniques and the characteristics
of magnetic tape units. He introduced some new methods (for example, tree
selection, amphisbaenic sorting, and forecasting), and developed some of the
mathematical properties of the older methods.

The third survey of sorting to appear about this time was prepared by
D. W. Davies [Proc. Inst. Elect. Engineers 103B, Supplement 1 (1956), 87–93].
In the following years several other notable surveys were published, by D. A. Bell
[Comp. J. 1 (1958), 71–77]; A. S. Douglas [Comp. J. 2 (1959), 1–9]; D. D. Mc-
Cracken, H. Weiss, and T. Lee [Programming Business Computers (New York:
Wiley, 1959), Chapter 15, pages 298–332]; I. Flores [JACM 8 (1961), 41–80];
K. E. Iverson [A Programming Language (New York: Wiley, 1962), Chapter 6,
176–245]; C. C. Gotlieb [CACM 6 (1963), 194–201]; T. N. Hibbard [CACM 6
(1963), 206–213]; M. A. Goetz [Digital Computer User’s Handbook, edited by
M. Klerer and G. A. Korn (New York: McGraw–Hill, 1967), Chapter 1.10, pages
1.292–1.320]. A symposium on sorting was sponsored by ACM in November
1962; most of the papers presented at that symposium were published in the
May 1963 issue of CACM, and they constitute a good representation of the state
of the art at that time. C. C. Gotlieb’s survey of contemporary sort generators,
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T. N. Hibbard’s survey of minimal storage internal sorting, and G. U. Hubbard’s
early exploration of disk file sorting are particularly noteworthy articles in this
collection.

New sorting methods were being discovered throughout this period: Address
calculation (1956), merge insertion (1959), radix exchange (1959), cascade merge
(1959), shellsort (1959), polyphase merge (1960), tree insertion (1960), oscillating
sort (1962), Hoare’s quicksort (1962), Williams’s heapsort (1964), Batcher’s
merge exchange (1964). The history of each individual algorithm has been traced
in the particular section of this chapter where that method is described. The
late 1960s saw an intensive development of the corresponding theory.

A complete bibliography of all papers on sorting examined by the author
as this chapter was first being written, compiled with the help of R. L. Rivest,
appeared in Computing Reviews 13 (1972), 283–289.

Later developments. Dozens of sorting algorithms have been invented since
1970, although nearly all of them are variations on earlier themes. Multikey
quicksort, which is discussed in the answer to exercise 5.2.2–30, is an excellent
example of such more recent methods.

Another trend, primarily of theoretical interest so far, has been to study
sorting schemes that are adaptive, in the sense that they are guaranteed to
run faster when the input is already pretty much in order according to various
criteria. See, for example, H. Mannila, IEEE Transactions C-34 (1985), 318–
325; V. Estivill-Castro and D. Wood, Computing Surveys 24 (1992), 441–476;
C. Levcopoulos and O. Petersson, Journal of Algorithms 14 (1993), 395–413;
A. Moffat, G. Eddy, and O. Petersson, Software Practice & Experience 26 (1996),
781–797.

Changes in computer hardware have prompted many interesting studies
of the efficiency of sorting algorithms when the cost criteria change; see, for
example, the discussion of virtual memory in exercise 5.4.9–20. The effect of
hardware caches on internal sorting has been studied by A. LaMarca and R. E.
Ladner, J. Algorithms 31 (1999), 66–104. One of their conclusions is that step Q9
of Algorithm 5.2.2Q is a bad idea on modern machines (although it worked well
on traditional computers like MIX): Instead of finishing quicksort with a straight
insertion sort, it is now better to sort the short subfiles earlier, while their keys
are still in the cache.

What is the current state of the art for sorting large amounts of data? One
popular benchmark since 1985 has been the task of sorting one million 100-
character records that have uniformly random 10-character keys. The input and
output are supposed to reside on disk, and the objective is to minimize the total
elapsed time, including the time it takes to launch the program. R. C. Agarwal
[SIGMOD Record 25, 2 (June 1996), 240–246] used a desktop RISC computer,
the IBM RS/6000 model 39H, to implement radix sorting with files that were
striped on 8 disk units, and he finished this task in 5.1 seconds. Input/output was
the main bottleneck; indeed, the processor needed only 0.6 seconds to control the
actual sorting! Even faster times have been achieved when several processors are
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available: A network of 32 UltraSPARC I workstations, each with two internal
disks, can sort a million records in 2.41 seconds using a hybrid method called
NOW-Sort [A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler, J. M.
Hellerstein, and D. A. Patterson, SIGMOD Record 26, 2 (June 1997), 243–254].

Such advances mean that the million-record benchmark has become mostly
a test of startup and shutdown time; larger data sets are needed to give more
meaningful results. For example, the present world record for terabyte sorting —
1010 records of 100 characters each — is 2.5 hours, achieved in September 1997 on
a Silicon Graphics Origin2000 system with 32 processors, 8 gigabytes of internal
memory, and 559 disks of 4 gigabytes each. This record was set by a commercially
available sorting routine called NsortTM, developed by C. Nyberg, C. Koester, and
J. Gray using methods that have not yet been published.

Perhaps even the terabyte benchmark will be considered too small some day.
The best current candidate for a benchmark that will live forever is MinuteSort:
How many 100-character records can be sorted in 60 seconds? As this book
went to press, the current record holder for this task was NOW-Sort; 95 work-
stations needed only 59.21 seconds to put 90.25 million records into order, on 30
March 1997. But present-day methods are not yet pushing up against any truly
fundamental limitations on speed.

In summary, the problem of efficient sorting remains just as fascinating today
as it ever was.

EXERCISES
1. [05 ] Summarize the contents of this chapter by stating a generalization of Theo-

rem 5.4.6A.
2. [20 ] Based on the information in Table 1, what is the best list-sorting method for

six-digit keys, for use on the MIX computer?
3. [37 ] (Stable sorting in minimum storage.) A sorting algorithm is said to require

minimum storage if it uses only O((logN)2) bits of memory space for its variables
besides the space needed to store the N records. The algorithm must be general in
the sense that it works for all N, not just for a particular value of N, assuming that
a sufficient amount of random access memory has been made available whenever the
algorithm is actually called upon to sort.

Many of the sorting methods we have studied violate this minimum-storage re-
quirement; in particular, the use of N link fields is forbidden. Quicksort (Algorithm
5.2.2Q) satisfies the minimum-storage requirement, but its worst case running time is
proportional to N2. Heapsort (Algorithm 5.2.3H) is the only O(N logN) algorithm we
have studied that uses minimum storage, although another such algorithm could be
formulated using the idea of exercise 5.2.4–18.

The fastest general algorithm we have considered that sorts keys in a stable manner
is the list merge sort (Algorithm 5.2.4L), but it does not use minimum storage. In fact,
the only stable minimum-storage sorting algorithms we have seen are Ω(N2) methods
(straight insertion, bubble sorting, and a variant of straight selection).

Design a stable minimum-storage sorting algorithm that needs only O(N(logN)2)
units of time in its worst case. [Hint: It is possible to do stable minimum-storage merg-
ing — namely, sorting when there are at most two runs — in O(N logN) units of time.]



5.5 SUMMARY, HISTORY, AND BIBLIOGRAPHY 391

x 4. [28 ] A sorting algorithm is called parsimonious if it makes decisions entirely by
comparing keys, and if it never makes a comparison whose outcome could have been
predicted from the results of previous comparisons. Which of the methods listed in
Table 1 are parsimonious?

5. [46 ] It is much more difficult to sort nonrandom data with numerous equal keys
than to sort uniformly random data. Devise a sorting benchmark that (i) is interesting
now and will probably be interesting 100 years from now; (ii) does not involve uniformly
random keys; and (iii) does not use data sets that change with time.

I shall have accomplished my purpose if I have sorted and put in logical order
the gist of the great volume of material which has been generated about sorting

over the past few years.
— J. C. HOSKEN (1955)



CHAPTER SIX

SEARCHING

Let’s look at the record.
— AL SMITH (1928)

This chapter might have been given the more pretentious title “Storage and
Retrieval of Information”; on the other hand, it might simply have been called
“Table Look-Up.” We are concerned with the process of collecting information
in a computer’s memory, in such a way that the information can subsequently be
recovered as quickly as possible. Sometimes we are confronted with more data
than we can really use, and it may be wisest to forget and to destroy most of it;
but at other times it is important to retain and organize the given facts in such
a way that fast retrieval is possible.

Most of this chapter is devoted to the study of a very simple search problem:
how to find the data that has been stored with a given identification. For
example, in a numerical application we might want to find f(x), given x and
a table of the values of f ; in a nonnumerical application, we might want to find
the English translation of a given Russian word.

In general, we shall suppose that a set of N records has been stored, and
the problem is to locate the appropriate one. As in the case of sorting, we
assume that each record includes a special field called its key ; this terminology
is especially appropriate, because many people spend a great deal of time every
day searching for their keys. We generally require the N keys to be distinct, so
that each key uniquely identifies its record. The collection of all records is called
a table or file, where the word “table” is usually used to indicate a small file,
and “file” is usually used to indicate a large table. A large file or a group of files
is frequently called a database.

Algorithms for searching are presented with a so-called argument, K, and the
problem is to find which record has K as its key. After the search is complete,
two possibilities can arise: Either the search was successful, having located the
unique record containing K; or it was unsuccessful, having determined that K
is nowhere to be found. After an unsuccessful search it is sometime desirable to
enter a new record, containing K, into the table; a method that does this is called
a search-and-insertion algorithm. Some hardware devices known as associative
memories solve the search problem automatically, in a way that might resemble
the functioning of a human brain; but we shall study techniques for searching
on a conventional general-purpose digital computer.

Although the goal of searching is to find the information stored in the record
associated with K, the algorithms in this chapter generally ignore everything but

392
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the keys themselves. In practice we can find the associated data once we have
located K; for example, if K appears in location TABLE + i, the associated data
(or a pointer to it) might be in location TABLE + i + 1, or in DATA + i, etc. It is
therefore convenient to gloss over the details of what should be done after K has
been successfully found.

Searching is the most time-consuming part of many programs, and the
substitution of a good search method for a bad one often leads to a substantial
increase in speed. In fact we can often arrange the data or the data structure
so that searching is eliminated entirely, by ensuring that we always know just
where to find the information we need. Linked memory is a common way to
achieve this; for example, a doubly linked list makes it unnecessary to search for
the predecessor or successor of a given item. Another way to avoid searching
occurs if we are allowed to choose the keys freely, since we might as well let
them be the numbers {1, 2, . . . , N}; then the record containing K can simply
be placed in location TABLE + K. Both of these techniques were used to elimi-
nate searching from the topological sorting algorithm discussed in Section 2.2.3.
However, searches would have been necessary if the objects in the topological
sorting algorithm had been given symbolic names instead of numbers. Efficient
algorithms for searching turn out to be quite important in practice.

Search methods can be classified in several ways. We might divide them
into internal versus external searching, just as we divided the sorting algorithms
of Chapter 5 into internal versus external sorting. Or we might divide search
methods into static versus dynamic searching, where “static” means that the
contents of the table are essentially unchanging (so that it is important to min-
imize the search time without regard for the time required to set up the table),
and “dynamic” means that the table is subject to frequent insertions and perhaps
also deletions. A third possible scheme is to classify search methods according to
whether they are based on comparisons between keys or on digital properties of
the keys, analogous to the distinction between sorting by comparison and sorting
by distribution. Finally we might divide searching into those methods that use
the actual keys and those that work with transformed keys.

The organization of this chapter is essentially a combination of the latter two
modes of classification. Section 6.1 considers “brute force” sequential methods of
search, then Section 6.2 discusses the improvements that can be made based on
comparisons between keys, using alphabetic or numeric order to govern the deci-
sions. Section 6.3 treats digital searching, and Section 6.4 discusses an important
class of methods called hashing techniques, based on arithmetic transformations
of the actual keys. Each of these sections treats both internal and external
searching, in both the static and the dynamic case; and each section points out
the relative advantages and disadvantages of the various algorithms.

Searching and sorting are often closely related to each other. For example,
consider the following problem: Given two sets of numbers, A = {a1, a2, . . . , am}
and B = {b1, b2, . . . , bn}, determine whether or not A ⊆ B. Three solutions
suggest themselves:
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1. Compare each ai sequentially with the bj’s until finding a match.
2. Sort the a’s and b’s, then make one sequential pass through both files,

checking the appropriate condition.
3. Enter the bj’s in a table, then search for each of the ai.

Each of these solutions is attractive for a different range of values of m and n.
Solution 1 will take roughly c1mn units of time, for some constant c1, and
solution 2 will take about c2(m lg m+n lg n) units, for some (larger) constant c2.
With a suitable hashing method, solution 3 will take roughly c3m + c4n units of
time, for some (still larger) constants c3 and c4. It follows that solution 1 is good
for very small m and n, but solution 2 soon becomes better as m and n grow
larger. Eventually solution 3 becomes preferable, until n exceeds the internal
memory size; then solution 2 is usually again superior until n gets much larger
still. Thus we have a situation where sorting is sometimes a good substitute for
searching, and searching is sometimes a good substitute for sorting.

More complicated search problems can often be reduced to the simpler case
considered here. For example, suppose that the keys are words that might be
slightly misspelled; we might want to find the correct record in spite of this
error. If we make two copies of the file, one in which the keys are in normal
lexicographic order and another in which they are ordered from right to left (as
if the words were spelled backwards), a misspelled search argument will probably
agree up to half or more of its length with an entry in one of these two files. The
search methods of Sections 6.2 and 6.3 can therefore be adapted to find the key
that was probably intended.

A related problem has received considerable attention in connection with
airline reservation systems, and in other applications involving people’s names
when there is a good chance that the name will be misspelled due to poor
handwriting or voice transmission. The goal is to transform the argument into
some code that tends to bring together all variants of the same name. The
following contemporary form of the “Soundex” method, a technique that was
originally developed by Margaret K. Odell and Robert C. Russell [see U.S.
Patents 1261167 (1918), 1435663 (1922)], has often been used for encoding
surnames:

1. Retain the first letter of the name, and drop all occurrences of a, e, h, i, o,
u, w, y in other positions.

2. Assign the following numbers to the remaining letters after the first:
b, f, p, v → 1 l → 4
c, g, j, k, q, s, x, z → 2 m, n → 5
d, t → 3 r → 6

3. If two or more letters with the same code were adjacent in the original name
(before step 1), or adjacent except for intervening h’s and w’s, omit all but
the first.

4. Convert to the form “letter, digit, digit, digit” by adding trailing zeros (if
there are less than three digits), or by dropping rightmost digits (if there
are more than three).
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For example, the names Euler, Gauss, Hilbert, Knuth, Lloyd, Lukasiewicz, and
Wachs have the respective codes E460, G200, H416, K530, L300, L222, W200.
Of course this system will bring together names that are somewhat different,
as well as names that are similar; the same seven codes would be obtained for
Ellery, Ghosh, Heilbronn, Kant, Liddy, Lissajous, and Waugh. And on the other
hand a few related names like Rogers and Rodgers, or Sinclair and St. Clair,
or Tchebysheff and Chebyshev, remain separate. But by and large the Soundex
code greatly increases the chance of finding a name in one of its disguises. [For
further information, see C. P. Bourne and D. F. Ford, JACM 8 (1961), 538–
552; Leon Davidson, CACM 5 (1962), 169–171; Federal Population Censuses
1790–1890 (Washington, D.C.: National Archives, 1971), 90.]

When using a scheme like Soundex, we need not give up the assumption
that all keys are distinct; we can make lists of all records with equivalent codes,
treating each list as a unit.

Large databases tend to make the retrieval process more complex, since
people often want to consider many different fields of each record as potential
keys, with the ability to locate items when only part of the key information is
specified. For example, given a large file about stage performers, a producer
might wish to find all unemployed actresses between 25 and 30 with dancing
talent and a French accent; given a large file of baseball statistics, a sportswriter
may wish to determine the total number of runs scored by the Chicago White
Sox in 1964, during the seventh inning of night games, against left-handed
pitchers. Given a large file of data about anything, people like to ask arbitrarily
complicated questions. Indeed, we might consider an entire library as a database,
and a searcher may want to find everything that has been published about
information retrieval. An introduction to the techniques for such secondary key
(multi-attribute) retrieval problems appears below in Section 6.5.

Before entering into a detailed study of searching, it may be helpful to put
things in historical perspective. During the pre-computer era, many books of
logarithm tables, trigonometry tables, etc., were compiled, so that mathematical
calculations could be replaced by searching. Eventually these tables were trans-
ferred to punched cards, and used for scientific problems in connection with
collators, sorters, and duplicating punch machines. But when stored-program
computers were introduced, it soon became apparent that it was now cheaper to
recompute log x or cos x each time, instead of looking up the answer in a table.

Although the problem of sorting received considerable attention already in
the earliest days of computers, comparatively little was done about algorithms
for searching. With small internal memories, and with nothing but sequential
media like tapes for storing large files, searching was either trivially easy or
almost impossible.

But the development of larger and larger random-access memories during
the 1950s eventually led to the recognition that searching was an interesting
problem in its own right. After years of complaining about the limited amounts
of space in the early machines, programmers were suddenly confronted with
larger amounts of memory than they knew how to use efficiently.



396 SEARCHING 6

The first surveys of the searching problem were published by A. I. Dumey,
Computers & Automation 5, 12 (December 1956), 6–9; W. W. Peterson, IBM
J. Research & Development 1 (1957), 130–146; A. D. Booth, Information and
Control 1 (1958), 159–164; A. S. Douglas, Comp. J. 2 (1959), 1–9. More
extensive treatments were given later by Kenneth E. Iverson, A Programming
Language (New York: Wiley, 1962), 133–158, and by Werner Buchholz, IBM
Systems J. 2 (1963), 86–111.

During the early 1960s, a number of interesting new search procedures based
on tree structures were introduced, as we shall see; and research about searching
is still actively continuing at the present time.

6.1. SEQUENTIAL SEARCHING
“Begin at the beginning, and go on till you find the right key; then stop.”
This sequential procedure is the obvious way to search, and it makes a useful
starting point for our discussion of searching because many of the more intricate
algorithms are based on it. We shall see that sequential searching involves some
very interesting ideas, in spite of its simplicity.

The algorithm might be formulated more precisely as follows:

Algorithm S (Sequential search). Given a table of records R1, R2, . . . , RN ,
whose respective keys are K1, K2, . . . , KN, this algorithm searches for a given
argument K. We assume that N ≥ 1.
S1. [Initialize.] Set i← 1.
S2. [Compare.] If K = Ki, the algorithm terminates successfully.
S3. [Advance.] Increase i by 1.
S4. [End of file?] If i ≤ N, go back to S2. Otherwise the algorithm terminates

unsuccessfully.

Notice that this algorithm can terminate in two different ways, successfully
(having located the desired key) or unsuccessfully (having established that the
given argument is not present in the table). The same will be true of most other
algorithms in this chapter.

S1. Initialize S2. Compare S3. Advance
S4. End
of file?

6=

=

SUCCESS

Yes

FAILURE

No

Fig. 1. Sequential or “house-to-house” search.
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A MIX program can be written down immediately.

Program S (Sequential search). Assume that Ki appears in location KEY + i,
and that the remainder of record Ri appears in location INFO+ i. The following
program uses rA ≡ K, rI1 ≡ i−N.
01 START LDA K 1 S1. Initialize.
02 ENT1 1-N 1 i← 1.
03 2H CMPA KEY+N,1 C S2. Compare.
04 JE SUCCESS C Exit if K = Ki.
05 INC1 1 C − S S3. Advance.
06 J1NP 2B C − S S4. End of file?
07 FAILURE EQU * 1− S Exit if not in table.

At location SUCCESS, the instruction ‘LDA INFO+N,1’ will now bring the desired
information into rA.

The analysis of this program is straightforward; it shows that the running
time of Algorithm S depends on two things,

C = the number of key comparisons;
S = 1 if successful, 0 if unsuccessful. (1)

Program S takes 5C − 2S + 3 units of time. If the search successfully finds
K = Ki, we have C = i, S = 1; hence the total time is (5i + 1)u. On the other
hand if the search is unsuccessful, we have C = N, S = 0, for a total time of
(5N + 3)u. If every input key occurs with equal probability, the average value
of C in a successful search will be

1 + 2 + · · ·+ N

N
= N + 1

2 ; (2)

the standard deviation is, of course, rather large, about 0.289N (see exercise 1).
The algorithm above is surely familiar to all programmers. But too few

people know that it is not always the right way to do a sequential search! A
straightforward change makes the algorithm faster, unless the list of records is
quite short:

Algorithm Q (Quick sequential search). This algorithm is the same as Algo-
rithm S, except that it assumes the presence of a dummy record RN+1 at the
end of the file.
Q1. [Initialize.] Set i← 1, and set KN+1 ← K.
Q2. [Compare.] If K = Ki, go to Q4.
Q3. [Advance.] Increase i by 1 and return to Q2.
Q4. [End of file?] If i ≤ N, the algorithm terminates successfully; otherwise it

terminates unsuccessfully (i = N + 1).

Program Q (Quick sequential search). rA ≡ K, rI1 ≡ i−N.
01 START LDA K 1 Q1. Initialize.
02 STA KEY+N+1 1 KN+1 ← K.
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03 ENT1 -N 1 i← 0.
04 INC1 1 C + 1− S Q3. Advance.
05 CMPA KEY+N,1 C + 1− S Q2. Compare.
06 JNE *-2 C + 1− S To Q3 if Ki ̸= K.
07 J1NP SUCCESS 1 Q4. End of file?
08 FAILURE EQU * 1− S Exit if not in table.

In terms of the quantities C and S in the analysis of Program S, the running
time has decreased to (4C − 4S + 10)u; this is an improvement whenever C ≥ 6
in a successful search, and whenever N ≥ 8 in an unsuccessful search.

The transition from Algorithm S to Algorithm Q makes use of an impor-
tant speed-up principle: When an inner loop of a program tests two or more
conditions, we should try to reduce the testing to just one condition.

Another technique will make Program Q still faster.
Program Q′ (Quicker sequential search). rA ≡ K, rI1 ≡ i−N.
01 START LDA K 1 Q1. Initialize.
02 STA KEY+N+1 1 KN+1 ← K.
03 ENT1 -1-N 1 i← −1.
04 3H INC1 2 ⌊(C − S + 2)/2⌋ Q3. Advance. (twice)
05 CMPA KEY+N,1 ⌊(C − S + 2)/2⌋ Q2. Compare.
06 JE 4F ⌊(C − S + 2)/2⌋ To Q4 if K = Ki.
07 CMPA KEY+N+1,1 ⌊(C − S + 1)/2⌋ Q2. Compare. (next)
08 JNE 3B ⌊(C − S + 1)/2⌋ To Q3 if K ̸= Ki+1.
09 INC1 1 (C − S) mod 2 Advance i.
10 4H J1NP SUCCESS 1 Q4. End of file?
11 FAILURE EQU * 1− S Exit if not in table.

The inner loop has been duplicated; this avoids about half of the “i ← i + 1”
instructions, so it reduces the running time to

3.5C − 3.5S + 10 + (C − S) mod 2
2

units. We have saved 30 percent of the running time of Program S, when large
tables are being searched; many existing programs can be improved in this way.
The same ideas apply to programming in high-level languages. [See, for example,
D. E. Knuth, Computing Surveys 6 (1974), 266–269.]

A slight variation of the algorithm is appropriate if we know that the keys
are in increasing order:
Algorithm T (Sequential search in ordered table). Given a table of records
R1, R2, . . . , RN whose keys are in increasing order K1 < K2 < · · · < KN ,
this algorithm searches for a given argument K. For convenience and speed,
the algorithm assumes that there is a dummy record RN+1 whose key value is
KN+1 =∞ > K.
T1. [Initialize.] Set i← 1.
T2. [Compare.] If K ≤ Ki, go to T4.
T3. [Advance.] Increase i by 1 and return to T2.
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T4. [Equality?] If K = Ki, the algorithm terminates successfully. Otherwise it
terminates unsuccessfully.

If all input keys are equally likely, this algorithm takes essentially the same
average time as Algorithm Q, for a successful search. But unsuccessful searches
are performed about twice as fast, since the absence of a record can be established
more quickly.

Each of the algorithms above uses subscripts to denote the table entries. It
is convenient to describe the methods in terms of these subscripts, but the same
search procedures can be used for tables that have a linked representation, since
the data is being traversed sequentially. (See exercises 2, 3, and 4.)

Frequency of access. So far we have been assuming that every argument occurs
as often as every other. This is not always a realistic assumption; in a general
situation, key Kj will occur with probability pj , where p1 + p2 + · · · + pN = 1.
The time required to do a successful search is essentially proportional to the
number of comparisons, C, which now has the average value

CN = p1 + 2p2 + · · ·+ NpN . (3)

If we have the option of putting the records into the table in any desired order,
this quantity CN is smallest when

p1 ≥ p2 ≥ · · · ≥ pN , (4)

that is, when the most frequently used records appear near the beginning.
Let’s look at several probability distributions, in order to see how much of a

saving is possible when the records are arranged in the optimal manner specified
in (4). If p1 = p2 = · · · = pN = 1/N, formula (3) reduces to CN = (N + 1)/2;
we have already derived this in Eq. (2). Suppose, on the other hand, that

p1 = 1
2 , p2 = 1

4 , . . . , pN−1 = 1
2N−1 , pN = 1

2N−1 . (5)

Then CN = 2 − 21−N , by exercise 7; the average number of comparisons is
less than two, for this distribution, if the records appear in the proper order
within the table.

Another probability distribution that suggests itself is

p1 = Nc, p2 = (N − 1)c, . . . , pN = c, where c = 2
N(N + 1) . (6)

This wedge-shaped distribution is not as dramatic a departure from uniformity
as (5). In this case we find

CN = c

N
k=1

k(N + 1− k) = N + 2
3 ; (7)

the optimum arrangement saves about one-third of the search time that would
have been obtained if the records had appeared in random order.
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Of course the probability distributions in (5) and (6) are rather artificial,
and they may never be a very good approximation to reality. A more typical
sequence of probabilities, called “Zipf’s law,” has

p1 = c/1, p2 = c/2, . . . , pN = c/N, where c = 1/HN . (8)

This distribution was popularized by G. K. Zipf, who observed that the nth most
common word in natural language text seems to occur with a frequency approx-
imately proportional to 1/n. [The Psycho-Biology of Language (Boston, Mass.:
Houghton Mifflin, 1935); Human Behavior and the Principle of Least Effort
(Reading, Mass.: Addison–Wesley, 1949).] He observed the same phenomenon
in census tables, when metropolitan areas are ranked in order of decreasing
population. If Zipf’s law governs the frequency of the keys in a table, we have
immediately

CN = N/HN ; (9)

searching such a file is about 1
2 ln N times faster than searching the same file

with randomly ordered records. [See A. D. Booth, L. Brandwood, and J. P.
Cleave, Mechanical Resolution of Linguistic Problems (New York: Academic
Press, 1958), 79.]

Another approximation to realistic distributions is the “80-20” rule of thumb
that has commonly been observed in commercial applications [see, for example,
W. P. Heising, IBM Systems J. 2 (1963), 114–115]. This rule states that 80 per-
cent of the transactions deal with the most active 20 percent of a file; and the
same rule applies in fractal fashion to the top 20 percent, so that 64 percent of
the transactions deal with the most active 4 percent, etc. In other words,

p1 + p2 + · · ·+ p.20n

p1 + p2 + p3 + · · ·+ pn
≈ .80 for all n. (10)

One distribution that satisfies this rule exactly whenever n is a multiple of 5 is

p1 = c, p2 = (2θ−1)c, p3 = (3θ−2θ)c, . . . , pN =

Nθ−(N−1)θ


c, (11)

where

c = 1/Nθ, θ = log .80
log .20 ≈ 0.1386, (12)

since p1 + p2 + · · · + pn = cnθ for all n in this case. It is not especially easy
to work with the probabilities in (11); we have, however, nθ − (n − 1)θ =
θnθ−11 + O(1/n)


, so there is a simpler distribution that approximately fulfills

the 80-20 rule, namely

p1 = c/11−θ, p2 = c/21−θ, . . . , pN = c/N1−θ, where c = 1/H
(1−θ)
N . (13)

Here θ = log .80/ log .20 as before, and H
(s)
N is the Nth harmonic number of

order s, namely 1−s + 2−s + · · ·+ N−s. Notice that this probability distribution
is very similar to that of Zipf’s law (8); as θ varies from 1 to 0, the probabilities
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vary from a uniform distribution to a Zipfian one. Applying (3) to (13) yields

CN = H
(−θ)
N


H

(1−θ)
N = θN

θ + 1 + O(N1−θ) ≈ 0.122N (14)

as the mean number of comparisons for the 80-20 law (see exercise 8).
A study of word frequencies carried out by E. S. Schwartz [see the interesting

graph on page 422 of JACM 10 (1963)] suggests that distribution (13) with a
slightly negative value of θ gives a better fit to the data than Zipf’s law (8). In
this case the mean value

CN = H
(−θ)
N


H

(1−θ)
N = N1+θ

(1 + θ)ζ(1− θ) + O(N1+2θ) (15)

is substantially smaller than (9) as N →∞.
Distributions like (11) and (13) were first studied by Vilfredo Pareto in

connection with disparities of personal income and wealth [Cours d’Économie
Politique 2 (Lausanne: Rouge, 1897), 304–312]. If pk is proportional to the
wealth of the kth richest individual, the probability that a person’s wealth
exceeds or equals x times the wealth of the poorest individual is k/N when
x = pk/pN . Thus, when pk = ckθ−1 and x = (k/N)θ−1, the stated probability
is x−1/(1−θ); this is now called a Pareto distribution with parameter 1/(1− θ).

Curiously, Pareto didn’t understand his own distribution; he believed that
a value of θ near 0 would correspond to a more egalitarian society than a
value near 1! His error was corrected by Corrado Gini [Atti della III Riunione
della Società Italiana per il Progresso delle Scienze (1910), reprinted in his
Memorie di Metodologia Statistica 1 (Rome: 1955), 3–120], who was the first
person to formulate and explain the significance of ratios like the 80-20 law (10).
People still tend to misunderstand such distributions; they often speak about a
“75-25 law” or a “90-10 law” as if an a-b law makes sense only when a+b = 100,
while (12) shows that the sum 80 + 20 is quite irrelevant.

Another discrete distribution analogous to (11) and (13) was introduced by
G. Udny Yule when he studied the increase in biological species as a function of
time, assuming various models of evolution [Philos. Trans. B213 (1924), 21–87].
Yule’s distribution applies when θ < 2:

p1 = c, p2 = c

2− θ
, p3 = 2c

(3− θ)(2− θ) , . . . , pN = (N − 1)! c

(N − θ) . . . (2− θ) = c
N−θ
N−1

 ;

c = θ

1− θ


N−θ
N


1−


N−θ
N

 . (16)

The limiting value c = 1/HN or c = 1/N is used when θ = 0 or θ = 1.

A “self-organizing” file. These calculations with probabilities are very nice,
but in most cases we don’t know what the probabilities are. We could keep a
count in each record of how often it has been accessed, reallocating the records on
the basis of those counts; the formulas derived above suggest that this procedure
would often lead to a worthwhile savings. But we probably don’t want to devote
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so much memory space to the count fields, since we can make better use of that
memory by using one of the nonsequential search techniques that are explained
later in this chapter.

A simple scheme, which has been in use for many years although its origin
is unknown, can be used to keep the records in a pretty good order without
auxiliary count fields: Whenever a record has been successfully located, it is
moved to the front of the table.

The idea behind this “self-organizing” technique is that the oft-used items
will tend to be located fairly near the beginning of the table, when we need them.
If we assume that the N keys occur with respective probabilities {p1, p2, . . . , pN},
with each search being completely independent of previous searches, it can be
shown that the average number of comparisons needed to find an item in such a
self-organizing file tends to the limiting valueCN = 1 + 2


1≤i<j≤N

pipj
pi + pj

= 1
2 +


i,j

pipj
pi + pj

. (17)

(See exercise 11.) For example, if pi = 1/N for 1 ≤ i ≤ N, the self-organizing
table is always in completely random order, and this formula reduces to the
familiar expression (N + 1)/2 derived above. In general, the average number of
comparisons (17) is always less than twice the optimal value (3), since CN ≤
1 + 2

N
j=1(j − 1)pj = 2CN − 1. In fact, CN is always less than π/2 times the

optimal value CN [Chung, Hajela, and Seymour, J. Comp. Syst. Sci. 36 (1988),
148–157]; this ratio is the best possible constant in general, since it is approached
when pj is proportional to 1/j2.

Let us see how well the self-organizing procedure works when the key prob-
abilities obey Zipf’s law (8). We have

CN = 1
2 +


1≤i,j≤N

(c/i)(c/j)
c/i + c/j

= 1
2 + c


1≤i,j≤N

1
i + j

= 1
2 + c

N
i=1

(HN+i −Hi) = 1
2 + c

2N
i=1

Hi − 2c

N
i=1

Hi

= 1
2 + c


(2N + 1)H2N − 2N − 2(N + 1)HN + 2N


= 1

2 + c

N ln 4− ln N + O(1)


≈ 2N/ lg N, (18)

by Eqs. 1.2.7–(8) and 1.2.7–(3). This is substantially better than 1
2 N, when N

is reasonably large, and it is only about ln 4 ≈ 1.386 times as many comparisons
as would be obtained in the optimum arrangement; see (9).

Computational experiments involving actual compiler symbol tables indicate
that the self-organizing method works even better than our formulas predict,
because successive searches are not independent (small groups of keys tend to
occur in bunches).

This self-organizing scheme was first analyzed by John McCabe [Operations
Research 13 (1965), 609–618], who established (17). McCabe also introduced
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another interesting scheme, under which each successfully located key that is not
already at the beginning of the table is simply interchanged with the preceding
key, instead of being moved all the way to the front. He conjectured that the
limiting average search time for this method, assuming independent searches,
never exceeds (17). Several years later, Ronald L. Rivest proved in fact that the
transposition method uses strictly fewer comparisons than the move-to-front
method, in the long run, except of course when N ≤ 2 or when all the nonzero
probabilities are equal [CACM 19 (1976), 63–67]. However, convergence to the
asymptotic limit is much slower than for the move-to-front heuristic, so move-to-
front is better unless the process is prolonged [J. R. Bitner, SICOMP 8 (1979),
82–110]. Moreover, J. L. Bentley, C. C. McGeoch, D. D. Sleator, and R. E.
Tarjan have proved that the move-to-front method never makes more than four
times the total number of memory accesses made by any algorithm on linear
lists, given any sequence of accesses whatever to the data — even if the algorithm
knows the future; the frequency-count and transposition methods do not have
this property [CACM 28 (1985), 202–208, 404–411]. See SODA 8 (1997), 53–62,
for an interesting empirical study of more than 40 heuristics for self-organizing
lists, carried out by R. Bachrach and R. El-Yaniv.
Tape searching with unequal-length records. Now let’s give the problem
still another twist: Suppose the table we are searching is stored on tape, and
the individual records have varying lengths. For example, in an old-fashioned
operating system, the “system library tape” was such a file; standard system
programs such as compilers, assemblers, loading routines, and report generators
were the “records” on this tape, and most user jobs would start by searching
down the tape until the appropriate routine had been input. This setup makes
our previous analysis of Algorithm S inapplicable, since step S3 takes a variable
amount of time each time we reach it. The number of comparisons is therefore
not the only criterion of interest.

Let Li be the length of record Ri, and let pi be the probability that this
record will be sought. The average running time of the search method will now
be approximately proportional to

p1L1 + p2(L1 + L2) + · · ·+ pN (L1 + L2 + L3 + · · ·+ LN ). (19)

When L1 = L2 = · · · = LN = 1, this reduces to (3), the case already studied.
It seems logical to put the most frequently needed records at the beginning

of the tape; but this is sometimes a bad idea! For example, assume that the tape
contains just two programs, A and B, where A is needed twice as often as B but
it is four times as long. Thus,

N = 2, pA = 2
3 , LA = 4, pB = 1

3 , LB = 1.

If we place A first on tape, according to the “logical” principle stated above, the
average running time is 2

3 ·4+ 1
3 ·5 = 13

3 ; but if we use an “illogical” idea, placing
B first, the average running time is reduced to 1

3 · 1 + 2
3 · 5 = 11

3 .
The optimum arrangement of programs on a library tape may be determined

as follows.
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Theorem S. Let Li and pi be as defined above. The arrangement of records
in the table is optimal if and only if

p1/L1 ≥ p2/L2 ≥ · · · ≥ pN/LN . (20)

In other words, the minimum value of

pa1La1 + pa2(La1 + La2) + · · ·+ paN
(La1 + · · ·+ LaN

),

over all permutations a1 a2 . . . aN of {1, 2, . . . , N}, is equal to (19) if and only if
(20) holds.

Proof. Suppose that Ri and Ri+1 are interchanged on the tape; the cost (19)
changes from

· · · + pi(L1 + · · ·+ Li−1 + Li) + pi+1(L1 + · · ·+ Li+1) + · · ·

to
· · · + pi+1(L1 + · · ·+ Li−1 + Li+1) + pi(L1 + · · ·+ Li+1) + · · · ,

a net change of piLi+1 − pi+1Li. Therefore if pi/Li < pi+1/Li+1, such an
interchange will improve the average running time, and the given arrangement
is not optimal. It follows that (20) holds in any optimal arrangement.

Conversely, assume that (20) holds; we need to prove that the arrangement
is optimal. The argument just given shows that the arrangement is “locally
optimal” in the sense that adjacent interchanges make no improvement; but there
may conceivably be a long, complicated sequence of interchanges that leads to a
better “global optimum.” We shall consider two proofs, one that uses computer
science and one that uses a mathematical trick.
First proof. Assume that (20) holds. We know that any permutation of the
records can be sorted into the order R1 R2 . . . RN by using a sequence of inter-
changes of adjacent records. Each of these interchanges replaces . . . RjRi . . . by
. . . RiRj . . . for some i < j, so it decreases the search time by the nonnegative
amount piLj − pjLi. Therefore the order R1 R2 . . . RN must have minimum
search time.
Second proof. Replace each probability pi by

pi(ϵ) = pi + ϵi − (ϵ1 + ϵ2 + · · ·+ ϵN )/N, (21)

where ϵ is an extremely small positive number. When ϵ is sufficiently small, we
will never have x1p1(ϵ)+ · · ·+xNpN (ϵ) = y1p1(ϵ)+ · · ·+yNpN (ϵ) unless x1 = y1,
. . . , xN = yN ; in particular, equality will not hold in (20). Consider now the
N ! permutations of the records; at least one of them is optimum, and we know
that it satisfies (20). But only one permutation satisfies (20) because there are
no equalities. Therefore (20) uniquely characterizes the optimum arrangement
of records in the table for the probabilities pi(ϵ), whenever ϵ is sufficiently small.
By continuity, the same arrangement must also be optimum when ϵ is set equal
to zero. (This “tie-breaking” type of proof is often useful in connection with
combinatorial optimization.)
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Theorem S is due to W. E. Smith, Naval Research Logistics Quarterly 3
(1956), 59–66. The exercises below contain further results about optimum file
arrangements.

EXERCISES
1. [M20 ] When all the search keys are equally probable, what is the standard devi-

ation of the number of comparisons made in a successful sequential search through a
table of N records?

2. [15 ] Restate the steps of Algorithm S, using linked-memory notation instead of
subscript notation. (If P points to a record in the table, assume that KEY(P) is the key,
INFO(P) is the associated information, and LINK(P) is a pointer to the next record.
Assume also that FIRST points to the first record, and that the last record points to Λ.)

3. [16 ] Write a MIX program for the algorithm of exercise 2. What is the running
time of your program, in terms of the quantities C and S in (1)?

x 4. [17 ] Does the idea of Algorithm Q carry over from subscript notation to linked-
memory notation? (See exercise 2.)

5. [20 ] Program Q′ is, of course, noticeably faster than Program Q, when C is large.
But are there any small values of C and S for which Program Q′ actually takes more
time than Program Q?

x 6. [20 ] Add three more instructions to Program Q′, reducing its running time to
about (3.33C + constant)u.

7. [M20 ] Evaluate the average number of comparisons, (3), using the “binary” prob-
ability distribution (5).

8. [HM22 ] Find an asymptotic series for H(x)
n as n→∞, when x ̸= 1.

x 9. [HM28 ] The text observes that the probability distributions given by (11), (13),
and (16) are roughly equivalent when 0 < θ < 1, and that the mean number of
comparisons using (13) is θ

θ+1N +O(N1−θ).
a) Is the mean number of comparisons equal to θ

θ+1N + O(N1−θ) also when the
probabilities of (11) are used?

b) What about (16)?
c) How do (11) and (16) compare to (13) when θ < 0?

10. [M20 ] The best arrangement of records in a sequential table is specified by (4);
what is the worst arrangement? Show that the average number of comparisons in the
worst arrangement has a simple relation to the average number of comparisons in the
best arrangement.

11. [M30 ] The purpose of this exercise is to analyze the limiting behavior of a self-
organizing file with the move-to-front heuristic. First we need to define some notation:
Let fm(x1, x2, . . . , xm) be the infinite sum of all distinct ordered products xi1 xi2 . . . xik

such that 1 ≤ i1, . . . , ik ≤ m, where each of x1, x2, . . . , xm appears in every term. For
example,

f2(x, y) =


j,k≥0

(x1+jy(x+ y)k + y1+jx(x+ y)k) = xy

1− x− y

 1
1− x + 1

1− y


.
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Given a set X of n variables {x1, . . . , xn}, let

Pnm =


1≤j1<···<jm≤n

fm(xj1 , . . . , xjm); Qnm =


1≤j1<···<jm≤n

1
1−xj1−· · ·−xjm

.

For example, P32 = f2(x1, x2) + f2(x1, x3) + f2(x2, x3) and Q32 = 1/(1 − x1 − x2) +
1/(1− x1 − x3) + 1/(1− x2 − x3). By convention we set Pn0 = Qn0 = 1.

a) Assume that the text’s self-organizing file has been servicing requests for item Ri

with probability pi. After the system has been running a long time, show that
Ri will be the mth item from the front with limiting probability piP(N−1)(m−1),
where the set of variables X is {p1, . . . , pi−1, pi+1, . . . , pN}.

b) By summing the result of (a) for m = 1, 2, . . . , we obtain the identity

Pnn + Pn(n−1) + · · ·+ Pn0 = Qnn.

Prove that, consequently,

Pnm +

n−m+ 1

1


Pn(m−1) + · · ·+


n−m+m

m


Pn0 = Qnm;

Qnm −

n−m+ 1

1


Qn(m−1) + · · ·+ (−1)m


n−m+m

m


Qn0 = Pnm.

c) Compute the limiting average distance di =


m≥1 mpiP(N−1)(m−1) of Ri from
the front of the list; then evaluate CN =

N
i=1 pidi.

12. [M23 ] Use (17) to evaluate the average number of comparisons needed to search
the self-organizing file when the search keys have the binary probability distribution (5).
13. [M27 ] Use (17) to evaluate CN for the wedge-shaped probability distribution (6).
14. [M21 ] Given two sequences ⟨x1, x2, . . . , xn⟩ and ⟨y1, y2, . . . , yn⟩ of real numbers,
what permutation a1 a2 . . . an of the subscripts will make


i xiyai a maximum? What

permutation will make it a minimum?
x 15. [M22 ] The text shows how to arrange programs optimally on a system library

tape, when only one program is being sought. But another set of assumptions is more
appropriate for a subroutine library tape, from which we may wish to load various
subroutines called for in a user’s program.

For this case let us suppose that subroutine j is desired with probability Pj ,
independently of whether or not other subroutines are desired. Then, for example,
the probability that no subroutines at all are needed is (1 − P1)(1 − P2) . . . (1 − PN );
and the probability that the search will end just after loading the jth subroutine is
Pj (1− Pj+1) . . . (1− PN ). If Lj is the length of subroutine j, the average search time
will therefore be essentially proportional to

L1P1(1−P2) . . . (1−PN ) + (L1 +L2)P2(1−P3) . . . (1−PN ) + · · ·+ (L1 + · · ·+LN )PN .

What is the optimum arrangement of subroutines on the tape, under these assump-
tions?
16. [M22 ] (H. Riesel.) We often need to test whether or not n given conditions are
all simultaneously true. (For example, we may want to test whether both x > 0 and
y < z2, and it is not immediately clear which condition should be tested first.) Suppose
that the testing of condition j costs Tj units of time, and that the condition will be
true with probability pj , independent of the outcomes of all the other conditions. In
what order should we make the tests?
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p1 p2 pN

Fig. 2. An “organ-pipe arrangement” of probabilities minimizes the average seek time
in a catenated search.

17. [M23 ] (J. R. Jackson.) Suppose you have to do n jobs; the jth job takes Tj units
of time, and it has a deadline Dj . In other words, the jth job is supposed to be finished
after at most Dj units of time have elapsed. What schedule a1 a2 . . . an for processing
the jobs will minimize the maximum tardiness, namely

max(Ta1−Da1 , Ta1 +Ta2−Da2 , . . . , Ta1 +Ta2 + · · ·+Tan−Dan) ?

18. [M30 ] (Catenated search.) Suppose that N records are located in a linear array
R1 . . . RN, with probability pj that record Rj will be sought. A search process is called
“catenated” if each search begins where the last one left off. If consecutive searches
are independent, the average time required will be


1≤i,j≤N pipjd(i, j), where d(i, j)

represents the amount of time to do a search that starts at position i and ends at
position j. This model can be applied, for example, to disk file seek time, if d(i, j) is
the time needed to travel from cylinder i to cylinder j.

The object of this exercise is to characterize the optimum placement of records for
catenated searches, whenever d(i, j) is an increasing function of |i− j|, that is, whenever
we have d(i, j) = d|i−j| for d1 < d2 < · · · < dN−1. (The value of d0 is irrelevant.) Prove
that in this case the records are optimally placed, among all N ! permutations, if and
only if either p1 ≤ pN ≤ p2 ≤ pN−1 ≤ · · · ≤ p⌊N/2⌋+1 or pN ≤ p1 ≤ pN−1 ≤ p2 ≤
· · · ≤ p⌈N/2⌉. (Thus, an “organ-pipe arrangement” of probabilities is best, as shown
in Fig. 2.) Hint: Consider any arrangement where the respective probabilities are
q1 q2 . . . qk s rk . . . r2 r1 t1 . . . tm, for some m ≥ 0 and k > 0; N = 2k+m+ 1. Show that
the rearrangement q′1 q′2 . . . q′k s r′k . . . r′2 r′1 t1 . . . tm is better, where q′i = min (qi, ri) and
r′i = max (qi, ri), except when q′i = qi and r′i = ri for all i or when q′i = ri and r′i = qi

and tj = 0 for all i and j. The same holds true when s is not present and N = 2k+m.

19. [M20 ] Continuing exercise 18, what are the optimal arrangements for catenated
searches when the function d(i, j) has the property that d(i, j) + d(j, i) = c for all
i ̸= j? [This situation occurs, for example, on tapes without read-backwards capability,
when we do not know the appropriate direction to search; for i < j we have, say,
d(i, j) = a+b(Li+1 + · · ·+Lj) and d(j, i) = a+b(Lj+1 + · · ·+LN )+r+b(L1 + · · ·+Li),
where r is the rewind time.]

20. [M28 ] Continuing exercise 18, what are the optimal arrangements for catenated
searches when the function d(i, j) is min(d|i−j|, dn−|i−j|), for d1 < d2 < · · · ? [This
situation occurs, for example, in a two-way linked circular list, or in a two-way shift-
register storage device.]
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21. [M28 ] Consider an n-dimensional cube whose vertices have coordinates (d1,. . .,dn)
with dj = 0 or 1; two vertices are called adjacent if they differ in exactly one coordinate.
Suppose that a set of 2n numbers x0 ≤ x1 ≤ · · · ≤ x2n−1 is to be assigned to the 2n

vertices in such a way that


i,j |xi − xj | is minimized, where the sum is over all i and j
such that xi and xj have been assigned to adjacent vertices. Prove that this minimum
will be achieved if, for all j, xj is assigned to the vertex whose coordinates are the
binary representation of j.

x 22. [20 ] Suppose you want to search a large file, not for equality but to find the 1000
records that are closest to a given key, in the sense that these 1000 records have the
smallest values of d(Kj ,K) for some given distance function d. What data structure is
most appropriate for such a sequential search?

Attempt the end, and never stand to doubt;
Nothing’s so hard, but search will find it out.

— ROBERT HERRICK, Seeke and finde (1648)



6.2.1 SEARCHING AN ORDERED TABLE 409

6.2. SEARCHING BY COMPARISON OF KEYS
In this section we shall discuss search methods that are based on a linear
ordering of the keys, such as alphabetic order or numeric order. After comparing
the given argument K to a key Ki in the table, the search continues in three
different ways, depending on whether K < Ki, K = Ki, or K > Ki. The
sequential search methods of Section 6.1 were essentially limited to a two-way
decision (K = Ki versus K ̸= Ki), but if we free ourselves from the restriction
of sequential access we are able to make effective use of an order relation.

6.2.1. Searching an Ordered Table
What would you do if someone handed you a large telephone directory and
told you to find the name of the person whose number is 795-6841? There is
no better way to tackle this problem than to use the sequential methods of
Section 6.1. (Well, you might try to dial the number and talk to the person who
answers; or you might know how to obtain a special directory that is sorted by
number instead of by name.) The point is that it is much easier to find an entry
by the party’s name, instead of by number, although the telephone directory
contains all the information necessary in both cases. When a large file must
be searched, sequential scanning is almost out of the question, but an ordering
relation simplifies the job enormously.

With so many sorting methods at our disposal (Chapter 5), we will have little
difficulty rearranging a file into order so that it may be searched conveniently.
Of course, if we need to search the table only once, a sequential search would
be faster than to do a complete sort of the file; but if we need to make repeated
searches in the same file, we are better off having it in order. Therefore in this
section we shall concentrate on methods that are appropriate for searching a
table whose keys satisfy

K1 < K2 < · · · < KN ,

assuming that we can easily access the key in any given position. After comparing
K to Ki in such a table, we have either

• K < Ki [Ri, Ri+1, . . . , RN are eliminated from consideration];
or • K = Ki [the search is done];
or • K > Ki [R1, R2, . . . , Ri are eliminated from consideration].

In each of these three cases, substantial progress has been made, unless i is
near one of the ends of the table; this is why the ordering leads to an efficient
algorithm.

Binary search. Perhaps the first such method that suggests itself is to start by
comparing K to the middle key in the table; the result of this probe tells which
half of the table should be searched next, and the same procedure can be used
again, comparing K to the middle key of the selected half, etc. After at most
about lg N comparisons, we will have found the key or we will have established
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B1. Initialize

B2. Get midpoint

B3. Compare

B4. Adjust u B5. Adjust l

u<l
FAILURE

SUCCESS

=
< >

Fig. 3. Binary search.

that it is not present. This procedure is sometimes known as “logarithmic search”
or “bisection,” but it is most commonly called binary search.

Although the basic idea of binary search is comparatively straightforward,
the details can be surprisingly tricky, and many good programmers have done it
wrong the first few times they tried. One of the most popular correct forms of
the algorithm makes use of two pointers, l and u, that indicate the current lower
and upper limits for the search, as follows:

Algorithm B (Binary search). Given a table of records R1, R2, . . . , RN whose
keys are in increasing order K1 < K2 < · · · < KN, this algorithm searches for a
given argument K.
B1. [Initialize.] Set l← 1, u← N.
B2. [Get midpoint.] (At this point we know that if K is in the table, it satisfies

Kl ≤ K ≤ Ku. A more precise statement of the situation appears in exer-
cise 1 below.) If u < l, the algorithm terminates unsuccessfully. Otherwise,
set i←


(l + u)/2


, the approximate midpoint of the relevant table area.

B3. [Compare.] If K < Ki, go to B4; if K > Ki, go to B5; and if K = Ki, the
algorithm terminates successfully.

B4. [Adjust u.] Set u← i− 1 and return to B2.
B5. [Adjust l.] Set l← i + 1 and return to B2.

Figure 4 illustrates two cases of this binary search algorithm: first to search
for the argument 653, which is present in the table, and then to search for 400,
which is absent. The brackets indicate l and u, and the underlined key repre-
sents Ki. In both examples the search terminates after making four comparisons.
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a) Searching for 653:

[061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908]
061 087 154 170 275 426 503 509 [512 612 653 677 703 765 897 908]
061 087 154 170 275 426 503 509 [512 612 653] 677 703 765 897 908
061 087 154 170 275 426 503 509 512 612 [653] 677 703 765 897 908

b) Searching for 400:

[061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908]
[061 087 154 170 275 426 503] 509 512 612 653 677 703 765 897 908
061 087 154 170 [275 426 503] 509 512 612 653 677 703 765 897 908
061 087 154 170 [275] 426 503 509 512 612 653 677 703 765 897 908
061 087 154 170 275] [426 503 509 512 612 653 677 703 765 897 908

Fig. 4. Examples of binary search.

Program B (Binary search). As in the programs of Section 6.1, we assume
here that Ki is a full-word key appearing in location KEY+ i. The following code
uses rI1 ≡ l, rI2 ≡ u, rI3 ≡ i.
01 START ENT1 1 1 B1. Initialize. l← 1.
02 ENT2 N 1 u← N.
03 JMP 2F 1 To B2.
04 5H JE SUCCESS C1 Jump if K = Ki.
05 ENT1 1,3 C1− S B5. Adjust l. l← i+ 1.
06 2H ENTA 0,1 C + 1− S B2. Get midpoint.
07 INCA 0,2 C + 1− S rA← l + u.
08 SRB 1 C + 1− S rA← ⌊rA/2⌋. (rX changes too.)
09 STA TEMP C + 1− S
10 CMP1 TEMP C + 1− S
11 JG FAILURE C + 1− S Jump if u < l.
12 LD3 TEMP C i← midpoint.
13 3H LDA K C B3. Compare.
14 CMPA KEY,3 C
15 JGE 5B C Jump if K ≥ Ki.
16 ENT2 -1,3 C2 B4. Adjust u. u← i− 1.
17 JMP 2B C2 To B2.

This procedure doesn’t blend with MIX quite as smoothly as the other
algorithms we have seen, because MIX does not allow much arithmetic in index
registers. The running time is (18C − 10S + 12)u, where C = C1 + C2 is the
number of comparisons made (the number of times step B3 is performed), and
S = [outcome is successful]. The operation on line 08 of this program is “shift
right binary 1,” which is legitimate only on binary versions of MIX; for general
byte size, this instruction should be replaced by “MUL =1//2+1=”, increasing the
running time to (26C − 18S + 20)u.

A tree representation. In order to really understand what is happening in
Algorithm B, our best bet is to think of the procedure as a binary decision tree,
as shown in Fig. 5 for the case N = 16.
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8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16

15 16

Fig. 5. A comparison tree that corresponds to binary search when N = 16.

When N is 16, the first comparison made by the algorithm is K : K8; this is
represented by the root node k8 in the figure. Then if K < K8, the algorithm
follows the left subtree, comparing K to K4; similarly if K > K8, the right
subtree is used. An unsuccessful search will lead to one of the external square
nodes numbered 0 through N ; for example, we reach node 6 if and only if
K6 < K < K7.

The binary tree corresponding to a binary search on N records can be
constructed as follows: If N = 0, the tree is simply 0 . Otherwise the root
node is � �
 	⌈N/2⌉ ,

the left subtree is the corresponding binary tree with ⌈N/2⌉ − 1 nodes, and the
right subtree is the corresponding binary tree with ⌊N/2⌋ nodes and with all
node numbers increased by ⌈N/2⌉.

In an analogous fashion, any algorithm for searching an ordered table of
length N by means of comparisons can be represented as an N -node binary tree
in which the nodes are labeled with the numbers 1 to N (unless the algorithm
makes redundant comparisons). Conversely, any binary tree corresponds to a
valid method for searching an ordered table; we simply label the nodes

0 k1 1 k2 2 . . . N−1 kN N (1)

in symmetric order, from left to right.
If the search argument input to Algorithm B is K10, the algorithm makes the

comparisons K > K8, K < K12, K = K10. This corresponds to the path from
the root to k10 in Fig. 5. Similarly, the behavior of Algorithm B on other keys
corresponds to the other paths leading from the root of the tree. The method of
constructing the binary trees corresponding to Algorithm B therefore makes it
easy to prove the following result by induction on N :
Theorem B. If 2k−1 ≤ N < 2k, a successful search using Algorithm B requires
(min 1, max k) comparisons. If N = 2k − 1, an unsuccessful search requires
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k comparisons; and if 2k−1 ≤ N < 2k − 1, an unsuccessful search requires either
k − 1 or k comparisons.

Further analysis of binary search.

Nonmathematical readers should skip

to Eq. (4).


The tree representation shows us also how to compute the average
number of comparisons in a simple way. Let CN be the average number of
comparisons in a successful search, assuming that each of the N keys is an
equally likely argument; and let C ′

N be the average number of comparisons in
an unsuccessful search, assuming that each of the N + 1 intervals between and
outside the extreme values of the keys is equally likely. Then we have

CN = 1 + internal path length of tree
N

, C ′
N = external path length of tree

N + 1 ,

by the definition of internal and external path length. We saw in Eq. 2.3.4.5–(3)
that the external path length is always 2N more than the internal path length.
Hence there is a rather unexpected relationship between CN and C ′

N :

CN =


1 + 1
N


C ′
N − 1. (2)

This formula, which is due to T. N. Hibbard [JACM 9 (1962), 16–17], holds
for all search methods that correspond to binary trees; in other words, it holds
for all methods that are based on nonredundant comparisons. The variance of
successful-search comparisons can also be expressed in terms of the corresponding
variance for unsuccessful searches (see exercise 25).

From the formulas above we can see that the “best” way to search by
comparisons is one whose tree has minimum external path length, over all binary
trees with N internal nodes. Fortunately it can be proved that Algorithm B is
optimum in this sense, for all N ; for we have seen (exercise 5.3.1–20) that a
binary tree has minimum path length if and only if its external nodes all occur
on at most two adjacent levels. It follows that the external path length of the
tree corresponding to Algorithm B is

(N + 1)

⌊lg N⌋+ 2


− 2⌊lg N⌋+1. (3)

See Eq. 5.3.1–(34).


From this formula and (2) we can compute the exact
average number of comparisons, assuming that all search arguments are equally
probable.

N = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CN = 1 1 1

2 1 2
3 2 2 1

5 2 2
6 2 3

7 2 5
8 2 7

9 2 9
10 3 3 1

12 3 2
13 3 3

14 3 4
15 3 6

16
C ′
N = 1 1 2

3 2 2 2
5 2 4

6 2 6
7 3 3 2

9 3 4
10 3 6

11 3 8
12 3 10

13 3 12
14 3 14

15 4 4 2
17

In general, if k = ⌊lg N⌋, we have

CN = k + 1− (2k+1 − k − 2)/N

C ′
N = k + 2− 2k+1/(N + 1)

= lg N − 1 + ϵ + (k + 2)/N,

= lg(N + 1) + ϵ′
(4)

where 0 ≤ ϵ, ϵ′ < 0.0861; see Eq. 5.3.1–(35).
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To summarize: Algorithm B never makes more than ⌊lg N⌋+1 comparisons,
and it makes about lg N − 1 comparisons in an average successful search. No
search method based on comparisons can do better than this. The average
running time of Program B is approximately

(18 lg N − 16)u for a successful search,
(18 lg N + 12)u for an unsuccessful search,

(5)

if we assume that all outcomes of the search are equally likely.

An important variation. Instead of using three pointers l, i, and u in the
search, it is tempting to use only two, namely the current position i and its rate
of change, δ; after each unequal comparison, we could then set i ← i ± δ and
δ ← δ/2 (approximately). It is possible to do this, but only if extreme care
is paid to the details, as in the following algorithm. Simpler approaches are
doomed to failure!

Algorithm U (Uniform binary search). Given a table of records R1, R2, . . . , RN

whose keys are in increasing order K1 < K2 < · · · < KN, this algorithm searches
for a given argument K. If N is even, the algorithm will sometimes refer to a
dummy key K0 that should be set to −∞ (or any value less than K). We assume
that N ≥ 1.
U1. [Initialize.] Set i← ⌈N/2⌉, m← ⌊N/2⌋.
U2. [Compare.] If K < Ki, go to U3; if K > Ki, go to U4; and if K = Ki, the

algorithm terminates successfully.
U3. [Decrease i.] (We have pinpointed the search to an interval that contains

either m or m−1 records; i points just to the right of this interval.) If m = 0,
the algorithm terminates unsuccessfully. Otherwise set i← i−⌈m/2⌉; then
set m← ⌊m/2⌋ and return to U2.

U4. [Increase i.] (We have pinpointed the search to an interval that contains
either m or m−1 records; i points just to the left of this interval.) If m = 0,
the algorithm terminates unsuccessfully. Otherwise set i← i + ⌈m/2⌉; then
set m← ⌊m/2⌋ and return to U2.

Figure 6 shows the corresponding binary tree for the search, when N = 10.
In an unsuccessful search, the algorithm may make a redundant comparison just
before termination; those nodes are shaded in the figure. We may call the search
process uniform because the difference between the number of a node on level l
and the number of its ancestor on level l− 1 has a constant value δ for all nodes
on level l.

The theory underlying Algorithm U can be understood as follows: Suppose
that we have an interval of length n− 1 to search; a comparison with the middle
element (for n even) or with one of the two middle elements (for n odd) leaves us
with two intervals of lengths ⌊n/2⌋−1 and ⌈n/2⌉−1. After repeating this process
k times, we obtain 2k intervals, of which the smallest has length ⌊n/2k⌋ − 1 and
the largest has length ⌈n/2k⌉−1. Hence the lengths of two intervals at the same
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Fig. 6. The comparison tree for a “uniform” binary search, when N = 10.

level differ by at most unity; this makes it possible to choose an appropriate
“middle” element, without keeping track of the exact lengths.

The principal advantage of Algorithm U is that we need not maintain the
value of m at all; we need only refer to a short table of the various δ to use at
each level of the tree. Thus the algorithm reduces to the following procedure,
which is equally good on binary or decimal computers:

Algorithm C (Uniform binary search). This algorithm is just like Algorithm U,
but it uses an auxiliary table in place of the calculations involving m. The table
entries are

DELTA[j] =


N + 2j−1

2j


, for 1 ≤ j ≤ ⌊lg N⌋+ 2. (6)

C1. [Initialize.] Set i← DELTA[1], j ← 2.
C2. [Compare.] If K < Ki, go to C3; if K > Ki, go to C4; and if K = Ki, the

algorithm terminates successfully.
C3. [Decrease i.] If DELTA[j] = 0, the algorithm terminates unsuccessfully.

Otherwise, set i← i− DELTA[j], j ← j + 1, and go to C2.
C4. [Increase i.] If DELTA[j] = 0, the algorithm terminates unsuccessfully.

Otherwise, set i← i + DELTA[j], j ← j + 1, and go to C2.

Exercise 8 proves that this algorithm refers to the artificial key K0 = −∞
only when N is even.

Program C (Uniform binary search). This program does the same job as
Program B, using Algorithm C with rA ≡ K, rI1 ≡ i, rI2 ≡ j, rI3 ≡ DELTA[j].
01 START ENT1 N+1/2 1 C1. Initialize. i← ⌊(N + 1)/2⌋.
02 ENT2 2 1 j ← 2.
03 LDA K 1
04 JMP 2F 1
05 3H JE SUCCESS C1 Jump if K = Ki.
06 J3Z FAILURE C1− S Jump if DELTA[j] = 0.
07 DEC1 0,3 C1− S −A C3. Decrease i.
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Fig. 7. The comparison tree for Shar’s almost uniform search, when N = 10.

08 5H INC2 1 C − 1 j ← j + 1.
09 2H LD3 DELTA,2 C C2. Compare.
10 CMPA KEY,1 C
11 JLE 3B C Jump if K ≤ Ki.
12 INC1 0,3 C2 C4. Increase i.
13 J3NZ 5B C2 Jump if DELTA[j] ̸= 0.
14 FAILURE EQU * 1− S Exit if not in table.

In a successful search, this algorithm corresponds to a binary tree with the
same internal path length as the tree of Algorithm B, so the average number of
comparisons CN is the same as before. In an unsuccessful search, Algorithm C
always makes exactly ⌊lg N⌋ + 1 comparisons. The total running time of Pro-
gram C is not quite symmetrical between left and right branches, since C1 is
weighted more heavily than C2, but exercise 11 shows that we have K < Ki

roughly as often as K > Ki; hence Program C takes approximately
(8.5 lg N − 6)u for a successful search,
(8.5⌊lg N⌋+ 12)u for an unsuccessful search.

(7)

This is more than twice as fast as Program B, without using any special prop-
erties of binary computers, even though the running times (5) for Program B
assume that MIX has a “shift right binary” instruction.

Another modification of binary search, suggested in 1971 by L. E. Shar, will
be still faster on some computers, because it is uniform after the first step, and
it requires no table. The first step is to compare K with Ki, where i = 2k,
k = ⌊lg N⌋. If K < Ki, we use a uniform search with the δ’s equal to 2k−1,
2k−2, . . . , 1, 0. On the other hand, if K > Ki we reset i to i′ = N + 1 − 2l,
where l =


lg(N − 2k + 1)


, and pretend that the first comparison was actually

K > Ki′ , using a uniform search with the δ’s equal to 2l−1, 2l−2, . . . , 1, 0.
Shar’s method is illustrated for N = 10 in Fig. 7. Like the previous

algorithms, it never makes more than ⌊lg N⌋ + 1 comparisons; hence it makes
at most one more than the minimum possible average number of comparisons,
in spite of the fact that it occasionally goes through several redundant steps in
succession (see exercise 12).
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Fig. 8. The Fibonacci tree of order 6.

Still another modification of binary search, which increases the speed of all
the methods above when N is extremely large, is discussed in exercise 23. See
also exercise 24, for a method that is faster yet.

*Fibonaccian search. In the polyphase merge we have seen that the Fibonacci
numbers can play a role analogous to the powers of 2. A similar phenomenon
occurs in searching, where Fibonacci numbers provide us with an alternative to
binary search. The resulting method is preferable on some computers, because it
involves only addition and subtraction, not division by 2. The procedure we are
about to discuss should be distinguished from an important numerical procedure
called “Fibonacci search,” which is used to locate the maximum of a unimodal
function [see Fibonacci Quarterly 4 (1966), 265–269]; the similarity of names
has led to some confusion.

The Fibonaccian search technique looks very mysterious at first glance, if
we simply take the program and try to explain what is happening; it seems to
work by magic. But the mystery disappears as soon as the corresponding search
tree is displayed. Therefore we shall begin our study of the method by looking
at Fibonacci trees.

Figure 8 shows the Fibonacci tree of order 6. It looks somewhat more like
a real-life shrub than the other trees we have been considering, perhaps because
many natural processes satisfy a Fibonacci law. In general, the Fibonacci tree of
order k has Fk+1−1 internal (circular) nodes and Fk+1 external (square) nodes,
and it is constructed as follows:

If k = 0 or k = 1, the tree is simply 0 .
If k ≥ 2, the root is Fk; the left subtree is the Fibonacci tree of order k− 1;
and the right subtree is the Fibonacci tree of order k − 2 with all numbers
increased by Fk.

Except for the external nodes, the numbers on the two children of each internal
node differ from their parent’s number by the same amount, and this amount
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is a Fibonacci number. For example, 5 = 8 − F4 and 11 = 8 + F4 in Fig. 8.
When the difference is Fj , the corresponding Fibonacci difference for the next
branch on the left is Fj−1, while on the right it skips down to Fj−2. For example,
3 = 5− F3 while 10 = 11− F2.

If we combine these observations with an appropriate mechanism for recog-
nizing the external nodes, we arrive at the following method:

Algorithm F (Fibonaccian search). Given a table of records R1, R2, . . . , RN

whose keys are in increasing order K1 < K2 < · · · < KN, this algorithm searches
for a given argument K.

For convenience in description, we assume that N + 1 is a perfect Fibonacci
number, Fk+1. It is not difficult to make the method work for arbitrary N, if a
suitable initialization is provided (see exercise 14).
F1. [Initialize.] Set i ← Fk, p ← Fk−1, q ← Fk−2. (Throughout the algorithm,

p and q will be consecutive Fibonacci numbers.)
F2. [Compare.] If K < Ki, go to step F3; if K > Ki, go to F4; and if K = Ki,

the algorithm terminates successfully.
F3. [Decrease i.] If q = 0, the algorithm terminates unsuccessfully. Otherwise

set i← i− q, and set (p, q)← (q, p−q); then return to F2.
F4. [Increase i.] If p = 1, the algorithm terminates unsuccessfully. Otherwise

set i← i + q, p← p− q, then q ← q − p, and return to F2.

The following MIX implementation gains speed by making two copies of the
inner loop, one in which p is in rI2 and q in rI3, and one in which the registers are
reversed; this simplifies step F3. In fact, the program actually keeps p − 1 and
q − 1 in the registers, instead of p and q, in order to simplify the test “p = 1?”
in step F4.

Program F (Fibonaccian search). We follow the previous conventions, with
rA ≡ K, rI1 ≡ i, (rI2 or rI3) ≡ p− 1, (rI3 or rI2) ≡ q − 1.
01 START LDA K 1 F1. Initialize.
02 ENT1 Fk 1 i← Fk.
03 ENT2 Fk−1-1 1 p← Fk−1.
04 ENT3 Fk−2-1 1 q ← Fk−2.
05 JMP F2A 1 To step F2.
06 F4A INC1 1,3 C2− S −A F4. Increase i. i← i+ q.
07 DEC2 1,3 C2− S −A p← p− q.
08 DEC3 1,2 C2− S −A q ← q − p.
09 F2A CMPA KEY,1 C F2. Compare.
10 JL F3A C To F3 if K < Ki.
11 JE SUCCESS C2 Exit if K = Ki.
12 J2NZ F4A C2− S To F4 if p ̸= 1.
13 JMP FAILURE A Exit if not in table.
14 F3A DEC1 1,3 C1 F3. Decrease i. i← i− q.
15 DEC2 1,3 C1 p← p− q.
16 J3NN F2B C1 Swap registers if q > 0.
17 JMP FAILURE 1− S −A Exit if not in table.
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18 F4B INC1 1,2 (Lines 18–29 are parallel to 06–17.)
19 DEC3 1,2
20 DEC2 1,3
21 F2B CMPA KEY,1
22 JL F3B
23 JE SUCCESS
24 J3NZ F4B
25 JMP FAILURE
26 F3B DEC1 1,2
27 DEC3 1,2
28 J2NN F2A
29 JMP FAILURE

The running time of this program is analyzed in exercise 18. Figure 8 shows,
and the analysis proves, that a left branch is taken somewhat more often than a
right branch. Let C, C1, and (C2− S) be the respective number of times steps
F2, F3, and F4 are performed. Then we have

C = (ave ϕk/
√

5 + O(1), max k − 1),
C1 = (ave k/

√
5 + O(1), max k − 1),

C2− S = (ave ϕ−1k/
√

5 + O(1), max ⌊k/2⌋).
(8)

Thus the left branch is taken about ϕ ≈ 1.618 times as often as the right branch
(a fact that we might have guessed, since each probe divides the remaining
interval into two parts, with the left part about ϕ times as large as the right).
The total average running time of Program F therefore comes to approximately

1
5

(18 + 4ϕ)k + 31− 26ϕ


u ≈ (7.050 lg N + 1.08)u (9)

for a successful search, plus (9−3ϕ)u ≈ 4.15u for an unsuccessful search. This is
faster than Program C, although the worst-case running time (roughly 8.6 lg N)
is slightly slower.

Interpolation search. Let’s forget computers for a moment, and consider how
people actually carry out a search. Sometimes everyday life provides us with
clues that lead to good algorithms.

Imagine yourself looking up a word in a dictionary. You probably don’t
begin by looking first at the middle page, then looking at the 1/4 or 3/4 point,
etc., as in a binary search. It’s even less likely that you use a Fibonaccian search!

If the word you want starts with the letter A, you probably begin near the
front of the dictionary. In fact, many dictionaries have thumb indexes that show
the starting page or the middle page for the words beginning with a fixed letter.
This thumb-index technique can readily be adapted to computers, and it will
speed up the search; such algorithms are explored in Section 6.3.

Yet even after the initial point of search has been found, your actions still
are not much like the methods we have discussed. If you notice that the desired
word is alphabetically much greater than the words on the page being examined,
you will turn over a fairly large chunk of pages before making the next reference.
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This is quite different from the algorithms above, which make no distinction
between “much greater” and “slightly greater.”

Such considerations suggest an algorithm that might be called interpolation
search: When we know that K lies between Kl and Ku, we can choose the next
probe to be about (K −Kl)/(Ku −Kl) of the way between l and u, assuming
that the keys are numeric and that they increase in a roughly constant manner
throughout the interval.

Interpolation search is asymptotically superior to binary search. One step of
binary search essentially reduces the amount of uncertainty from n to 1

2 n, while
one step of interpolation search essentially reduces it to

√
n, when the keys in the

table are randomly distributed. Hence interpolation search takes about lg lg N
steps, on the average, to reduce the uncertainty from N to 2. (See exercise 22.)

However, computer simulation experiments show that interpolation search
does not decrease the number of comparisons enough to compensate for the
extra computing time involved, unless the table is rather large. Typical files
aren’t sufficiently random, and the difference between lg lg N and lg N is not
substantial unless N exceeds, say, 216 = 65,536. Interpolation is most successful
in the early stages of searching a large possibly external file; after the range has
been narrowed down, binary search finishes things off more quickly. (Note that
dictionary lookup by hand is essentially an external, not an internal, search. We
shall discuss external searching later.)

History and bibliography. The earliest known example of a long list of items
that was sorted into order to facilitate searching is the remarkable Babylonian
reciprocal table of Inakibit-Anu, dating from about 200 B.C. This clay tablet
contains more than 100 pairs of values, which appear to be the beginning of
a list of approximately 500 multiple-precision sexagesimal numbers and their
reciprocals, sorted into lexicographic order. For example, the list included the
following sequence of entries:

01 13 09 34 29 08 08 53 20
01 13 14 31 52 30
01 13 43 40 48
01 13 48 40 30
01 14 04 26 40

49 12 27
49 09 07 12
48 49 41 15
48 46 22 59 25 25 55 33 20
48 36

The task of sorting 500 entries like this, given the technology available at that
time, must have been phenomenal. [See D. E. Knuth, Selected Papers on Com-
puter Science (Cambridge Univ. Press, 1996), Chapter 11, for further details.]

It is fairly natural to sort numerical values into order, but an order relation
between letters or words does not suggest itself so readily. Yet a collating
sequence for individual letters was present already in the most ancient alpha-
bets. For example, many of the Biblical psalms have verses that follow a strict
alphabetic sequence, the first verse starting with aleph, the second with beth,
etc.; this was an aid to memory. Eventually the standard sequence of letters
was used by Semitic and Greek peoples to denote numerals; for example, α, β, γ
stood for 1, 2, 3, respectively.
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The use of alphabetic order for entire words seems to be a much later
invention; it is something we might think is obvious, yet it has to be taught
to children, and at some point in history it was necessary to teach it to adults.
Several lists from about 300 B.C. have been found on the Aegean Islands, giving
the names of people in certain religious cults; these lists have been alphabetized,
but only by the first letter, thus representing only the first pass of a left-
to-right radix sort. Some Greek papyri from the years A.D. 134–135 contain
fragments of ledgers that show the names of taxpayers alphabetized by the first
two letters. Apollonius Sophista used alphabetic order on the first two letters,
and often on subsequent letters, in his lengthy concordance of Homer’s poetry
(first century A.D.). A few examples of more perfect alphabetization are known,
notably Galen’s Hippocratic Glosses (c. 200), but they are very rare. Words were
arranged by their first letter only in the Etymologiarum of St. Isidorus (c. 630,
Book x); and the Corpus Glossary (c. 725) used only the first two letters of each
word. The latter two works were perhaps the largest nonnumerical files of data
to be compiled during the Middle Ages.

It is not until Giovanni di Genoa’s Catholicon (1286) that we find a specific
description of true alphabetical order. In his preface, Giovanni explained that

amo precedes bibo
abeo precedes adeo

amatus precedes amor
imprudens precedes impudens

iusticia precedes iustus
polisintheton precedes polissenus

(thereby giving examples of situations in which the ordering is determined by the
1st, 2nd, . . . , 6th letters), “and so in like manner.” He remarked that strenuous
effort was required to devise these rules. “I beg of you, therefore, good reader,
do not scorn this great labor of mine and this order as something worthless.”

A detailed study of the development of alphabetic order, up to the time
printing was invented, has been made by Lloyd W. Daly [Collection Latomus
90 (1967), 100 pages]. He found some interesting old manuscripts that were
evidently used as worksheets while sorting words by their first letters (see pages
89–90 of his monograph).

The first dictionary of English, Robert Cawdrey’s Table Alphabeticall (Lon-
don, 1604), contains the following instructions:

Nowe if the word, which thou art desirous to finde, beginne with (a) then
looke in the beginning of this Table, but if with (v) looke towards the end.
Againe, if thy word beginne with (ca) looke in the beginning of the letter
(c) but if with (cu) then looke toward the end of that letter. And so of all
the rest. &c.

Cawdrey seems to have been teaching himself how to alphabetize as he prepared
his dictionary; numerous misplaced words appear on the first few pages, but the
alphabetic order in the last part is not as bad.
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Binary search was first mentioned by John Mauchly, in what was perhaps the
first published discussion of nonnumerical programming methods [Theory and
Techniques for the Design of Electronic Digital Computers, edited by G. W. Pat-
terson, 1 (1946), 9.7–9.8; 3 (1946), 22.8–22.9]. The method became well known
to programmers, but nobody seems to have worked out the details of what should
be done when N does not have the special form 2n−1. [See A. D. Booth, Nature
176 (1955), 565; A. I. Dumey, Computers and Automation 5 (December 1956), 7,
where binary search is called “Twenty Questions”; Daniel D. McCracken, Digital
Computer Programming (Wiley, 1957), 201–203; and M. Halpern, CACM 1, 1
(February 1958), 1–3.]

D. H. Lehmer [Proc. Symp. Appl. Math. 10 (1960), 180–181] was apparently
the first to publish a binary search algorithm that works for all N . The next
step was taken by H. Bottenbruch [JACM 9 (1962), 214], who presented an
interesting variation of Algorithm B that avoids a separate test for equality until
the very end: Using

i← ⌈(l + u)/2⌉
instead of i ← ⌊(l + u)/2⌋ in step B2, he set l ← i whenever K ≥ Ki; then
u− l decreases at every step. Eventually, when l = u, we have Kl ≤ K < Kl+1,
and we can test whether or not the search was successful by making one more
comparison. (He assumed that K ≥ K1 initially.) This idea speeds up the inner
loop slightly on many computers, and the same principle can be used with all
of the algorithms we have discussed in this section; but a successful search will
require about one more iteration, on the average, because of (2). Since the inner
loop is performed only about lg N times, this tradeoff between an extra iteration
and a faster loop does not save time unless n is extremely large. (See exercise 23.)
On the other hand Bottenbruch’s algorithm will find the rightmost occurrence of
a given key when the table contains duplicates, and this property is occasionally
important.

K. E. Iverson [A Programming Language (Wiley, 1962), 141] gave the proce-
dure of Algorithm B, but without considering the possibility of an unsuccessful
search. D. E. Knuth [CACM 6 (1963), 556–558] presented Algorithm B as
an example used with an automated flowcharting system. The uniform binary
search, Algorithm C, was suggested to the author by A. K. Chandra of Stanford
University in 1971.

Fibonaccian searching was invented by David E. Ferguson [CACM 3 (1960),
648]. Binary trees similar to Fibonacci trees appeared in the pioneering work
of the Norwegian mathematician Axel Thue as early as 1910 (see exercise 28).
A Fibonacci tree without labels was also exhibited as a curiosity in the first
edition of Hugo Steinhaus’s popular book Mathematical Snapshots (New York:
Stechert, 1938), page 28; he drew it upside down and made it look like a real
tree, with right branches twice as long as left branches so that all the leaves
would occur at the same level.

Interpolation searching was suggested by W. W. Peterson [IBM J. Res. &
Devel. 1 (1957), 131–132]. A correct analysis of its average behavior was not
discovered until many years later (see exercise 22).
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EXERCISES
x 1. [21 ] Prove that if u < l in step B2 of the binary search, we have u = l − 1 and
Ku < K < Kl. (Assume by convention that K0 = −∞ and KN+1 = +∞, although
these artificial keys are never really used by the algorithm so they need not be present
in the actual table.)

x 2. [22 ] Would Algorithm B still work properly when K is present in the table if we
(a) changed step B5 to “l← i” instead of “l← i+ 1”? (b) changed step B4 to “u← i”
instead of “u← i− 1”? (c) made both of these changes?

3. [15 ] What searching method corresponds to the tree ?

What is the average number of comparisons made in a successful search? in an
unsuccessful search?

4. [20 ] If a search using Program 6.1S (sequential search) takes exactly 638 units of
time, how long does it take with Program B (binary search)?

5. [M24 ] For what values of N is Program B actually slower than a sequential search
(Program 6.1Q′) on the average, assuming that the search is successful?

6. [28 ] (K. E. Iverson.) Exercise 5 suggests that it would be best to have a hybrid
method, changing from binary search to sequential search when the remaining interval
has length less than some judiciously chosen value. Write an efficient MIX program for
such a search and determine the best changeover value.

x 7. [M22 ] Would Algorithm U still work properly if we changed step U1 so that
a) both i and m are set equal to ⌊N/2⌋?
b) both i and m are set equal to ⌈N/2⌉?

[Hint: Suppose the first step were “Set i← 0, m← N (or N + 1), go to U4.”]
8. [M20 ] Let δj = DELTA[j] be the jth increment in Algorithm C, as defined in (6).
a) What is the sum

⌊lg N⌋+2
j=1 δj?

b) What are the minimum and maximum values of i that can occur in step C2?
9. [20 ] Is there any value of N > 1 for which Algorithm B and C are exactly

equivalent, in the sense that they will both perform the same sequence of comparisons
for all search arguments?
10. [21 ] Explain how to write a MIX program for Algorithm C containing approx-
imately 7 lgN instructions and having a running time of about 4.5 lgN units.
11. [M26 ] Find exact formulas for the average values of C1, C2, and A in the fre-
quency analysis of Program C, as a function of N and S.
12. [20 ] Draw the binary search tree corresponding to Shar’s method when N = 12.
13. [M24 ] Tabulate the average number of comparisons made by Shar’s method, for
1 ≤ N ≤ 16, considering both successful and unsuccessful searches.
14. [21 ] Explain how to extend Algorithm F so that it will apply for all N ≥ 1.
15. [M19 ] For what values of k does the Fibonacci tree of order k define an optimal
search procedure, in the sense that the fewest comparisons are made on the average?
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16. [21 ] Figure 9 shows the lineal chart of the rabbits in Fibonacci’s original rabbit
problem (see Section 1.2.8). Is there a simple relationship between this and the
Fibonacci tree discussed in the text?

Initial pair

First month

Second month

Third month

Fourth month

Fifth month

Sixth month

Fig. 9. Pairs of rabbits breeding by Fibonacci’s rule.

17. [M21 ] From exercise 1.2.8–34 (or exercise 5.4.2–10) we know that every positive
integer n has a unique representation as a sum of Fibonacci numbers

n = Fa1 + Fa2 + · · ·+ Far ,

where r ≥ 1, aj ≥ aj+1 + 2 for 1 ≤ j < r, and ar ≥ 2. Prove that in the Fibonacci tree
of order k, the path from the root to node kn has length k + 1− r − ar.
18. [M30 ] Find exact formulas for the average values of C1, C2, and A in the fre-
quency analysis of Program F, as a function of k, Fk, Fk+1, and S.
19. [M42 ] Carry out a detailed analysis of the average running time of the algorithm
suggested in exercise 14.
20. [M22 ] The number of comparisons required in a binary search is approximately
log2 N, and in the Fibonaccian search it is roughly (ϕ/

√
5) logϕ N. The purpose of this

exercise is to show that these formulas are special cases of a more general result.
Let p and q be positive numbers with p+ q = 1. Consider a search algorithm that,

given a table of N numbers in increasing order, starts by comparing the argument with
the (pN)th key, and iterates this procedure on the smaller blocks. (The binary search
has p = q = 1/2; the Fibonaccian search has p = 1/ϕ, q = 1/ϕ2.)

If C(N) denotes the average number of comparisons required to search a table of
size N, it approximately satisfies the relations

C(1) = 0; C(N) = 1 + pC(pN) + qC(qN) for N > 1.

This happens because there is probability p (roughly) that the search reduces to a
pN -element search, and probability q that it reduces to a qN -element search, after the
first comparison. When N is large, we may ignore the small-order effect caused by the
fact that pN and qN aren’t exactly integers.

a) Show that C(N) = logb N satisfies these relations exactly, for a certain choice of b.
For binary and Fibonaccian search, this value of b agrees with the formulas derived
earlier.

b) Consider the following argument: “With probability p, the size of the interval
being scanned in this algorithm is divided by 1/p; with probability q, the interval
size is divided by 1/q. Therefore the interval is divided by p · (1/p) + q · (1/q) = 2
on the average, so the algorithm is exactly as good as the binary search, regardless
of p and q.” Is there anything wrong with this reasoning?
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21. [20 ] Draw the binary tree corresponding to interpolation search when N = 10.

22. [M41 ] (A. C. Yao and F. F. Yao.) Show that an appropriate formulation of
interpolation search requires asymptotically lg lgN comparisons, on the average, when
applied to N independent uniform random keys that have been sorted. Furthermore
all search algorithms on such tables must make asymptotically lg lgN comparisons, on
the average.

x 23. [25 ] The binary search algorithm of H. Bottenbruch, mentioned at the close of
this section, avoids testing for equality until the very end of the search. (During the
algorithm we know that Kl ≤ K < Ku+1, and the case of equality is not examined
until l = u.) Such a trick would make Program B run a little bit faster for large N,
since the ‘JE’ instruction could be removed from the inner loop. (However, the idea
wouldn’t really be practical since lgN is always rather small; we would need N > 266

in order to compensate for the extra work necessary on a successful search, because the
running time (18 lgN − 16)u of (5) is “decreased” to (17.5 lgN + 17)u!)

Show that every search algorithm corresponding to a binary tree can be adapted to
a search algorithm that uses two-way branching (< versus ≥ ) at the internal nodes of
the tree, in place of the three-way branching (< , = , or > ) used in the text’s discussion.
In particular, show how to modify Algorithm C in this way.

x 24. [23 ] We have seen in Sections 2.3.4.5 and 5.2.3 that the complete binary tree is
a convenient way to represent a minimum-path-length tree in consecutive locations.
Devise an efficient search method based on this representation. [Hint: Is it possible to
use multiplication by 2 instead of division by 2 in a binary search?]

x 25. [M25 ] Suppose that a binary tree has ak internal nodes and bk external nodes
on level k, for k = 0, 1, . . . . (The root is at level zero.) Thus in Fig. 8 we have
(a0, a1, . . . , a5) = (1, 2, 4, 4, 1, 0) and (b0, b1, . . . , b5) = (0, 0, 0, 4, 7, 2).

a) Show that a simple algebraic relationship holds between the generating functions
A(z) =


k akz

k and B(z) =


k bkz
k.

b) The probability distribution for a successful search in a binary tree has the gen-
erating function g(z) = zA(z)/N, and for an unsuccessful search the generating
function is h(z) = B(z)/(N + 1). (Thus in the text’s notation we have CN =
mean(g), C′

N = mean(h), and Eq. (2) gives a relation between these quantities.)
Find a relation between var(g) and var(h).

26. [22 ] Show that Fibonacci trees are related to polyphase merge sorting on three
tapes.

27. [M30 ] (H. S. Stone and John Linn.) Consider a search process that uses k
processors simultaneously and that is based solely on comparisons of keys. Thus at
every step of the search, k indices i1, . . . , ik are specified, and we perform k simultaneous
comparisons; if K = Kij for some j, the search terminates successfully, otherwise
the search proceeds to the next step based on the 2k possible outcomes K < Kij or
K > Kij , for 1 ≤ j ≤ k.

Prove that such a process must always take at least approximately logk+1 N steps
on the average, as N → ∞, assuming that each key of the table is equally likely as a
search argument. (Hence the potential increase in speed over 1-processor binary search
is only a factor of lg(k+1), not the factor of k we might expect. In this sense it is more
efficient to assign each processor to a different, independent search problem, instead of
making them cooperate on a single search.)
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28. [M23 ] Define Thue trees Tn by means of algebraic expressions in a binary opera-
tor ∗ as follows: T0(x) = x ∗ x, T1(x) = x, Tn+2(x) = Tn+1(x) ∗ Tn(x).

a) The number of leaves of Tn is the number of occurrences of x when Tn(x) is written
out in full. Express this number in terms of Fibonacci numbers.

b) Prove that if the binary operator ∗ satisfies the axiom

(x ∗ (x ∗ x)) ∗ (x ∗ (x ∗ x)) = x ,

then Tm(Tn(x)) = Tm+n−1(x) for all m ≥ 0 and n ≥ 1.
x 29. [22 ] (Paul Feldman, 1985.) Instead of assuming that K1 < K2 < · · · < KN ,

assume only that Kp(1) < Kp(2) < · · · < Kp(N) where the permutation p(1)p(2) . . . p(N)
is an involution, and p(j) = j for all even values of j. Show that we can locate any given
key K, or determine that K is not present, by making at most 2⌊lgN⌋+1 comparisons.
30. [27 ] (Involution coding.) Using the idea of the previous exercise, find a way to
arrange N distinct keys in such a way that their relative order implicitly encodes an
arbitrarily given array of t-bit numbers x1, x2, . . . , xm, when m ≤ N/4 + 1 − 2t.
With your arrangement it should be possible to determine the leading k bits of xj by
making only k comparisons, for any given j, as well as to look up an arbitrary key with
≤ 2⌊lgN⌋+1 comparisons. (This result is used in theoretical studies of data structures
that are asymptotically efficient in both time and space.)

6.2.2. Binary Tree Searching
In the preceding section, we learned that an implicit binary tree structure makes
the behavior of binary search and Fibonaccian search easier to understand. For a
given value of N, the tree corresponding to binary search achieves the theoretical
minimum number of comparisons that are necessary to search a table by means
of key comparisons. But the methods of the preceding section are appropriate
mainly for fixed-size tables, since the sequential allocation of records makes
insertions and deletions rather expensive. If the table is changing dynamically,
we might spend more time maintaining it than we save in binary-searching it.

The use of an explicit binary tree structure makes it possible to insert and
delete records quickly, as well as to search the table efficiently. As a result, we
essentially have a method that is useful both for searching and for sorting. This
gain in flexibility is achieved by adding two link fields to each record of the table.

Techniques for searching a growing table are often called symbol table algo-
rithms, because assemblers and compilers and other system routines generally
use such methods to keep track of user-defined symbols. For example, the key of
each record within a compiler might be a symbolic identifier denoting a variable
in some FORTRAN or C program, and the rest of the record might contain
information about the type of that variable and its storage allocation. Or the key
might be a symbol in a MIXAL program, with the rest of the record containing the
equivalent of that symbol. The tree search and insertion routines to be described
in this section are quite efficient for use as symbol table algorithms, especially in
applications where it is desirable to print out a list of the symbols in alphabetic
order. Other symbol table algorithms are described in Sections 6.3 and 6.4.

Figure 10 shows a binary search tree containing the names of eleven signs of
the zodiac. If we now search for the twelfth name, SAGITTARIUS, starting at the
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CAPRICORN

AQUARIUS

ARIES
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PISCES

GEMINI

LEO

LIBRA

TAURUS

SCORPIO VIRGO
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6 7

8 9 10 11

Fig. 10. A binary search tree.

root or apex of the tree, we find it is greater than CAPRICORN, so we move to the
right; it is greater than PISCES, so we move right again; it is less than TAURUS, so
we move left; and it is less than SCORPIO, so we arrive at external node 8 . The
search was unsuccessful; we can now insert SAGITTARIUS at the place the search
ended, by linking it into the tree in place of the external node 8 . In this way
the table can grow without the necessity of moving any of the existing records.
Figure 10 was formed by starting with an empty tree and successively inserting
the keys CAPRICORN, AQUARIUS, PISCES, ARIES, TAURUS, GEMINI, CANCER, LEO,
VIRGO, LIBRA, SCORPIO, in this order.

All of the keys in the left subtree of the root in Fig. 10 are alphabetically
less than CAPRICORN, and all keys in the right subtree are alphabetically greater.
A similar statement holds for the left and right subtrees of every node. It follows
that the keys appear in strict alphabetic sequence from left to right,

AQUARIUS, ARIES, CANCER, CAPRICORN, GEMINI, LEO, . . . , VIRGO

if we traverse the tree in symmetric order (see Section 2.3.1), since symmetric
order is based on traversing the left subtree of each node just before that node,
then traversing the right subtree.

The following algorithm spells out the searching and insertion processes in
detail.

Algorithm T (Tree search and insertion). Given a table of records that form a
binary tree as described above, this algorithm searches for a given argument K.
If K is not in the table, a new node containing K is inserted into the tree in the
appropriate place.
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The nodes of the tree are assumed to contain at least the following fields:
KEY(P) = key stored in NODE(P);

LLINK(P) = pointer to left subtree of NODE(P);
RLINK(P) = pointer to right subtree of NODE(P).

Null subtrees (the external nodes in Fig. 10) are represented by the null pointer Λ.
The variable ROOT points to the root of the tree. For convenience, we assume
that the tree is not empty (that is, ROOT ̸= Λ), since the necessary operations
are trivial when ROOT = Λ.
T1. [Initialize.] Set P← ROOT. (The pointer variable P will move down the tree.)
T2. [Compare.] If K < KEY(P), go to T3; if K > KEY(P), go to T4; and if

K = KEY(P), the search terminates successfully.
T3. [Move left.] If LLINK(P) ̸= Λ, set P ← LLINK(P) and go back to T2.

Otherwise go to T5.
T4. [Move right.] If RLINK(P) ̸= Λ, set P← RLINK(P) and go back to T2.
T5. [Insert into tree.] (The search is unsuccessful; we will now put K into the

tree.) Set Q ⇐ AVAIL, the address of a new node. Set KEY(Q) ← K,
LLINK(Q) ← RLINK(Q) ← Λ. (In practice, other fields of the new node
should also be initialized.) If K was less than KEY(P), set LLINK(P) ← Q,
otherwise set RLINK(P) ← Q. (At this point we could set P ← Q and
terminate the algorithm successfully.)

T1. Initialize

T2. Compare

T3. Move left T4. Move right

T5. Insert into tree

SUCCESS
=

< >

RLINK=ΛLLINK=Λ

Fig. 11. Tree search and insertion.

This algorithm lends itself to a convenient machine language implementa-
tion. We may assume, for example, that the tree nodes have the form

+ 0 LLINK RLINK

KEY
(1)

followed perhaps by additional words of INFO. Using an AVAIL list for the free
storage pool, as in Chapter 2, we can write the following MIX program:
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Program T (Tree search and insertion). rA ≡ K, rI1 ≡ P, rI2 ≡ Q.
01 LLINK EQU 2:3
02 RLINK EQU 4:5
03 START LDA K 1 T1. Initialize.
04 LD1 ROOT 1 P← ROOT.
05 JMP 2F 1
06 4H LD2 0,1(RLINK) C2 T4. Move right. Q← RLINK(P).
07 J2Z 5F C2 To T5 if Q = Λ.
08 1H ENT1 0,2 C − 1 P← Q.
09 2H CMPA 1,1 C T2. Compare.
10 JG 4B C To T4 if K > KEY(P).
11 JE SUCCESS C1 Exit if K = KEY(P).
12 LD2 0,1(LLINK) C1− S T3. Move left. Q← LLINK(P).
13 J2NZ 1B C1− S To T2 if Q ̸= Λ.
14 5H LD2 AVAIL 1− S T5. Insert into tree.
15 J2Z OVERFLOW 1− S
16 LDX 0,2(RLINK) 1− S
17 STX AVAIL 1− S Q⇐ AVAIL.
18 STA 1,2 1− S KEY(Q)← K.
19 STZ 0,2 1− S LLINK(Q)← RLINK(Q)← Λ.
20 JL 1F 1− S Was K < KEY(P)?
21 ST2 0,1(RLINK) A RLINK(P)← Q.
22 JMP *+2 A
23 1H ST2 0,1(LLINK) 1− S −A LLINK(P)← Q.
24 DONE EQU * 1− S Exit after insertion.

The first 13 lines of this program do the search; the last 11 lines do the
insertion. The running time for the searching phase is (7C + C1 − 3S + 4)u,
where

C = number of comparisons made;
C1 = number of times K ≤ KEY(P);
C2 = number of times K > KEY(P);

S = [search is successful].

On the average we have C1 = 1
2 (C + S), since C1 + C2 = C and C1 − S has

the same probability distribution as C2; so the running time is about (7.5C −
2.5S + 4)u. This compares favorably with the binary search algorithms that use
an implicit tree (see Program 6.2.1C). By duplicating the code as in Program
6.2.1F we could effectively eliminate line 08 of Program T, reducing the running
time to (6.5C − 2.5S + 5)u. If the search is unsuccessful, the insertion phase of
the program costs an extra 14u or 15u.

Algorithm T can conveniently be adapted to variable-length keys and vari-
able-length records. For example, if we allocate the available space sequentially,
in a last-in-first-out manner, we can easily create nodes of varying size; the first
word of (1) could indicate the size. Since this is an efficient use of storage,
symbol table algorithms based on trees are often especially attractive for use in
compilers, assemblers, and loaders.
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But what about the worst case? Programmers are often skeptical of Algo-
rithm T when they first see it. If the keys of Fig. 10 had been entered into
the tree in alphabetic order AQUARIUS, . . . , VIRGO instead of the calendar order
CAPRICORN, . . . , SCORPIO, the algorithm would have built a degenerate tree that
essentially specifies a sequential search. All LLINKs would be null. Similarly, if
the keys come in the uncommon order

AQUARIUS, VIRGO, ARIES, TAURUS, CANCER, SCORPIO,

CAPRICORN, PISCES, GEMINI, LIBRA, LEO

we obtain a “zigzag” tree that is just as bad. (Try it!)
On the other hand, the particular tree in Fig. 10 requires only 3 2

11 com-
parisons, on the average, for a successful search; this is just a little higher than
the minimum possible average number of comparisons, 3, achievable in the best
possible binary tree.

When we have a fairly balanced tree, the search time is roughly propor-
tional to log N, but when we have a degenerate tree, the search time is roughly
proportional to N. Exercise 2.3.4.5–5 proves that the average search time would
be roughly proportional to

√
N if we considered each N -node binary tree to be

equally likely. What behavior can we really expect from Algorithm T?
Fortunately, it turns out that tree search will require only about 2 ln N ≈

1.386 lg N comparisons, if the keys are inserted into the tree in random order;
well-balanced trees are common, and degenerate trees are very rare.

There is a surprisingly simple proof of this fact. Let us assume that each of
the N ! possible orderings of the N keys is an equally likely sequence of insertions
for building the tree. The number of comparisons needed to find a key is exactly
one more than the number of comparisons that were needed when that key was
entered into the tree. Therefore if CN is the average number of comparisons
involved in a successful search and C ′

N is the average number in an unsuccessful
search, we have

CN = 1 +
C ′

0 + C ′
1 + · · ·+ C ′

N−1
N

. (2)

But the relation between internal and external path length tells us that

CN =


1 + 1
N


C ′
N − 1; (3)

this is Eq. 6.2.1–(2). Putting (3) together with (2) yields

(N + 1)C ′
N = 2N + C ′

0 + C ′
1 + · · ·+ C ′

N−1. (4)

This recurrence is easy to solve. Subtracting the equation

NC ′
N−1 = 2(N − 1) + C ′

0 + C ′
1 + · · ·+ C ′

N−2,

we obtain

(N + 1)C ′
N −NC ′

N−1 = 2 + C ′
N−1, hence C ′

N = C ′
N−1 + 2/(N + 1).
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Since C ′
0 = 0, this means that

C ′
N = 2HN+1 − 2. (5)

Applying (3) and simplifying yields the desired result

CN = 2


1 + 1
N


HN − 3. (6)

Exercises 6, 7, and 8 below give more detailed information; it is possible to
compute the exact probability distribution of CN and C ′

N , not merely the average
values.

Tree insertion sorting. Algorithm T was developed for searching, but it can
also be used as the basis of an internal sorting algorithm; in fact, we can view
it as a natural generalization of list insertion, Algorithm 5.2.1L. When properly
programmed, its average running time will be only a little slower than some of the
best algorithms we discussed in Chapter 5. After the tree has been constructed
for all keys, a symmetric tree traversal (Algorithm 2.3.1T) will visit the records
in sorted order.

A few precautions are necessary, however. Something different needs to be
done if K = KEY(P) in step T2, since we are sorting instead of searching. One
solution is to treat K = KEY(P) exactly as if K > KEY(P); this leads to a stable
sorting method. (Equal keys will not necessarily be adjacent in the tree; they will
only be adjacent in symmetric order.) But if many duplicate keys are present,
this method will cause the tree to get badly unbalanced, and the sorting will
slow down. Another idea is to keep a list, for each node, of all records having
the same key; this requires another link field, but it will make the sorting faster
when a lot of equal keys occur.

Thus if we are interested only in sorting, not in searching, Algorithm T isn’t
the best, but it isn’t bad. And if we have an application that combines searching
with sorting, the tree method can be warmly recommended.

It is interesting to note that there is a strong relation between the analysis
of tree insertion sorting and the analysis of quicksort, although the methods
are superficially dissimilar. If we successively insert N keys into an initially
empty tree, we make the same average number of comparisons between keys as
Algorithm 5.2.2Q does, with minor exceptions. For example, in tree insertion
every key gets compared with K1, and then every key less than K1 gets compared
with the first key less than K1, etc.; in quicksort, every key gets compared to
the first partitioning element K and then every key less than K gets compared
to a particular element less than K, etc. The average number of comparisons
needed in both cases is NCN −N. (However, Algorithm 5.2.2Q actually makes
a few more comparisons, in order to speed up the inner loops.)

Deletions. Sometimes we want to make the computer forget one of the table
entries it knows. We can easily delete a node in which either LLINK or RLINK = Λ;
but when both subtrees are nonempty, we have to do something special, since
we can’t point two ways at once.
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For example, consider Fig. 10 again; how could we delete the root node,
CAPRICORN? One solution is to delete the alphabetically next node, which always
has a null LLINK, then reinsert it in place of the node we really wanted to delete.
For example, in Fig. 10 we could delete GEMINI, then replace CAPRICORN by
GEMINI. This operation preserves the essential left-to-right order of the table
entries. The following algorithm gives a detailed description of such a deletion
process.
Algorithm D (Tree deletion). Let Q be a variable that points to a node of a
binary search tree represented as in Algorithm T. This algorithm deletes that
node, leaving a binary search tree. (In practice, we will have either Q ≡ ROOT or
Q ≡ LLINK(P) or RLINK(P) in some node of the tree. This algorithm resets the
value of Q in memory, to reflect the deletion.)
D1. [Is RLINK null?] Set T ← Q. If RLINK(T) = Λ, set Q ← LLINK(T) and go

to D4. (For example, if Q ≡ RLINK(P) for some P, we would set RLINK(P)←
LLINK(T).)

D2. [Find successor.] Set R ← RLINK(T). If LLINK(R) = Λ, set LLINK(R) ←
LLINK(T), Q← R, and go to D4.

D3. [Find null LLINK.] Set S ← LLINK(R). Then if LLINK(S) ̸= Λ, set R ← S
and repeat this step until LLINK(S) = Λ. (At this point S will be equal
to Q$, the symmetric successor of Q.) Finally, set LLINK(S) ← LLINK(T),
LLINK(R)← RLINK(S), RLINK(S)← RLINK(T), Q← S.

D4. [Free the node.] Set AVAIL⇐ T, thus returning the deleted node to the free
storage pool.
The reader may wish to try this algorithm by deleting AQUARIUS, CANCER,

and CAPRICORN from Fig. 10; each case is slightly different. An alert reader may
have noticed that no special test has been made for the case RLINK(T) ̸= Λ,
LLINK(T) = Λ; we will defer the discussion of this case until later, since the
algorithm as it stands has some very interesting properties.

Since Algorithm D is quite unsymmetrical between left and right, it stands
to reason that a sequence of deletions will make the tree get way out of balance,
so that the efficiency estimates we have made will be invalid. But deletions don’t
actually make the trees degenerate at all!

N. Hibbard, 1962) + .
Theorem H (T. N. Hibbard, 1962). After a random element is deleted from a
random tree by Algorithm D, the resulting tree is still random.

[Nonmathematical readers, please skip to (10).] This statement of the theo-
rem is admittedly quite vague. We can summarize the situation more precisely
as follows: Let T be a tree of n elements, and let P (T ) be the probability that
T occurs if its keys are inserted in random order by Algorithm T. Some trees
are more probable than others. Let Q(T ) be the probability that T will occur if
n+1 elements are inserted in random order by Algorithm T and then one of these
elements is chosen at random and deleted by Algorithm D. In calculating P (T ),
we assume that the n! permutations of the keys are equally likely; in calculating
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Q(T ), we assume that the (n + 1)! (n + 1) permutations of keys and selections
of the doomed key are equally likely. The theorem states that P (T ) = Q(T )
for all T .
Proof. We are faced with the fact that permutations are equally probable, not
trees, and therefore we shall prove the result by considering permutations as the
random objects. We shall define a deletion from a permutation, and then we
will prove that “a random element deleted from a random permutation leaves a
random permutation.”

Let a1 a2 . . . an+1 be a permutation of {1, 2, . . . , n+1}; we want to define the
operation of deleting ai, so as to obtain a permutation b1 b2 . . . bn of {1, 2, . . . , n}.
This operation should correspond to Algorithms T and D, so that if we start
with the tree constructed from the sequence of insertions a1, a2, . . . , an+1 and
delete ai, renumbering the keys from 1 to n, we obtain the tree constructed from
b1 b2 . . . bn.

It is not hard to define such a deletion operation. There are two cases:
Case 1: ai = n + 1, or ai + 1 = aj for some j < i. (This is essentially the

condition “RLINK(ai) = Λ.”) Remove ai from the sequence, and subtract unity
from each element greater than ai.

Case 2: ai + 1 = aj for some j > i. Replace ai by aj , remove aj from its
original place, and subtract unity from each element greater than ai.

For example, suppose we have the permutation 4 6 1 3 5 2. If we circle the
element to be deleted, we havek4 6 1 3 5 2 = 4 5 1 3 2 4 6 1 k3 5 2 = 3 5 1 4 2

4 k6 1 3 5 2 = 4 1 3 5 2 4 6 1 3 k5 2 = 4 5 1 3 2

4 6 k1 3 5 2 = 3 5 1 2 4 4 6 1 3 5 k2 = 3 5 1 2 4
Since there are (n + 1)! (n + 1) possible deletion operations, the theorem will be
established if we can show that every permutation of {1, 2, . . . , n} is the result
of exactly (n + 1)2 deletions.

Let b1 b2 . . . bn be a permutation of {1, 2, . . . , n}. We shall define (n + 1)2

deletions, one for each pair i, j with 1 ≤ i, j ≤ n + 1, as follows:
If i < j, the deletion is

b′1 . . . b′i−1 mbi b′i+1 . . . b′j−1 (bi+1) b′j . . . b′n. (7)

Here, as below, b′k stands for either bk or bk + 1, depending on whether or not
bk is less than the circled element. This deletion corresponds to Case 2.

If i > j, the deletion is

b′1 . . . b′i−1 mbj b′i . . . b′n; (8)

this deletion fits the definition of Case 1.
Finally, if i = j, we have another Case 1 deletion, namely

b′1 . . . b′i−1
� �
 	n+1 b′i . . . b′n. (9)
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As an example, let n = 4 and consider the 25 deletions that map into 3 1 4 2:

j = 1
j = 2
j = 3
j = 4
j = 5

i = 1k5 3 1 4 2k3 4 1 5 2k3 1 4 5 2k3 1 5 4 2k3 1 5 2 4

i = 2

4 k3 1 5 2
3 k5 1 4 2
4 k1 2 5 3
4 k1 5 2 3
4 k1 5 3 2

i = 3

4 1 k3 5 2
4 2 k1 5 3
3 1 k5 4 2
3 1 k4 5 2
3 1 k4 2 5

i = 4

4 1 5 k3 2
4 2 5 k1 3
3 1 5 k4 2
3 1 4 k5 2
4 1 5 k2 3

i = 5

4 1 5 2 k3
4 2 5 3 k1
3 1 5 2 k4
4 1 5 3 k2
3 1 4 2 k5

The circled element is always in position i, and for fixed i we have con-
structed n+1 different deletions, one for each j; hence (n+1)2 different deletions
have been constructed for each permutation b1 b2 . . . bn. Since only (n + 1)2n!
deletions are possible, we must have found all of them.

The proof of Theorem H not only tells us about the result of deletions, it
also helps us analyze the running time in an average deletion. Exercise 12 shows
that we can expect to execute step D2 slightly less than half the time, on the
average, when deleting a random element from a random table.

Let us now consider how often the loop in step D3 needs to be performed:
Suppose that we are deleting a node on level l, and that the external node
immediately following in symmetric order is on level k. For example, if we are
deleting CAPRICORN from Fig. 10, we have l = 0 and k = 3 since node 4 is on
level 3. If k = l + 1, we have RLINK(T) = Λ in step D1; and if k > l + 1, we will
set S ← LLINK(R) exactly k − l − 2 times in step D3. The average value of l is
(internal path length)/N ; the average value of k is

(external path length− distance to leftmost external node)/N.

The distance to the leftmost external node is the number of left-to-right minima
in the insertion sequence, so it has the average value HN by the analysis of
Section 1.2.10. Since external path length minus internal path length is 2N, the
average value of k − l − 2 is −HN/N. Adding to this the average number of
times that k − l − 2 is −1, we see that the operation S← LLINK(R) in step D3
is performed only

1
2 +

 1
2 −HN


/N (10)

times, on the average, in a random deletion. This is reassuring, since the worst
case can be pretty slow (see exercise 11).

Although Theorem H is rigorously true, in the precise form we have stated it,
it cannot be applied, as we might expect, to a sequence of deletions followed
by insertions. The shape of the tree is random after deletions, but the relative
distribution of values in a given tree shape may change, and it turns out that the
first random insertion after deletion actually destroys the randomness property
on the shapes. This startling fact, first observed by Gary Knott in 1972, must
be seen to be believed (see exercise 15). Even more startling is the empirical
evidence gathered by J. L. Eppinger [CACM 26 (1983), 663–669, 27 (1984),
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235], who found that the path length decreases slightly when a few random
deletions and insertions are made, but then it increases until reaching a steady
state after about N2 deletion/insertion operations have been performed. This
steady state is worse than the behavior of a random tree, when N is greater
than about 150. Further study by Culberson and Munro [Comp. J. 32 (1989),
68–75; Algorithmica 5 (1990), 295–311] has led to a plausible conjecture that
the average search time in the steady state is asymptotically


2N/9π. However,

Eppinger also devised a simple modification that alternates between Algorithm D
and a left-right reflection of the same algorithm; he found that this leads to an
excellent steady state in which the path length is reduced to about 88% of its
normal value for random trees. A theoretical explanation for this behavior is
still lacking.

As mentioned above, Algorithm D does not test for the case LLINK(T) = Λ,
although this is one of the easy cases for deletion. We could add a new step
between D1 and D2, namely,
D1.5. [Is LLINK null?] If LLINK(T) = Λ, set Q← RLINK(T) and go to D4.
Exercise 14 shows that Algorithm D with this extra step always leaves a tree
that is at least as good as the original Algorithm D, in the path-length sense, and
sometimes the result is even better. When this idea is combined with Eppinger’s
symmetric deletion strategy, the steady-state path length for repeated random
deletion/insertion operations decreases to about 86% of its insertion-only value.

Frequency of access. So far we have assumed that each key was equally likely
as a search argument. In a more general situation, let pk be the probability that
we will search for the kth element inserted, where p1 + · · · + pN = 1. Then a
straightforward modification of Eq. (2), if we retain the assumption of random
order so that the shape of the tree stays random and Eq. (5) holds, shows that
the average number of comparisons in a successful search will be

1 +
N

k=1
pk(2Hk − 2) = 2

N
k=1

pkHk − 1. (11)

For example, if the probabilities obey Zipf’s law, Eq. 6.1–(8), the average
number of comparisons reduces to

HN − 1 + H
(2)
N /HN (12)

if we insert the keys in decreasing order of importance. (See exercise 18.) This
is about half as many comparisons as predicted by the equal-frequency analysis,
and it is fewer than we would make using binary search.

Figure 12 shows the tree that results when the most common 31 words of
English are entered in decreasing order of frequency. The relative frequency is
shown with each word, using statistics from Cryptanalysis by H. F. Gaines (New
York: Dover, 1956), 226. The average number of comparisons for a successful
search in this tree is 4.042; the corresponding binary search, using Algorithm
6.2.1B or 6.2.1C, would require 4.393 comparisons.
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Fig. 12. The 31 most common English words, inserted in decreasing order of frequency.

Optimum binary search trees. These considerations make it natural to ask
about the best possible tree for searching a table of keys with given frequencies.
For example, the optimum tree for the 31 most common English words is shown
in Fig. 13; it requires only 3.437 comparisons for an average successful search.

Let us now explore the problem of finding the optimum tree. When N = 3,
for example, let us assume that the keys K1 < K2 < K3 have respective
probabilities p, q, r. There are five possible trees:

3

2

1

I

Cost: 3p+2q+r

3

1

2

II

2p+3q+r

2

1 3

III

2p+q+2r

1

3

2

IV

p+3q+2r

1

2

3

V

p+2q+3r

(13)

Figure 14 shows the ranges of p, q, r for which each tree is optimum; the balanced
tree is best about 45 percent of the time, if we choose p, q, r at random (see
exercise 21).

Unfortunately, when N is large there are2N

N


(N + 1) ≈ 4N

√
π N3/2

binary trees, so we can’t just try them all and see which is best. Let us therefore
study the properties of optimum binary search trees more closely, in order to
discover a better way to find them.
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Fig. 13. An optimum search tree for the 31 most common English words.
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Fig. 14. If the relative frequencies of (K1,K2,K3) are (p, q, r), this graph shows which
of the five trees in (13) is best. The fact that p + q + r = 1 makes the graph two-
dimensional although there are three coordinates.

So far we have considered only the probabilities for a successful search; in
practice, the unsuccessful case must usually be considered as well. For example,
the 31 words in Fig. 13 account for only about 36 percent of typical English text;
the other 64 percent will certainly influence the structure of the optimum search
tree.

Therefore let us set the problem up in the following way: We are given 2n+1
probabilities p1, p2, . . . , pn and q0, q1, . . . , qn, where

pi = probability that Ki is the search argument;
qi = probability that the search argument lies between Ki and Ki+1.

(By convention, q0 is the probability that the search argument is less than K1,
and qn is the probability that the search argument is greater than Kn.) Thus,
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p1 + p2 + · · · + pn + q0 + q1 + · · · + qn = 1, and we want to find a binary tree
that minimizes the expected number of comparisons in the search, namely

n
j=1

pj

level( kj ) + 1


+

n
k=0

qk level( k ), (14)

where kj is the jth internal node in symmetric order and k is the (k + 1)st
external node, and where the root has level zero. Thus the expected number of
comparisons for the binary tree

3

1 3

0 2

1 2

(15)

is 2q0 + 2p1 + 3q1 + 3p2 + 3q2 + p3 + q3. Let us call this the cost of the tree; and
let us say that a minimum-cost tree is optimum. In this definition there is no
need to require that the p’s and q’s sum to unity; we can ask for a minimum-cost
tree with any given sequence of “weights” (p1, . . . , pn; q0, . . . , qn).

We have studied Huffman’s procedure for constructing trees with minimum
weighted path length, in Section 2.3.4.5; but that method requires all the p’s to
be zero, and the tree it produces will usually not have the external node weights
(q0, . . . , qn) in the proper symmetric order from left to right. Therefore we need
another approach.

What saves us is that all subtrees of an optimum tree are optimum. For
example, if (15) is an optimum tree for the weights (p1, p2, p3; q0, q1, q2, q3),
then the left subtree of the root must be optimum for (p1, p2; q0, q1, q2); any
improvement to a subtree leads to an improvement in the whole tree.

This principle suggests a computation procedure that systematically finds
larger and larger optimum subtrees. We have used much the same idea in Sec-
tion 5.4.9 to construct optimum merge patterns; the general approach is known
as “dynamic programming,” and we shall consider it further in Section 7.7.

Let c(i, j) be the cost of an optimum subtree with weights (pi+1, . . . , pj ;
qi, . . . , qj); and let w(i, j) = pi+1 + · · ·+ pj + qi + · · ·+ qj be the sum of all those
weights; thus c(i, j) and w(i, j) are defined for 0 ≤ i ≤ j ≤ n. It follows that

c(i, i) = 0,

c(i, j) = w(i, j) + min
i<k≤j


c(i, k−1) + c(k, j)


, for i < j, (16)

since the minimum possible cost of a tree with root kk is w(i, j) + c(i, k−1) +
c(k, j). When i < j, let R(i, j) be the set of all k for which the minimum is
achieved in (16); this set specifies the possible roots of the optimum trees.

Equation (16) makes it possible to evaluate c(i, j) for j − i = 1, 2, . . . , n;
there are about 1

2 n2 such values, and the minimization operation is carried out
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for about 1
6 n3 values of k. This means we can determine an optimum tree in

O(n3) units of time, using O(n2) cells of memory.
A factor of n can actually be removed from the running time if we make

use of a monotonicity property. Let r(i, j) denote an element of R(i, j); we need
not compute the entire set R(i, j), a single representative is sufficient. Once we
have found r(i, j−1) and r(i+1, j), the result of exercise 27 proves that we may
always assume that

r(i, j−1) ≤ r(i, j) ≤ r(i+1, j) (17)
when the weights are nonnegative. This limits the search for the minimum, since
only r(i+1, j)− r(i, j−1) + 1 values of k need to be examined in (16) instead of
j−i. The total amount of work when j−i = d is now bounded by the telescoping
series
d≤j≤n
i=j−d


r(i+1, j)− r(i, j−1) + 1


= r(n−d+1, n)− r(0, d−1) + n− d + 1 < 2n;

hence the total running time is reduced to O(n2).
The following algorithm describes this procedure in detail.

Algorithm K (Find optimum binary search trees). Given 2n + 1 nonnegative
weights (p1, . . . , pn; q0, . . . , qn), this algorithm constructs binary trees t(i, j) that
have minimum cost for the weights (pi+1, . . . , pj ; qi, . . . , qj) in the sense defined
above. Three arrays are computed, namely

c[i, j], for 0 ≤ i ≤ j ≤ n, the cost of t(i, j);
r[i, j], for 0 ≤ i < j ≤ n, the root of t(i, j);
w[i, j], for 0 ≤ i ≤ j ≤ n, the total weight of t(i, j).

The results of the algorithm are specified by the r array: If i = j, t(i, j) is null;
otherwise its left subtree is t(i, r[i, j]−1) and its right subtree is t(r[i, j], j).
K1. [Initialize.] For 0 ≤ i ≤ n, set c[i, i] ← 0 and w[i, i] ← qi and w[i, j] ←

w[i, j−1] + pj + qj for j = i + 1, . . . , n. Then for 1 ≤ j ≤ n set c[j−1, j]←
w[j−1, j] and r[j−1, j] ← j. (This determines all the 1-node optimum
trees.)

K2. [Loop on d.] Do step K3 for d = 2, 3, . . . , n, then terminate the algorithm.
K3. [Loop on j.] (We have already determined the optimum trees of fewer than

d nodes. This step determines all the d-node optimum trees.) Do step K4
for j = d, d + 1, . . . , n.

K4. [Find c[i, j], r[i, j].] Set i← j − d. Then set

c[i, j]← w[i, j] + minr[i,j−1]≤k≤r[i+1,j]

c[i, k−1] + c[k, j]


,

and set r[i, j] to a value of k for which the minimum occurs.

Exercise 22

proves that r[i, j−1] ≤ r[i+1, j].


As an example of Algorithm K, consider Fig. 15, which is based on a “key-
word-in-context” (KWIC) indexing application. The titles of all articles in the
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first ten volumes of the Journal of the ACM were sorted to prepare a concordance
in which there was one line for every word of every title. However, certain words
like “THE” and “EQUATION” were felt to be sufficiently uninformative that they
were left out of the index. These special words and their frequency of occurrence
are shown in the internal nodes of Fig. 15. Notice that a title such as “On the
solution of an equation for a certain new problem” would be so uninformative,
it wouldn’t appear in the index at all! The idea of KWIC indexing is due to
H. P. Luhn, Amer. Documentation 11 (1960), 288–295. (See W. W. Youden,
JACM 10 (1963), 583–646, where the full KWIC index appears.)
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Fig. 15. An optimum binary search tree for a KWIC indexing application.

When preparing a KWIC index file for sorting, we might want to use a
binary search tree in order to test whether or not each particular word is to be
indexed. The other words fall between two of the unindexed words, with the
frequencies shown in the external nodes of Fig. 15; thus, exactly 277 words that
are alphabetically between “PROBLEMS” and “SOLUTION” appeared in the JACM
titles during 1954–1963.

Figure 15 shows the optimum tree obtained by Algorithm K, with n = 35.
The computed values of r[0, j] for j = 1, 2, . . . , 35 are (1, 1, 2, 3, 3, 3, 3, 8, 8, 8,
8, 8, 8, 11, 11, . . . , 11, 21, 21, 21, 21, 21, 21); the values of r[i, 35] for i = 0, 1, . . . , 34
are (21, 21, . . . , 21, 25, 25, 25, 25, 25, 25, 26, 26, 26, 30, 30, 30, 30, 30, 30, 30, 33, 33,
33, 35, 35).

The “betweenness frequencies” qj have a noticeable effect on the optimum
tree structure; Fig. 16(a) shows the optimum tree that would have been obtained
with the qj set to zero. Similarly, the internal frequencies pi are important;
Fig. 16(b) shows the optimum tree when the pi are set to zero. Considering the
full set of frequencies, the tree of Fig. 15 requires only 4.15 comparisons, on the
average, while the trees of Fig. 16 require, respectively, 4.69 and 4.72.
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Fig. 16. Optimum binary search trees based on half of the data of Fig. 15: (a) external
frequencies suppressed; (b) internal frequencies suppressed.

Since Algorithm K requires time and space proportional to n2, it becomes
impractical when n is very large. Of course we may not really want to use binary
search trees for large n, in view of the other search techniques to be discussed
later in this chapter; but let’s assume anyway that we want to find an optimum
or nearly optimum tree when n is large.

We have seen that the idea of inserting the keys in order of decreasing
frequency can tend to make a fairly good tree, on the average; but it can also be
very bad (see exercise 20), and it is not usually very near the optimum, since it
makes no use of the qj weights. Another approach is to choose the root k so that
the resulting maximum subtree weight, max


w(0, k−1), w(k, n)


, is as small as

possible. This approach can also be fairly poor, because it may choose a node
with very small pk to be the root; however, Theorem M below shows that the
resulting tree will not be extremely far from the optimum.
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Fig. 17. Behavior of the cost as a function of the root, k.

A more satisfactory procedure can be obtained by combining these two
methods, as suggested by W. A. Walker and C. C. Gotlieb [Graph Theory and
Computing (Academic Press, 1972), 303–323]: Try to equalize the left-hand and
right-hand weights, but be prepared to move the root a few steps to the left or
right to find a node with relatively large pk. Figure 17 shows why this method is
reasonable: If we plot c(0, k−1) + c(k, n) as a function of k, for the KWIC data
of Fig. 15, we see that the result is quite sensitive to the magnitude of pk.

A top-down method such as this can be used for large n to choose the root
and then to work on the left and the right subtrees. When we get down to
a sufficiently small subtree we can apply Algorithm K. The resulting method
yields fairly good trees (reportedly within 2 or 3 percent of the optimum), and it
requires only O(n) units of space, O(n log n) units of time. In fact, M. Fredman
has shown that O(n) units of time suffice, if suitable data structures are used
[STOC 7 (1975), 240–244]; see K. Mehlhorn, Data Structures and Algorithms 1
(Springer, 1984), Section 4.2.

Optimum trees and entropy. The minimum cost is closely related to a
mathematical concept called entropy, which was introduced by Claude Shannon
in his seminal work on information theory [Bell System Tech. J. 27 (1948), 379–
423, 623–656]. If p1, p2, . . . , pn are probabilities with p1 + p2 + · · ·+ pn = 1, we
define the entropy H(p1, p2, . . . , pn) by the formula

H(p1, p2, . . . , pn) =
n

k=1
pk lg 1

pk
. (18)

Intuitively, if n events are possible and the kth event occurs with probability pk,
we can imagine that we have received lg(1/pk) bits of information when the kth
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event has occurred. (An event of probability 1
32 gives 5 bits of information, etc.)

Then H(p1, p2, . . . , pn) is the expected number of bits of information in a random
event. If pk = 0, we define pk lg(1/pk) = 0, because

lim
ϵ→0+

ϵ lg 1
ϵ

= lim
m→∞

1
m

lg m = 0.

This convention allows us to use (18) when some of the probabilities are zero.
The function x lg(1/x) is concave; that is, its second derivative, −1/(x ln 2),

is negative. Therefore the maximum value of H(p1, p2, . . . , pn) occurs when
p1 = p2 = · · · = pn = 1/n, namely

H
 1

n
,

1
n

, . . . ,
1
n


= lg n. (19)

In general, if we specify p1, . . . , pn−k but allow the other probabilities pn−k+1,
. . . , pn to vary, we have

H(p1, . . . , pn−k, pn−k+1, . . . , pn) ≤ H


p1, . . . , pn−k,
q

k
, . . . ,

q

k


= H(p1, . . . , pn−k, q) + q lg k, (20)

H(p1, . . . , pn−k, pn−k+1, . . . , pn) ≥ H(p1, . . . , pn−k, q, 0, . . . , 0)
= H(p1, . . . , pn−k, q), (21)

where q = 1− (p1 + · · ·+ pn−k).
Consider any not-necessarily-binary tree in which probabilities have been

assigned to the leaves, say

A

B

C D

E

p1

p2 p3 p4

p5

p6 p7 p8 p9

1

2 3 4

5

6 7 8 9

(22)

Here pk represents the probability that a search procedure will end at leaf k .
Then the branching at each internal (nonleaf) node corresponds to a local prob-
ability distribution based on the sums of leaf probabilities below each branch.
For example, at node kA the first, second, and third branches are taken with
the respective probabilities

(p1 + p2 + p3 + p4, p5, p6 + p7 + p8 + p9),

and at node kB the probabilities are

(p1, p2, p3 + p4)/(p1 + p2 + p3 + p4).
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Let us say that each internal node has the entropy of its local probability
distribution; thus

H(A) = (p1+p2+p3+p4) lg 1
p1+p2+p3+p4

+ p5 lg 1
p5

+ (p6+p7+p8+p9) lg 1
p6+p7+p8+p9

,

H(B) = p1

p1+p2+p3+p4
lg p1+p2+p3+p4

p1
+ p2

p1+p2+p3+p4
lg p1+p2+p3+p4

p2

+ p3+p4

p1+p2+p3+p4
lg p1+p2+p3+p4

p3+p4
,

H(C) = p2

p2
lg p2

p2
,

H(D) = p3

p3+p4
lg p3+p4

p3
+ p4

p3+p4
lg p3+p4

p4
,

H(E) = p6

p6+p7+p8+p9
lg p6+p7+p8+p9

p6
+ p7

p6+p7+p8+p9
lg p6+p7+p8+p9

p7

+ p8

p6+p7+p8+p9
lg p6+p7+p8+p9

p8
+ p9

p6+p7+p8+p9
lg p6+p7+p8+p9

p9
.

Lemma E. The sum of p(α)H(α) over all internal nodes α of a tree, where
p(α) is the probability of reaching node α and H(α) is the entropy of α, equals
the entropy of the probability distribution on the leaves.
Proof. It is easy to establish this identity by induction from bottom to top. For
example, we have

H(A)+(p1+p2+p3+p4)H(B)+p2H(C)+(p3+p4)H(D)+(p6+p7+p8+p9)H(E)

= p1 lg 1
p1

+ p2 lg 1
p2

+ · · ·+ p9 lg 1
p9

with respect to the formulas above; all terms involving lg(p1 + p2 + p3 + p4),
lg(p3 + p4), and lg(p6 + p7 + p8 + p9) cancel out.

As a consequence of Lemma E, we can use entropy to establish a convenient
lower bound on the cost of any binary tree.
Theorem B. Let (p1, . . . , pn; q0, . . . , qn) be nonnegative weights as in Algo-
rithm K, normalized so that p1+· · ·+pn+q0+· · ·+qn = 1, and let P = p1+· · ·+pn
be the probability of a successful search. Let

H = H(p1, . . . , pn, q0, . . . , qn)

be the entropy of the corresponding probability distribution, and let C be the
minimum cost, (14). Then if H ≥ 2P/e we have

C ≥ H − P lg eH

2P
. (23)
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Proof. Take a binary tree of cost C and assign the probabilities qk to its leaves.
Also add a middle branch below each internal node, leading to a new leaf that
has probability pk. Then C =


p(α), summed over the internal nodes α of the

resulting ternary tree, and H =


p(α)H(α) by Lemma E.
The entropy H(α) corresponds to a three-way distribution, where one of the

probabilities is pj/p(α) if α is internal node kj . Exercise 35 proves that

H(p, q, r) ≤ p lg x + 1 + lg


1 + 1
2x


(24)

for all x > 0, whenever p + q + r = 1. Therefore we have the inequality

H =

α

p(α)H(α) ≤
n

j=1
pj lg x +


1 + lg


1 + 1

2x


C

for all positive x. Choosing 2x = H/P now leads to the desired result, since

C ≥ 1
1 + lg(1 + P/H)


H − P lg H

2P


= 1

1 + lg(1 + P/H) (H + P lg e)− P

1 + lg(1 + P/H) lg eH

2P

≥ H − P lg eH

2P
,

using the fact that lg(1 + y) ≤ y lg e for all y > 0.

Equation (23) does not necessarily hold when the entropy is extremely low.
But the restriction to cases where H ≥ 2P/e is not severe, since the value of H is
usually near lg n; see exercise 37. Notice that the proof doesn’t actually use the
left-to-right order of the nodes; the lower bound (23) holds for any binary search
tree that has internal node probabilities pj and external node probabilities qk in
any order.

Entropy calculations also yield an upper bound that is not too far from (23),
even when we do stick to the left-to-right order:

Theorem M. Under the assumptions of Theorem B, we also have

C ≤ H + 2− P. (25)

Proof. Form the n+1 sums s0 = 1
2 q0, s1 = q0+p1+ 1

2 q1, s2 = q0+p1+q1+p2+ 1
2 q2,

. . . , sn = q0 +p1 + · · ·+qn−1 +pn + 1
2 qn; we may assume that s0 < s1 < · · · < sn

(see exercise 38). Express each sk as a binary fraction, writing sn = (.111 . . . )2
if sn = 1. Then let the string σk be the leading bits of sk, retaining just enough
bits to distinguish sk from sj for j ̸= k. For example, we might have n = 3 and

s0 = (.0000001)2

s1 = (.0000101)2

s2 = (.0001011)2

s3 = (.1100000)2

σ0 = 00000
σ1 = 00001
σ2 = 0001
σ3 = 1
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Construct a binary tree with n + 1 leaves, in such a way that σk corresponds to
the path from the root to k for 0 ≤ k ≤ n, where ‘0’ denotes a left branch
and ‘1’ denotes a right branch. Also, if σk−1 has the form αk0βk and σk has the
form αk1γk for some αk, βk, and γk, let the internal node kk correspond to the
path αk. Thus we would have

0 1

1 2

2

3

3

in the example above. There may be some internal nodes that are still nameless;
replace each of them by their one and only child. The cost of the resulting tree
is at most

n
k=1 pk(|αk|+ 1) +

n
k=0 qk|σk|.

We have
pk ≤ 1

2 qk−1 + pk + 1
2 qk = sk − sk−1 ≤ 2−|αk|, (26)

because sk ≤ (.αk)2 + 2−|αk| and sk−1 ≥ (.αk)2. Furthermore, if qk ≥ 2−t we
have sk ≥ sk−1 + 2−t−1 and sk+1 ≥ sk + 2−t−1, hence |σk| ≤ t + 1. It follows
that qk < 2−|σk|+2, and we have constructed a binary tree of cost

≤
n

k=1
pk(1 + |αk|) +

n
k=0

qk|σk| ≤
n

k=1
pk


1 + lg 1

pk


+

n
k=0

qk


2 + lg 1

qk


= P + 2(1− P ) + H = H + 2− P.

In the KWIC indexing application of Fig. 15, we have P = 1304/3288 ≈
0.39659, and H(p1, . . . , p35, q0, . . . , q35) ≈ 5.00635. Therefore Theorem B tells us
that C ≥ 3.3800, and Theorem M tells us that C < 6.6098.

*The Garsia–Wachs algorithm. An amazing improvement on Algorithm K
is possible in the special case that p1 = · · · = pn = 0. This case, in which
only the leaf probabilities (q0, q1, . . . , qn) are relevant, is especially important
because it arises in several significant applications. Let us therefore assume in
the remainder of this section that the probabilities pj are zero. Notice that
Theorems B and M reduce to the inequalities

H(q0, q1, . . . , qn) ≤ C(q0, q1, . . . , qn) < H(q0, q1, . . . , qn) + 2 (27)
in this case, because we cannot have C = H + 2− P unless P = 1; and the cost
function (14) simplifies to

C =
n

k=0
qklk, lk = the level of k . (28)

A simpler algorithm is possible because of the following key property:
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Lemma W. If qk−1 > qk+1 then lk ≤ lk+1 in every optimum tree. If qk−1 =
qk+1 then lk ≤ lk+1 in some optimum tree.

Proof. Suppose qk−1 ≥ qk+1 and consider a tree in which lk > lk+1. Then k

must be a right child, and its left sibling L is a subtree of weight w ≥ qk−1.
Replace the parent of k by L; replace k+1 by a node whose children are k

and k+1 . This changes the overall cost by −w − qk(lk − lk+1 − 1) + qk+1 ≤
qk+1−qk−1. So the given tree was not optimum if qk−1 > qk+1, and an optimum
tree has been transformed into another optimum tree if qk−1 = qk+1. In the
latter case we have found an optimum tree in which lk = lk+1.

A deeper analysis of the structure tells us considerably more.

Lemma X. Suppose j and k are indices such that j < k and we have
i) qi−1 > qi+1 for 1 ≤ i < k;
ii) qk−1 ≤ qk+1;
iii) qi < qk−1 + qk for j ≤ i < k − 1; and
iv) qj−1 ≥ qk−1 + qk.
Then there is an optimum tree in which lk−1 = lk and either
a) lj = lk − 1, or
b) lj = lk and j is a left child.

Proof. By reversing left and right in Lemma W, we see that (ii) implies the
existence of an optimum tree in which lk−1 ≥ lk. But Lemma W and (i) also
imply that l1 ≤ l2 ≤ · · · ≤ lk. Therefore lk−1 = lk.

Suppose ls < lk − 1 ≤ ls+1 for some s with j ≤ s < k − 1. Let t be the
smallest index < k such that lt = lk. Then li = lk − 1 for s < i < t, and
s+1 is a left child; possibly s + 1 = t. Furthermore t and t+1 are siblings.

Replace their parent by t+1 ; replace i by i+1 for s < i < t; and replace
the external node s by an internal node whose children are s and s+1 .
This change increases the cost by ≤ qs − qt − qt+1 ≤ qs − qk−1 − qk, so it is an
improvement if qs < qk−1 + qk. Therefore, by (iii), lj ≥ lk − 1.

We still have not used hypothesis (iv). If lj = lk and j is not a left
child, j must be the right sibling of j−1 . Replace their parent by j−1 ;
then replace leaf i by i−1 for j < i < k; and replace the external node
k by an internal node whose children are k−1 and k . The cost increases

by −qj−1 +qk−1 +qk ≤ 0, so we obtain an optimum tree satisfying (a) or (b).

Lemma Y. Let j and k be as in Lemma X, and consider the modified probabil-
ities (q′0, . . . , q′n−1) = (q0, . . . , qj−1, qk−1 + qk, qj , . . . , qk−2, qk+1, . . . , qn) obtained
by removing qk−1 and qk and inserting qk−1 + qk after qj−1. Then

C(q′0, . . . , q′n−1) ≤ C(q0, . . . , qn)− (qk−1 + qk). (29)

Proof. It suffices to show that any optimum tree for (q0, . . . , qn) can be trans-
formed into a tree of the same cost in which k−1 and k are siblings and the
leaves appear in the permuted order

0 . . . j−1 k−1 k j . . . k−2 k+1 . . . n . (30)
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Fig. 18. The Garsia–Wachs algorithm applied to alphabetic frequency data: Phases 1 and 2.
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We start with the tree constructed in Lemma X. If it is of type (b), we simply
rename the leaves, sliding k−1 and k to the left by k − 1− j places. If it is
of type (a), suppose ls−1 = lk − 1 and ls = lk; we proceed as follows: First slide
k−1 and k left by k− 1− s places; then replace their (new) parent by s−1 ;

finally replace j by a node whose children are k−1 and k , and replace node
i by i−1 for j < i < s.

Lemma Z. Under the hypotheses of Lemma Y, equality holds in (29).

Proof. Every tree for (q′0, . . . , q′n−1) corresponds to a tree with leaves (30) in
which the two out-of-order leaf nodes k−1 and k are siblings. Let internal
node kx be their parent. We want to show that any optimum tree of that type
can be converted to a tree of the same cost in which the leaves appear in normal
order 0 . . . n .

There is nothing to prove if j = k − 1. Otherwise we have q′i−1 > q′i+1 for
j ≤ i < k − 1, because qj−1 ≥ qk−1 + qk > qj . Therefore by Lemma W we have
lx ≤ lj ≤ · · · ≤ lk−2, where lx is the level of kx and li is the level of i for
j ≤ i < k − 1. If lx = lk−2, we simply slide node kx to the right, replacing the
sequence kx j . . . k−2 by j . . . k−2 kx ; this straightens out the leaves
as desired.

Otherwise suppose ls = lx and ls+1 > lx. We first replace kx j . . . s

by j . . . s kx ; this makes l ≤ ls+1 ≤ · · · ≤ lk−2, where l = lx + 1 is the
common level of nodes k−1 and k . Finally replace nodes

k−1 k s+1 . . . k−2

by the cyclically shifted sequence

s+1 . . . k−2 k−1 k .

Exercise 40 proves that these changes decrease the cost, unless lk−2 = l. But the
cost cannot decrease, because of Lemma Y. Therefore lk−2 = l, and the proof is
complete.

These lemmas show that the problem for n + 1 weights q0, q1, . . . , qn can
be reduced to an n-weight problem: We first find the smallest index k with
qk−1 ≤ qk+1; then we find the largest j < k with qj−1 ≥ qk−1 + qk; then we
remove qk−1 and qk from the list, and insert the sum qk−1 + qk just after qj−1.
In the special cases j = 0 or k = n, the proofs show that we should proceed as
if infinite weights q−1 and qn+1 were present at the left and right. The proofs
also show that any optimum tree T ′ that is obtained from the new weights
(q′0, . . . , q′n−1) can be rearranged into a tree T that has the original weights
(q0, . . . , qn) in the correct left-to-right order; moreover, each weight will appear
at the same level in both T and T ′.

For example, Fig. 18 illustrates the construction when the weights qk are
the relative frequencies of the characters ␣, A, B, . . . , Z in English text. The first
few weights are

186, 64, 13, 22, 32, 103, . . .
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Fig. 19. The Garsia–Wachs algorithm applied to alphabetic frequency data: Phase 3.
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and we have 186 > 13, 64 > 22, 13 ≤ 32; therefore we replace “13, 22” by 35. In
the new sequence

186, 64, 35, 32, 103, . . .

we replace “35, 32” by 67 and slide 67 to the left of 64, obtaining

186, 67, 64, 103, . . . .

Then “67, 64” becomes 131, and we begin to examine the weights that follow 103.
After the 27 original weights have been combined into the single weight 1000, the
history of successive combinations specifies a binary tree whose weighted path
length is the solution to the original problem.

But the leaves of the tree in Fig. 18 are not at all in the correct order,
because they get tangled up when we slide qk−1 + qk to the left (see exercise 41).
Still, the proof of Lemma Z guarantees that there is a tree whose leaves are in
the correct order and on exactly the same levels as in the tangled tree. This
untangled tree, Fig. 19, is therefore optimum; it is the binary tree output by the
Garsia–Wachs algorithm.

Algorithm G (Garsia–Wachs algorithm for optimum binary trees). Given a
sequence of nonnegative weights w0, w1, . . . , wn, this algorithm constructs a
binary tree with n internal nodes for which

n
k=0 wklk is minimum, where lk is

the distance of external node k from the root. It uses an array of 2n + 2 nodes
whose addresses are Xk for 0 ≤ k ≤ 2n + 1; each node has four fields called
WT, LLINK, RLINK, and LEVEL. The leaves of the constructed tree will be nodes
X0 . . . Xn; the internal nodes will be Xn+1 . . . X2n; the root will be X2n; and X2n+1
is used as a temporary sentinel. The algorithm also maintains a working array
of pointers P0, P1, . . . , Pt, where t ≤ n + 1.
G1. [Begin phase 1.] Set WT(Xk) ← wk and LLINK(Xk) ← RLINK(Xk) ← Λ for

0 ≤ k ≤ n. Also set P0 ← X2n+1, WT(P0) ← ∞, P1 ← X0, t ← 1, m ← n.
Then perform step G2 for r = 1, 2, . . . , n, and go to G3.

G2. [Absorb wr.] (At this point we have the basic condition

WT(Pi−1) > WT(Pi+1) for 1 ≤ i < t; (31)

in other words, the weights in the working array are “2-descending.”) If
WT(Pt−1) ≤ wr, set k ← t, perform Subroutine C below, and repeat step G2.
Otherwise set t← t + 1 and Pt ← Xr.

G3. [Finish phase 1.] While t > 1, set k ← t and perform Subroutine C below.
G4. [Do phase 2.] (Now P1 = X2n is the root of a binary tree, and WT(P1) =

w0 +· · ·+wn.) Set lk to the distance of node Xk from node P1, for 0 ≤ k ≤ n.
(See exercise 43. An example is shown in Fig. 18, where level numbers
appear at the right of each node.)

G5. [Do phase 3.] By changing the links of Xn+1, . . . , X2n, construct a new binary
tree having the same level numbers lk, but with the leaf nodes in symmetric
order X0, . . . , Xn. (See exercise 44; an example appears in Fig. 19.)
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Subroutine C (Combination). This recursive subroutine is the heart of the
Garsia–Wachs algorithm. It combines two weights, shifts them left as appropri-
ate, and maintains the 2-descending condition (31). Variables j and w are local,
but variables k, m, and t are global.
C1. [Create a new node.] (At this point we have k ≥ 2.) Set m ← m + 1,

LLINK(Xm)← Pk−1, RLINK(Xm)← Pk, WT(Xm)← w ← WT(Pk−1)+WT(Pk).
C2. [Shift the following nodes left.] Set t← t− 1, then Pj ← Pj+1 for k ≤ j ≤ t.
C3. [Shift the preceding nodes right.] Set j ← k− 2; then while WT(Pj) < w set

Pj+1 ← Pj and j ← j − 1.
C4. [Insert the new node.] Set Pj+1 ← Xm.
C5. [Done?] If j = 0 or WT(Pj−1) > w, exit the subroutine.
C6. [Restore (31).] Set k ← j, j ← t−j, and call Subroutine C recursively. Then

reset j ← t− j (note that t may have changed!) and return to step C5.

Subroutine C might need Ω(n) steps to create and insert a new node, because
it uses sequential memory instead of linked lists. Therefore the total running time
of Algorithm G might be Ω(n2). But more elaborate data structures can be used
to guarantee that phase 1 will require at most O(n log n) steps (see exercise 45).
Phases 2 and 3 need only O(n) steps.

Kleitman and Saks [SIAM J. Algeb. Discr. Methods 2 (1981), 142–146]
proved that the optimum weighted path length never exceeds the value of the
optimum weighted path length that occurs when the q’s have been rearranged
in “sawtooth order”:

q0 ≤ q2 ≤ q4 ≤ · · · ≤ q2⌊n/2⌋ ≤ q2⌈n/2⌉−1 ≤ · · · ≤ q3 ≤ q1 . (32)

(This is the inverse of the organ-pipe order discussed in exercise 6.1–18.) In
the latter case the Garsia–Wachs algorithm essentially reduces to Huffman’s
algorithm on the weights q0 +q1, q2 +q3, . . . , because the weights in the working
array will actually be nonincreasing (not merely “2-descending” as in (31)).
Therefore we can improve the upper bound of Theorem M without knowing
the order of the weights.

The optimum binary tree in Fig. 19 has an important application to coding
theory as well as to searching: Using 0 to stand for a left branch in the tree and
1 to stand for a right branch, we obtain the following variable-length codewords:

␣ 00 I 1000 R 11001
A 0100 J 1001000 S 1101
B 010100 K 1001001 T 1110
C 010101 L 100101 U 111100
D 01011 M 10011 V 111101
E 0110 N 1010 W 111110
F 011100 O 1011 X 11111100
G 011101 P 110000 Y 11111101
H 01111 Q 110001 Z 1111111

(33)
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Thus a message like “RIGHT ON” would be encoded by the string
1100110000111010111111100010111010.

Decoding from left to right is easy, in spite of the variable length of the codewords,
because the tree structure tells us when one codeword ends and another begins.
This method of coding preserves the alphabetical order of messages, and it uses
an average of about 4.2 bits per letter. Thus the code could be used to compress
data files, without destroying lexicographic order of alphabetic information. (The
figure of 4.2 bits per letter is minimum over all binary tree codes, although it
could be reduced to 4.1 bits per letter if we disregarded the alphabetic ordering
constraint. A further reduction, preserving alphabetic order, could be achieved
if pairs of letters instead of single letters were encoded.)
History and bibliography. The tree search methods of this section were
discovered independently by several people during the 1950s. In an unpublished
memorandum dated August 1952, A. I. Dumey described a primitive form of
tree insertion in the following way:

Consider a drum with 2n item storages in it, each having a binary
address.

Follow this program:
1. Read in the first item and store it in address 2n−1, i.e., at the

halfway storage place.
2. Read in the next item. Compare it with the first.
3. If it is larger, put it in address 2n−1 + 2n−2. If it is smaller, put it

at 2n−2. . . .

Another early form of tree insertion was introduced by D. J. Wheeler, who
actually allowed multiway branching similar to what we shall discuss in Section
6.2.4; and a binary tree insertion technique was devised by C. M. Berners-Lee
[see Comp. J. 2 (1959), 5].

The first published descriptions of tree insertion were by P. F. Windley
[Comp. J. 3 (1960), 84–88], A. D. Booth and A. J. T. Colin [Information and
Control 3 (1960), 327–334], and Thomas N. Hibbard [JACM 9 (1962), 13–28].
Each of these authors seems to have developed the method independently of
the others, and each paper derived the average number of comparisons (6) in
a different way. The individual authors also went on to treat different aspects
of the algorithm: Windley gave a detailed discussion of tree insertion sorting;
Booth and Colin discussed the effect of preconditioning by making the first 2n−1
elements form a perfectly balanced tree (see exercise 4); Hibbard introduced the
idea of deletion and showed the connection between the analysis of tree insertion
and the analysis of quicksort.

The idea of optimum binary search trees was first developed for the special
case p1 = · · · = pn = 0, in the context of alphabetic binary encodings like
(33). A very interesting paper by E. N. Gilbert and E. F. Moore [Bell System
Tech. J. 38 (1959), 933–968] discussed this problem and its relation to other
coding problems. Gilbert and Moore proved Theorem M in the special case
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P = 0, and observed that an optimum tree could be constructed in O(n3) steps,
using a method like Algorithm K but without making use of the monotonicity
relation (17). K. E. Iverson [A Programming Language (Wiley, 1962), 142–144]
independently considered the other case, when all the q’s are zero. He suggested
that an optimum tree would be obtained if the root is chosen so as to equalize the
left and right subtree probabilities as much as possible; unfortunately we have
seen that this idea doesn’t work. D. E. Knuth [Acta Informatica 1 (1971), 14–25,
270] subsequently considered the case of general p and q weights and proved that
the algorithm could be reduced to O(n2) steps; he also presented an example
from a compiler application, where the keys in the tree are “reserved words” in
an ALGOL-like language. T. C. Hu had been studying his own algorithm for the
case pj = 0 for several years; a rigorous proof of the validity of that algorithm
was difficult to find because of the complexity of the problem, but he eventually
obtained a proof jointly with A. C. Tucker [SIAM J. Applied Math. 21 (1971),
514–532]. Simplifications leading to Algorithm G were found several years later
by A. M. Garsia and M. L. Wachs, SICOMP 6 (1977), 622–642, although their
proof was still rather complicated. Lemmas W, X, Y, and Z above are due to
J. H. Kingston, J. Algorithms 9 (1988), 129–136. Further properties have been
found by M. Karpinski, L. L. Larmore, and W. Rytter, Theoretical Comp. Sci.
180 (1997), 309–324. See also the paper by Hu, Kleitman, and Tamaki, SIAM
J. Applied Math. 37 (1979), 246–256, for an elementary proof of the Hu–Tucker
algorithm and some generalizations to other cost functions.

Theorem B is due to Paul J. Bayer, report MIT/LCS/TM-69 (Mass. Inst.
of Tech., 1975), who also proved a slightly weaker form of Theorem M. The
stronger form above is due to K. Mehlhorn, SICOMP 6 (1977), 235–239.

EXERCISES
1. [15 ] Algorithm T has been stated only for nonempty trees. What changes should

be made so that it works properly for the empty tree too?
2. [20 ] Modify Algorithm T so that it works with right-threaded trees. (See Section

2.3.1; symmetric traversal is easier in such trees.)
x 3. [20 ] In Section 6.1 we found that a slight change to the sequential search Algo-

rithm 6.1S made it faster (Algorithm 6.1Q). Can a similar trick be used to speed up
Algorithm T?

4. [M24 ] (A. D. Booth and A. J. T. Colin.) Given N keys in random order, suppose
that we use the first 2n − 1 to construct a perfectly balanced tree, placing 2k keys on
level k for 0 ≤ k < n; then we use Algorithm T to insert the remaining keys. What is
the average number of comparisons in a successful search? [Hint: Modify Eq. (2).]

x 5. [M25 ] There are 11! = 39,916,800 different orders in which the names CAPRICORN,
AQUARIUS, etc. could have been inserted into a binary search tree.

a) How many of these arrangements will produce Fig. 10?
b) How many of these arrangements will produce a degenerate tree, in which LLINK

or RLINK is Λ in each node?
6. [M26 ] Let Pnk be the number of permutations a1 a2 . . . an of {1, 2, . . . , n} such

that, if Algorithm T is used to insert a1, a2, . . . , an successively into an initially empty
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tree, exactly k comparisons are made when an is inserted. (In this problem, we will
ignore the comparisons made when a1, . . . , an−1 were inserted. In the notation of the
text, we have C′

n−1 = (k kPnk)/n!, since this is the average number of comparisons
made in an unsuccessful search of a tree containing n− 1 elements.)

a) Prove that P(n+1)k = 2Pn(k−1) +(n−1)Pnk. [Hint: Consider whether or not an+1
falls below an in the tree.]

b) Find a simple formula for the generating function Gn(z) =


k Pnkz
k, and use

your formula to express Pnk in terms of Stirling numbers.
c) What is the variance of this distribution?
7. [M25 ] (S. R. Arora and W. T. Dent.) After n elements have been inserted into

an initially empty tree, in random order, what is the average number of comparisons
needed by Algorithm T to find the mth largest element, given the key of that element?

8. [M38 ] Let p(n, k) be the probability that k is the total internal path length of a
tree built by Algorithm T from n randomly ordered keys. (The internal path length is
the number of comparisons made by tree insertion sorting as the tree is being built.)

a) Find a recurrence relation that defines the corresponding generating function.
b) Compute the variance of this distribution. [Several of the exercises in Section 1.2.7

may be helpful here.]
9. [41 ] We have proved that tree search and insertion requires only about 2 lnN

comparisons when the keys are inserted in random order; but in practice, the order
may not be random. Make empirical studies to see how suitable tree insertion really is
for symbol tables within a compiler and/or assembler. Do the identifiers used in typical
large programs lead to fairly well-balanced binary search trees?

x 10. [22 ] (R. W. Floyd.) Perhaps we are not interested in the sorting property of
Algorithm T, but we expect that the input will come in nonrandom order. Devise a
way to keep tree search efficient, by making the input “appear to be” in random order.
11. [20 ] What is the maximum number of times the assignment S← LLINK(R) might
be performed in step D3, when deleting a node from a tree of size N?
12. [M22 ] When making a random deletion from a random tree of N items, how often
does step D1 go to D4, on the average? (See the proof of Theorem H.)

x 13. [M23 ] If the root of a random tree is deleted by Algorithm D, is the resulting tree
still random?

x 14. [22 ] Prove that the path length of the tree produced by Algorithm D with step
D1.5 added is never more than the path length of the tree produced without that step.
Find a case where step D1.5 actually decreases the path length.
15. [23 ] Let a1 a2 a3 a4 be a permutation of {1, 2, 3, 4}, and let j = 1, 2, or 3. Take the
one-element tree with key a1 and insert a2, a3 using Algorithm T; then delete aj using
Algorithm D; then insert a4 using Algorithm T. How many of the 4! × 3 possibilities
produce trees of shape I, II, III, IV, V, respectively, in (13)?

x 16. [25 ] Is the deletion operation commutative? That is, if Algorithm D is used to
delete X and then Y , is the resulting tree the same as if Algorithm D is used to delete
Y and then X?
17. [25 ] Show that if the roles of left and right are completely reversed in Algorithm D,
it is easy to extend the algorithm so that it deletes a given node from a right-threaded
tree, preserving the necessary threads. (See exercise 2.)
18. [M21 ] Show that Zipf’s law yields (12).
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19. [M23 ] What is the approximate average number of comparisons, (11), when the
input probabilities satisfy the 80-20 law defined in Eq. 6.1–(11)?
20. [M20 ] Suppose we have inserted keys into a tree in order of decreasing frequency
p1 ≥ p2 ≥ · · · ≥ pn. Can this tree be substantially worse than the optimum search
tree?
21. [M20 ] If p, q, r are probabilities chosen at random, subject to the condition that
p+ q+ r = 1, what are the probabilities that trees I, II, III, IV, V of (13) are optimal,
respectively? (Consider the relative areas of the regions in Fig. 14.)
22. [M20 ] Prove that r[i, j−1] is never greater than r[i+1, j] when step K4 of Algo-
rithm K is performed.

x 23. [M23 ] Find an optimum binary search tree for the case N = 40, with weights
p1 = 9, p2 = p3 = · · · = p40 = 1, q0 = q1 = · · · = q40 = 0. (Don’t use a computer.)
24. [M25 ] Given that pn = qn = 0 and that the other weights are nonnegative, prove
that an optimum tree for (p1, . . . , pn; q0, . . . , qn) may be obtained by replacing

n−1 by
n

n−1 n

in any optimum tree for (p1, . . . , pn−1; q0, . . . , qn−1).
25. [M20 ] Let A and B be nonempty sets of real numbers, and define A ≤ B if the
following property holds:

(a ∈ A, b ∈ B, and b < a) implies (a ∈ B and b ∈ A).

a) Prove that this relation is transitive on nonempty sets.
b) Prove or disprove: A ≤ B if and only if A ≤ A ∪B ≤ B.

26. [M22 ] Let (p1, . . . , pn; q0, . . . , qn) be nonnegative weights, where pn + qn = x.
Prove that as x varies from 0 to∞, while (p1, . . . , pn−1; q0, . . . , qn−1) are held constant,
the cost c(0, n) of an optimum binary search tree is a concave, continuous, piecewise
linear function of x with integer slopes. In other words, prove that there exist positive
integers l0 > l1 > · · · > lm and real constants 0 = x0 < x1 < · · · < xm < xm+1 = ∞
and y0 < y1 · · · < ym such that c(0, n) = yh + lhx when xh ≤ x ≤ xh+1, for 0 ≤ h ≤ m.
27. [M33 ] The object of this exercise is to prove that the sets of roots R(i, j) of
optimum binary search trees satisfy

R(i, j−1) ≤ R(i, j) ≤ R(i+1, j), for j − i ≥ 2,

in terms of the relation defined in exercise 25, when the weights (p1, . . . , pn; q0, . . . , qn)
are nonnegative. The proof is by induction on j−i; our task is to prove thatR(0, n−1)≤
R(0, n), assuming that n ≥ 2 and that the stated relation holds for j − i < n. [By
left-right symmetry it follows that R(0, n) ≤ R(1, n).]

a) Prove that R(0, n− 1) ≤ R(0, n) if pn = qn = 0. (See exercise 24.)
b) Let pn + qn = x. In the notation of exercise 26, let Rh be the set R(0, n) of

optimum roots when xh < x < xh+1, and let R′
h be the set of optimum roots when

x = xh. Prove that

R′
0 ≤ R0 ≤ R′

1 ≤ R1 ≤ · · · ≤ R′
m ≤ Rm.
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Hence by part (a) and exercise 25 we have R(0, n−1) ≤ R(0, n) for all x. [Hint:
Consider the case x = xh, and assume that both the trees

r

t(0, r−1) t(r, n)

at level ln

s

t(0, s−1) t(s, n)

at level l′n

are optimum, with s < r and l ≥ l′. Use the induction hypothesis to prove that
there is an optimum tree with root kr such that n is at level l′, and an optimum
tree with root ks such that n is at level l.]

28. [24 ] Use some macro language to define an “optimum binary search” macro,
whose parameter is a nested specification of an optimum binary tree.
29. [40 ] What is the worst possible binary search tree for the 31 most common English
words, using the frequency data of Fig. 12?
30. [M34 ] Prove that the costs of optimum binary search trees satisfy the “quadrangle
inequality” c(i, j)− c(i, j−1) ≥ c(i+1, j)− c(i+1, j−1) when j ≥ i+ 2.
31. [M35 ] (K. C. Tan.) Prove that, among all possible sets of probabilities (p1, . . . , pn;
q0, . . . , qn) with p1 + · · · + pn + q0 + · · · + qn = 1, the most expensive minimum-cost
tree occurs when pi = 0 for all i, qj = 0 for all even j, and qj = 1/⌈n/2⌉ for all odd j.

x 32. [M25 ] Let n + 1 = 2m + k, where 0 ≤ k ≤ 2m. There are exactly
2m

k


binary

trees in which all external nodes appear on levels m and m+ 1. Show that, among all
these trees, we obtain one with the minimum cost for the weights (p1, . . . , pn; q0, . . . , qn)
if we apply Algorithm K to the weights (p1, . . . , pn;M+q0, . . . ,M+qn) for sufficiently
large M.
33. [M41 ] In order to find the binary search tree that minimizes the running time of
Program T, we should minimize the quantity 7C + C1 instead of simply minimizing
the number of comparisons C. Develop an algorithm that finds optimum binary search
trees when different costs are associated with left and right branches in the tree.
(Incidentally, when the right cost is twice the left cost, and the node frequencies are all
equal, the Fibonacci trees turn out to be optimum; see L. E. Stanfel, JACM 17 (1970),
508–517. On machines that cannot make three-way comparisons at once, a program
for Algorithm T will have to make two comparisons in step T2, one for equality and
one for less-than; B. Sheil and V. R. Pratt have observed that these comparisons need
not involve the same key, and it may well be best to have a binary tree whose internal
nodes specify either an equality test or a less-than test but not both. This situation
would be interesting to explore as an alternative to the stated problem.)
34. [HM21 ] Show that the asymptotic value of the multinomial coefficient

N

p1N, p2N, . . . , pnN


as N →∞ is related to the entropy H(p1, p2, . . . , pn).
35. [HM22 ] Complete the proof of Theorem B by establishing the inequality (24).

x 36. [HM25 ] (Claude Shannon.) Let X and Y be random variables with finite ranges
{x1, . . . , xm} and {y1, . . . , yn}, and let pi = Pr(X = xi), qj = Pr(Y = yj), rij =
Pr(X = xi and Y = yj). Let H(X) = H(p1, . . . , pm) and H(Y ) = H(q1, . . . , qn) be the
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respective entropies of the variables singly, and let H(XY ) = H(r11, . . . , rmn) be the
entropy of their joint distribution. Prove that

H(X) ≤ H(XY ) ≤ H(X) +H(Y ).

[Hint: If f is any concave function, we have E f(X) ≤ f(EX).]
37. [HM26 ] (P. J. Bayer, 1975.) Suppose (P1, . . . , Pn) is a random probability distri-
bution, namely a random point in the (n − 1)-dimensional simplex defined by Pk ≥ 0
for 1 ≤ k ≤ n and P1 + · · · + Pn = 1. (Equivalently, (P1, . . . , Pn) is a set of random
spacings, in the sense of exercise 3.3.2–26.) What is the expected value of the entropy
H(P1, . . . , Pn)?
38. [M20 ] Explain why Theorem M holds in general, although we have only proved
it in the case s0 < s1 < s2 < · · · < sn.

x 39. [M25 ] Let w1, . . . , wn be nonnegative weights with w1 + · · · + wn = 1. Prove
that the weighted path length of the Huffman tree constructed in Section 2.3.4.5 is less
than H(w1, . . . , wn) + 1. Hint: See the proof of Theorem M.
40. [M26 ] Complete the proof of Lemma Z.
41. [21 ] Figure 18 shows the construction of a tangled binary tree. List its leaves in
left-to-right order.
42. [23 ] Explain why Subroutine C preserves the 2-descending condition (31).
43. [20 ] Explain how to implement phase 2 of the Garsia–Wachs algorithm efficiently.

x 44. [25 ] Explain how to implement phase 3 of the Garsia–Wachs algorithm efficiently:
Construct a binary tree, given the levels l0, l1, . . . , ln of its leaves in symmetric order.

x 45. [30 ] Explain how to implement Subroutine C so that the total running time of
the Garsia–Wachs algorithm is at most O(n logn).
46. [M30 ] (C. K. Wong and Shi-Kuo Chang.) Consider a scheme whereby a binary
search tree is constructed by Algorithm T, except that whenever the number of nodes
reaches a number of the form 2n − 1 the tree is reorganized into a perfectly balanced
uniform tree, with 2k nodes on level k for 0 ≤ k < n. Prove that the total number of
comparisons made while constructing such a tree is N lgN+O(N) on the average. (It is
not difficult to show that the amount of time needed for the reorganizations is O(N).)
47. [M40 ] Generalize Theorems B and M from binary trees to t-ary trees. If possible,
also allow the branching costs to be nonuniform as in exercise 33.
48. [M47 ] Carry out a rigorous analysis of the steady state of a binary search tree
subjected to random insertions and deletions.
49. [HM42 ] Analyze the average height of a random binary search tree.

6.2.3. Balanced Trees
The tree insertion algorithm we have just learned will produce good search trees,
when the input data is random, but there is still the annoying possibility that
a degenerate tree will occur. Perhaps we could devise an algorithm that keeps
the tree optimum at all times; but unfortunately that seems to be very difficult.
Another idea is to keep track of the total path length, and to reorganize the tree
completely whenever its path length exceeds 5N lg N, say. But such an approach
might require about


N/2 reorganizations as the tree is being built.
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A very pretty solution to the problem of maintaining a good search tree was
discovered in 1962 by two Russian mathematicians, G. M. Adelson-Velsky and E.
M. Landis [Doklady Akademii Nauk SSSR 146 (1962), 263–266; English trans-
lation in Soviet Math. Doklady 3 (1962), 1259–1263]. Their method requires
only two extra bits per node, and it never uses more than O(log N) operations
to search the tree or to insert an item. In fact, we shall see that their approach
also leads to a general technique that is good for representing arbitrary linear
lists of length N, so that each of the following operations can be done in only
O(log N) units of time:

i) Find an item having a given key.
ii) Find the kth item, given k.
iii) Insert an item at a specified place.
iv) Delete a specified item.
If we use sequential allocation for linear lists, operations (i) and (ii) are efficient
but operations (iii) and (iv) take order N steps; on the other hand, if we use
linked allocation, operations (iii) and (iv) are efficient but operations (i) and (ii)
take order N steps. A tree representation of linear lists can do all four operations
in O(log N) steps. And it is also possible to do other standard operations
with comparable efficiency, so that, for example, we can concatenate a list of
M elements with a list of N elements in O


log(M + N)


steps.

The method for achieving all this involves what we shall call balanced trees.
(Many authors also call them AVL trees, where the AV stands for Adelson-Velsky
and the L stands for Landis.) The preceding paragraph is an advertisement for
balanced trees, which makes them sound like a universal panacea that makes all
other forms of data representation obsolete; but of course we ought to have a
balanced attitude about balanced trees! In applications that do not involve all
four of the operations above, we may be able to get by with substantially less
overhead and simpler programming. Furthermore, there is no advantage to bal-
anced trees unless N is reasonably large; thus if we have an efficient method that
takes 64 lg N units of time and an inefficient method that takes 2N units of time,
we should use the inefficient method unless N is greater than 256. On the other
hand, N shouldn’t be too large, either; balanced trees are appropriate chiefly for
internal storage of data, and we shall study better methods for external direct-
access files in Section 6.2.4. Since internal memories seem to be getting larger and
larger as time goes by, balanced trees are becoming more and more important.

The height of a tree is defined to be its maximum level, the length of the
longest path from the root to an external node. A binary tree is called balanced
if the height of the left subtree of every node never differs by more than ±1 from
the height of its right subtree. Figure 20 shows a balanced tree with 17 internal
nodes and height 5; the balance factor within each node is shown as +, • , or −
according as the right subtree height minus the left subtree height is +1, 0, or −1.
The Fibonacci tree in Fig. 8 (Section 6.2.1) is another balanced binary tree of
height 5, having only 12 internal nodes; most of the balance factors in that tree
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Fig. 20. A balanced binary tree.

are −1. The zodiac tree in Fig. 10 (Section 6.2.2) is not balanced, because the
height restriction on subtrees fails at both the AQUARIUS and GEMINI nodes.

This definition of balance represents a compromise between optimum binary
trees (with all external nodes required to be on two adjacent levels) and arbitrary
binary trees (unrestricted). It is therefore natural to ask how far from optimum
a balanced tree can be. The answer is that its search paths will never be more
than 45 percent longer than the optimum:

Theorem A (Adelson-Velsky and Landis). The height of a balanced tree with
N internal nodes always lies between lg(N + 1) and 1.4405 lg(N + 2)− 0.3277.

Proof. A binary tree of height h obviously cannot have more than 2h external
nodes; so N + 1 ≤ 2h, that is, h ≥


lg(N + 1)


in any binary tree.

In order to find the maximum value of h, let us turn the problem around and
ask for the minimum number of nodes possible in a balanced tree of height h.
Let Th be such a tree with fewest possible nodes; then one of the subtrees of
the root, say the left subtree, has height h− 1, and the other subtree has height
h−1 or h−2. Since we want Th to have the minimum number of nodes, we may
assume that the left subtree of the root is Th−1, and that the right subtree is
Th−2. This argument shows that the Fibonacci tree of order h + 1 has the fewest
possible nodes among all possible balanced trees of height h. (See the definition
of Fibonacci trees in Section 6.2.1.) Thus

N ≥ Fh+2 − 1 > ϕh+2√5− 2,

and the stated result follows as in the corollary to Theorem 4.5.3F.
The proof of this theorem shows that a search in a balanced tree will require

more than 25 comparisons only if the tree contains at least F28 − 1 = 317,810
nodes.

Consider now what happens when a new node is inserted into a balanced
tree using tree insertion (Algorithm 6.2.2T). In Fig. 20, the tree will still be
balanced if the new node takes the place of 4 , 5 , 6 , 7 , 10 , or 13 , but



6.2.3 BALANCED TREES 461

some adjustment will be needed if the new node falls elsewhere. The problem
arises when we have a node with a balance factor of +1 whose right subtree
got higher after the insertion; or, dually, if the balance factor is −1 and the left
subtree got higher. It is not difficult to see that trouble arises only in two cases:

Case 1

++

+
α

β γ

B

A

h

h
h+1

Case 2

++

−
α

δ

β γ

B

X

A

h

h

h
h−1

(1)

(Two other essentially identical cases occur if we reflect these diagrams, inter-
changing left and right.) In these diagrams the large rectangles α, β, γ, δ
represent subtrees having the respective heights shown. Case 1 occurs when a
new element has just increased the height of node B’s right subtree from h to
h + 1, and Case 2 occurs when the new element has increased the height of B’s
left subtree. In the second case, we have either h = 0 (so that X itself was the
new node), or else node X has two subtrees of respective heights (h−1, h) or
(h, h−1).

Simple transformations will restore balance in both of these cases, while
preserving the symmetric order of the tree nodes:

Case 1 α β

γ

B

A

h
h+1

Case 2 α δβ γ

X

A B

h

(2)

In Case 1 we simply “rotate” the tree to the left, attaching β to A instead of B.
This transformation is like applying the associative law to an algebraic formula,
replacing α(βγ) by (αβ)γ. In Case 2 we use a double rotation, first rotating
(X, B) right, then (A, X) left. In both cases only a few links of the tree need to
be changed. Furthermore, the new trees have height h + 2, which is exactly the
height that was present before the insertion; hence the rest of the tree (if any)
that was originally above node A always remains balanced.

For example, if we insert a new node into position 17 of Fig. 20 we obtain
the balanced tree shown in Fig. 21, after a single rotation (Case 1). Notice that
several of the balance factors have changed.

The details of this insertion procedure can be worked out in several ways.
At first glance an auxiliary stack seems to be necessary, in order to keep track
of which nodes will be affected, but the following algorithm gains some speed by
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Fig. 21. The tree of Fig. 20, rebalanced after a new key R has been inserted.

exploiting the fact that the balance factor of node B in (1) was zero before the
insertion.

Algorithm A (Balanced tree search and insertion). Given a table of records
that form a balanced binary tree as described above, this algorithm searches for
a given argument K. If K is not in the table, a new node containing K is inserted
into the tree in the appropriate place and the tree is rebalanced if necessary.

The nodes of the tree are assumed to contain KEY, LLINK, and RLINK fields
as in Algorithm 6.2.2T. We also have a new field

B(P) = balance factor of NODE(P),

the height of the right subtree minus the height of the left subtree; this field
always contains either +1, 0, or −1. A special header node also appears at the
top of the tree, in location HEAD; the value of RLINK(HEAD) is a pointer to the
root of the tree, and LLINK(HEAD) is used to keep track of the overall height of
the tree. (Knowledge of the height is not really necessary for this algorithm, but
it is useful in the concatenation procedure discussed below.) We assume that
the tree is nonempty, namely that RLINK(HEAD) ̸= Λ.

For convenience in description, the algorithm uses the notation LINK(a,P)
as a synonym for LLINK(P) if a = −1, and for RLINK(P) if a = +1.

A1. [Initialize.] Set T← HEAD, S← P← RLINK(HEAD). (The pointer variable P
will move down the tree; S will point to the place where rebalancing may
be necessary, and T always points to the parent of S.)

A2. [Compare.] If K < KEY(P), go to A3; if K > KEY(P), go to A4; and if
K = KEY(P), the search terminates successfully.

A3. [Move left.] Set Q← LLINK(P). If Q = Λ, set Q⇐ AVAIL and LLINK(P)← Q
and go to step A5. Otherwise if B(Q) ̸= 0, set T ← P and S ← Q. Finally
set P← Q and return to step A2.

A4. [Move right.] Set Q← RLINK(P). If Q= Λ, set Q⇐ AVAIL and RLINK(P)← Q
and go to step A5. Otherwise if B(Q) ̸= 0, set T← P and S← Q. Finally set
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Fig. 22. Balanced tree search and insertion.

P← Q and return to step A2. (The last part of this step may be combined
with the last part of step A3.)

A5. [Insert.] (We have just linked a new node, NODE(Q), into the tree, and its
fields need to be initialized.) Set KEY(Q)←K, LLINK(Q)← RLINK(Q)←Λ,
and B(Q)← 0.

A6. [Adjust balance factors.] (Now the balance factors on nodes between S
and Q need to be changed from zero to ±1.) If K < KEY(S) set a ← −1,
otherwise set a ← +1. Then set R ← P ← LINK(a,S), and repeatedly do
the following operations zero or more times until P = Q: If K < KEY(P) set
B(P) ← −1 and P ← LLINK(P); if K > KEY(P), set B(P) ← +1 and P ←
RLINK(P). (If K = KEY(P), then P = Q and we proceed to the next step.)

A7. [Balancing act.] Several cases now arise:
i) If B(S) = 0 (the tree has grown higher), set B(S) ← a, LLINK(HEAD)
← LLINK(HEAD) + 1, and terminate the algorithm.

ii) If B(S) = −a (the tree has gotten more balanced), set B(S) ← 0 and
terminate the algorithm.

iii) If B(S) = a (the tree has gotten out of balance), go to step A8 if
B(R) = a, to A9 if B(R) = −a.
(Case (iii) corresponds to the situations depicted in (1) when a = +1;
S and R point, respectively, to nodes A and B, and LINK(−a,S) points
to α, etc.)
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A8. [Single rotation.] Set P ← R, LINK(a,S)←LINK(−a,R), LINK(−a,R)←S,
B(S)← B(R)← 0. Go to A10.

A9. [Double rotation.] Set P ← LINK(−a,R), LINK(−a,R) ← LINK(a,P),
LINK(a,P)← R, LINK(a,S)← LINK(−a,P), LINK(−a,P)← S. Now set

(B(S), B(R))←

 (−a, 0), if B(P) = a;
( 0, 0), if B(P) = 0;
( 0, a), if B(P) = −a;

(3)

and then set B(P)← 0.
A10. [Finishing touch.] (We have completed the rebalancing transformation,

taking (1) to (2), with P pointing to the new subtree root and T pointing
to the parent of the old subtree root S.) If S = RLINK(T) then set
RLINK(T)← P, otherwise set LLINK(T)← P.

This algorithm is rather long, but it divides into three simple parts: Steps
A1–A4 do the search, steps A5–A7 insert a new node, and steps A8–A10 rebal-
ance the tree if necessary. Essentially the same method can be used if the tree
is threaded (see exercise 6.2.2–2), since the balancing act never needs to make
difficult changes to thread links.

We know that the algorithm takes about C log N units of time, for some C,
but it is important to know the approximate value of C so that we can tell how
large N should be in order to make balanced trees worth all the trouble. The
following MIX implementation gives some insight into this question.

Program A (Balanced tree search and insertion). This program for Algorithm A
uses tree nodes having the form

B LLINK RLINK

KEY
; (4)

rA ≡ K, rI1 ≡ P, rI2 ≡ Q, rI3 ≡ R, rI4 ≡ S, rI5 ≡ T. The code for steps A7–A9
is duplicated so that the value of a appears implicitly (not explicitly) in the
program.
01 B EQU 0:1
02 LLINK EQU 2:3
03 RLINK EQU 4:5
04 START LDA K 1 A1. Initialize.
05 ENT5 HEAD 1 T← HEAD.
06 LD2 0,5(RLINK) 1 Q← RLINK(HEAD).
07 JMP 2F 1 To A2 with S← P← Q.
08 4H LD2 0,1(RLINK) C2 A4. Move right. Q← RLINK(P).
09 J2Z 5F C2 To A5 if Q = Λ.
10 1H LDX 0,2(B) C − 1 rX← B(Q).
11 JXZ *+3 C − 1 Jump if B(Q) = 0.
12 ENT5 0,1 D − 1 T← P.



6.2.3 BALANCED TREES 465

13 2H ENT4 0,2 D S← Q.
14 ENT1 0,2 C P← Q.
15 CMPA 1,1 C A2. Compare.
16 JG 4B C To A4 if K > KEY(P).
17 JE SUCCESS C1 Exit if K = KEY(P).
18 LD2 0,1(LLINK) C1− S A3. Move left. Q← LLINK(P).
19 J2NZ 1B C1− S Jump if Q ̸= Λ.
20 5H LD2 AVAIL 1− S A5. Insert.
21 J2Z OVERFLOW 1− S
22 LDX 0,2(RLINK) 1− S
23 STX AVAIL 1− S Q⇐ AVAIL.
24 STA 1,2 1− S KEY(Q)← K.
25 STZ 0,2 1− S LLINK(Q)← RLINK(Q)← Λ.
26 JL 1F 1− S Was K < KEY(P)?
27 ST2 0,1(RLINK) A RLINK(P)← Q.
28 JMP *+2 A
29 1H ST2 0,1(LLINK) 1− S −A LLINK(P)← Q.
30 6H CMPA 1,4 1− S A6. Adjust balance factors.
31 JL *+3 1− S Jump if K < KEY(S).
32 LD3 0,4(RLINK) E R← RLINK(S).
33 JMP *+2 E
34 LD3 0,4(LLINK) 1− S − E R← LLINK(S).
35 ENT1 0,3 1− S P← R.
36 ENTX -1 1− S rX← −1.
37 JMP 1F 1− S To comparison loop.
38 4H JE 7F F2 + 1− S To A7 if K = KEY(P).
39 STX 0,1(1:1) F2 B(P)← +1 (it was +0).
40 LD1 0,1(RLINK) F2 P← RLINK(P).
41 1H CMPA 1,1 F + 1− S
42 JGE 4B F + 1− S Jump if K ≥ KEY(P).
43 STX 0,1(B) F1 B(P)← −1.
44 LD1 0,1(LLINK) F1 P← LLINK(P).
45 JMP 1B F1 To comparison loop.
46 7H LD2 0,4(B) 1− S A7. Balancing act. rI2← B(S).
47 STZ 0,4(B) 1− S B(S)← 0.
48 CMPA 1,4 1− S
49 JG A7R 1− S To a = +1 routine if K > KEY(S).
50 A7L J2P DONE U1 Exit if rI2 = −a.
51 J2Z 7F G1 + J1 Jump if B(S) was zero.
52 ENT1 0,3 G1 P← R.
53 LD2 0,3(B) G1 rI2← B(R).
54 J2N A8L G1 To A8 if rI2 = a.
55 A9L LD1 0,3(RLINK) H1 A9. Double rotation.
56 LDX 0,1(LLINK) H1 LINK(a,P← LINK(−a,R))
57 STX 0,3(RLINK) H1 → LINK(−a,R).
58 ST3 0,1(LLINK) H1 LINK(a,P)← R.
59 LD2 0,1(B) H1 rI2← B(P).
60 LDX T1,2 H1 −a, 0, or 0
61 STX 0,4(B) H1 → B(S).
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62 LDX T2,2 H1 0, 0, or a
63 STX 0,3(B) H1 → B(R).
64 A8L LDX 0,1(RLINK) G1 A8. Single rotation.
65 STX 0,4(LLINK) G1 LINK(a,S)← LINK(−a,P).
66 ST4 0,1(RLINK) G1 LINK(−a,P)← S.
67 JMP 8F G1 Join up with the other branch.
68 A7R J2N DONE U2 Exit if rI2 = −a.
69 J2Z 6F G2 + J2 Jump if B(S) was zero.
70 ENT1 0,3 G2 P← R.
71 LD2 0,3(B) G2 rI2← B(R).
72 J2P A8R G2 To A8 if rI2 = a.
73 A9R LD1 0,3(LLINK) H2 A9. Double rotation.
74 LDX 0,1(RLINK) H2 LINK(a,P← LINK(−a,R))
75 STX 0,3(LLINK) H2 → LINK(−a,R).
76 ST3 0,1(RLINK) H2 LINK(a,P)← R.
77 LD2 0,1(B) H2 rI2← B(P).
78 LDX T2,2 H2 −a, 0, or 0
79 STX 0,4(B) H2 → B(S).
80 LDX T1,2 H2 0, 0, or a
81 STX 0,3(B) H2 → B(R).
82 A8R LDX 0,1(LLINK) G2 A8. Single rotation.
83 STX 0,4(RLINK) G2 LINK(a,S)← LINK(−a,P).
84 ST4 0,1(LLINK) G2 LINK(−a,P)← S.
85 8H STZ 0,1(B) G B(P)← 0.
86 A10 CMP4 0,5(RLINK) G A10. Finishing touch.
87 JNE *+3 G Jump if RLINK(T) ̸= S.
88 ST1 0,5(RLINK) G3 RLINK(T)← P.
89 JMP DONE G3 Exit.
90 ST1 0,5(LLINK) G4 LLINK(T)← P.
91 JMP DONE G4 Exit.
92 CON +1
93 T1 CON 0 Table for (3).
94 T2 CON 0
95 CON -1
96 6H ENTX +1 J2 rX← +1.
97 7H STX 0,4(B) J B(S)← a.
98 LDX HEAD(LLINK) J LLINK(HEAD)
99 INCX 1 J + 1

100 STX HEAD(LLINK) J → LLINK(HEAD).
101 DONE EQU * 1− S Insertion is complete.

Analysis of balanced tree insertion. [Nonmathematical readers, please skip
to (10).] In order to figure out the running time of Algorithm A, we would like
to know the answers to the following questions:
• How many comparisons are made during the search?
• How far apart will nodes S and Q be? (In other words, how much adjustment

is needed in step A6?)
• How often do we need to do a single or double rotation?
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It is not difficult to derive upper bounds on the worst-case running time, using
Theorem A, but of course in practice we want to know the average behavior.
No theoretical determination of the average behavior has been successfully com-
pleted as yet, since the algorithm appears to be quite complicated, but several
interesting theoretical and empirical results have been obtained.

In the first place we can ask about the number Bnh of balanced binary trees
with n internal nodes and height h. It is not difficult to compute the generating
function Bh(z) =


n≥0 Bnhzn for small h, from the relations

B0(z) = 1, B1(z) = z, Bh+1(z) = zBh(z)

Bh(z) + 2Bh−1(z)


. (5)

(See exercise 6.) Thus

B2(z) = 2z2 + z3,

B3(z) = 4z4 + 6z5 + 4z6 + z7,

B4(z) = 16z7 + 32z8 + 44z9 + · · ·+ 8z14 + z15,

and in general Bh(z) has the form

2Fh+1−1zFh+2−1 + 2Fh+1−2Lh−1zFh+2 + complicated terms + 2h−1z2h−2 + z2h−1

(6)
for h ≥ 3, where Lk = Fk+1 +Fk−1. (This formula generalizes Theorem A.) The
total number of balanced trees with height h is Bh = Bh(1), which satisfies the
recurrence

B0 = B1 = 1, Bh+1 = B2
h + 2BhBh−1, (7)

so that B2 = 3, B3 = 3 · 5, B4 = 32 · 5 · 7, B5 = 33 · 52 · 7 · 23; and, in general,

Bh = AFh
0 A

Fh−1
1 . . . AF1

h−1AF0
h , (8)

where A0 = 1, A1 = 3, A2 = 5, A3 = 7, A4 = 23, A5 = 347, . . . , Ah =
Ah−1Bh−2 + 2. The sequences Bh and Ah grow very rapidly; in fact, they are
doubly exponential: Exercise 7 shows that there is a real number θ ≈ 1.43687
such that

Bh =

θ2h

−

θ2h−1

+

θ2h−2

− · · ·+ (−1)h

θ20

. (9)

If we consider each of the Bh trees to be equally likely, exercise 8 shows that the
average number of nodes in a tree of height h is

B′
h(1)/Bh(1) ≈ (0.70118)2h − 1. (10)

This indicates that the height of a balanced tree with N nodes is usually much
closer to log2 N than to logϕ N .

Unfortunately, these results don’t really have much to do with Algorithm A,
since the mechanism of that algorithm makes some trees significantly more
probable than others. For example, consider the case N = 7, where 17 balanced
trees are possible. There are 7! = 5040 possible orderings in which seven keys
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can be inserted, and the perfectly balanced “complete” tree

(11)

is obtained 2160 times. By contrast, the Fibonacci tree

(12)

occurs only 144 times, and the similar tree

(13)

occurs 216 times. Replacing the left subtrees of (12) and (13) by arbitrary four-
node balanced trees, and then reflecting left and right, yields 16 different trees;
the eight generated from (12) each occur 144 times, and those generated from
(13) each occur 216 times. It is surprising that (13) is more common than (12).

The fact that the perfectly balanced tree is obtained with such high prob-
ability — together with (10), which corresponds to the case of equal probabili-
ties — makes it plausible that the average search time for a balanced tree should
be about lg N + c comparisons for some small constant c. But R. W. Floyd
has observed that the coefficient of lg N is unlikely to be exactly 1, because the
root of the tree would then be near the median, and the roots of its two subtrees
would be near the quartiles; then single and double rotation could not easily keep
the root near the median. Empirical tests indicate that the true average number
of comparisons needed to insert the Nth item is approximately 1.01 lg N + 0.1,
except when N is small.

In order to study the behavior of the insertion and rebalancing phases of
Algorithm A, we can classify the external nodes of balanced trees as shown
in Fig. 23. The path leading up from an external node can be specified by a
sequence of +’s and -’s (+ for a right link, - for a left link); we write down the
link specifications until reaching the first node with a nonzero balance factor,
or until reaching the root, if there is no such node. Then we write A or B
according as the new tree will be balanced or unbalanced when an internal node
is inserted in the given place. Thus the path up from 3 is ++-B, meaning
“right link, right link, left link, unbalance.” A specification ending in A requires
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Fig. 23. Classification codes that specify the behavior of Algorithm A after insertion.

no rebalancing after insertion of a new node; a specification ending in ++B or --B
requires a single rotation; and a specification ending in +-B or -+B requires a
double rotation. When k links appear in the specification, step A6 has to adjust
exactly k−1 balance factors. Thus the specifications give the essential facts that
govern the running time of steps A6 to A10.

Empirical tests on random numbers for 100 ≤ N ≤ 2000 gave the approxi-
mate probabilities shown in Table 1 for paths of various types; apparently these
probabilities rapidly approach limiting values as N → ∞. Table 2 gives the
exact probabilities corresponding to Table 1 when N = 10, considering the 10!
permutations of the input as equally probable. (The probabilities that show up
as .143 in Table 1 are actually equal to 1/7, for all N ≥ 7; see exercise 11. Single
and double rotations are equally likely when N ≤ 15, but double rotations occur
slightly less often when N ≥ 16.)

Table 1
APPROXIMATE PROBABILITIES FOR INSERTING THE NTH ITEM

Path length k No rebalancing Single rotation Double rotation
1 .143 .000 .000
2 .152 .143 .143
3 .092 .048 .048
4 .060 .024 .024
5 .036 .010 .010

> 5 .051 .009 .008

ave 2.78 total .534 .233 .232

From Table 1 we can see that k is ≤ 2 with probability about .143 + .152 +
.143 + .143 = .581; thus, step A6 is quite simple almost 60 percent of the time.
The average number of balance factors changed from 0 to ±1 in that step is
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Table 2
EXACT PROBABILITIES FOR INSERTING THE 10TH ITEM

Path length k No rebalancing Single rotation Double rotation
1 1/7 0 0
2 6/35 1/7 1/7
3 4/21 2/35 2/35
4 0 1/21 1/21

ave 247/105 53/105 26/105 26/105

about 1.8. The average number of balanced factors changed from ±1 to 0 in
steps A7 through A10 is approximately .534+2(.233+.232) ≈ 1.5; thus, inserting
one new node adds about 1.8−1.5 = 0.3 unbalanced nodes, on the average. This
agrees with the fact that about 68 percent of all nodes were found to be balanced
in random trees built by Algorithm A.

An approximate model of the behavior of Algorithm A has been proposed
by C. C. Foster [Proc. ACM Nat. Conf. 20 (1965), 192–205.] This model is
not rigorously accurate, but it is close enough to the truth to give some insight.
Let us assume that p is the probability that the balance factor of a given node
in a large tree built by Algorithm A is 0; then the balance factor is +1 with
probability 1

2 (1 − p), and it is −1 with the same probability 1
2 (1 − p). Let us

assume further (without justification) that the balance factors of all nodes are
independent. Then the probability that step A6 sets exactly k−1 balance factors
nonzero is pk−1(1 − p), so the average value of k is 1/(1 − p). The probability
that we need to rotate part of the tree is q ≈ 1

2 . Inserting a new node should
increase the number of balanced nodes by p, on the average; this number is
actually increased by 1 in step A5, by −p/(1 − p) in step A6, by q in step A7,
and by 2q in step A8 or A9, so we should have

p = 1− p/(1− p) + 3q ≈ 5/2− p/(1− p).

Solving for p yields fair agreement with Table 1:

p ≈ 9−
√

41
4 ≈ 0.649; 1/(1− p) ≈ 2.851. (14)

The running time of the search phase of Program A (lines 01–19) is

10C + C1 + 2D + 2− 3S, (15)

where C, C1, S are the same as in previous algorithms of this chapter and D is
the number of unbalanced nodes encountered on the search path. Empirical tests
show that we may take D ≈ 1

3 C, C1 ≈ 1
2 (C + S), C + S ≈ 1.01 lg N + 0.1, so the

average search time is approximately 11.3 lg N + 3− 13.7S units. (If searching is
done much more often than insertion, we could of course use a separate, faster
program for searching, since it would be unnecessary to look at the balance
factors; the average running time for a successful search would then be only
about (6.6 lg N − 3.4)u, and the worst case running time would in fact be better
than the average running time obtained with Program 6.2.2T.)
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Fig. 24. RANK fields, used for searching by position.

The running time of the insertion phase of Program A (lines 20–45) is 8F +
26 + (0, 1, or 2) units, when the search is unsuccessful. The data of Table 1
indicate that F ≈ 1.8 on the average. The rebalancing phase (lines 46–101)
takes either 16.5, 8, 27.5, or 45.5 (±0.5) units, depending on whether we increase
the total height, or simply exit without rebalancing, or do a single or double
rotation. The first case almost never occurs, and the others occur with the
approximate probabilities .534, .233, .232, so the average running time of the
combined insertion-rebalancing portion of Program A is about 63u.

These figures indicate that maintenance of a balanced tree in memory is
reasonably fast, even though the program is rather lengthy. If the input data
are random, the simple tree insertion algorithm of Section 6.2.2 is roughly 50u
faster per insertion; but the balanced tree algorithm is guaranteed to be reliable
even with nonrandom input data.

One way to compare Program A with Program 6.2.2T is to consider the
worst case of the latter. If we study the amount of time necessary to insert N
keys in increasing order into an initially empty tree, it turns out that Program A
is slower for N ≤ 26 and faster for N ≥ 27.

Linear list representation. Now let us return to the claim made at the
beginning of this section, that balanced trees can be used to represent linear
lists in such a way that we can insert items rapidly (overcoming the difficulty
of sequential allocation), yet we can also perform random accesses to list items
(overcoming the difficulty of linked allocation).

The idea is to introduce a new field in each node, called the RANK field. The
field indicates the relative position of that node in its subtree, namely one plus
the number of nodes in its left subtree. Figure 24 shows the RANK values for the
binary tree of Fig. 23. We can eliminate the KEY field entirely; or, if desired, we
can have both KEY and RANK fields, so that it is possible to retrieve items either
by their key value or by their relative position in the list.

Using such a RANK field, retrieval by position is a straightforward modifica-
tion of the search algorithms we have been studying.
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Algorithm B (Tree search by position). Given a linear list represented as a
binary tree, this algorithm finds the kth element of the list (the kth node of the
tree in symmetric order), given k. The binary tree is assumed to have LLINK
and RLINK fields and a header as in Algorithm A, plus a RANK field as described
above.
B1. [Initialize.] Set M← k, P← RLINK(HEAD).
B2. [Compare.] If P = Λ, the algorithm terminates unsuccessfully. (This can

happen only if k was greater than the number of nodes in the tree, or
k ≤ 0.) Otherwise if M < RANK(P), go to B3; if M > RANK(P), go to B4; and
if M = RANK(P), the algorithm terminates successfully (P points to the kth
node).

B3. [Move left.] Set P← LLINK(P) and return to B2.
B4. [Move right.] Set M← M−RANK(P) and P← RLINK(P) and return to B2.

The only new point of interest in this algorithm is the manipulation of M in
step B4. We can modify the insertion procedure in a similar way, although the
details are somewhat trickier:

Algorithm C (Balanced tree insertion by position). Given a linear list repre-
sented as a balanced binary tree, this algorithm inserts a new node just before
the kth element of the list, given k and a pointer Q to the new node. If k = N +1,
the new node is inserted just after the last element of the list.

The binary tree is assumed to be nonempty and to have LLINK, RLINK and
B fields and a header, as in Algorithm A, plus a RANK field as described above.
This algorithm is merely a transcription of Algorithm A; the difference is that
it uses and updates the RANK fields instead of the KEY fields.

C1. [Initialize.] Set T← HEAD, S← P← RLINK(HEAD), U← M← k.
C2. [Compare.] If M ≤ RANK(P), go to C3, otherwise go to C4.
C3. [Move left.] Set RANK(P)← RANK(P) + 1 (we will be inserting a new node

to the left of P). Set R ← LLINK(P). If R = Λ, set LLINK(P) ← Q and go
to C5. Otherwise if B(R) ̸= 0 set T ← P, S ← R, and U ← M. Finally set
P← R and return to C2.

C4. [Move right.] Set M ← M − RANK(P), and R ← RLINK(P). If R = Λ, set
RLINK(P)← Q and go to C5. Otherwise if B(R) ̸= 0 set T← P, S← R, and
U← M. Finally set P← R and return to C2.

C5. [Insert.] Set RANK(Q)← 1, LLINK(Q)← RLINK(Q)← Λ, B(Q)← 0.
C6. [Adjust balance factors.] Set M ← U. (This restores the former value of M

when P was S; all RANK fields are now properly set.) If M < RANK(S), set
R ← P ← LLINK(S) and a ← −1; otherwise set R ← P ← RLINK(S), a ←
+1, and M ← M − RANK(S). Then repeatedly do the following operations
until P = Q: If M < RANK(P), set B(P) ← −1 and P ← LLINK(P); if
M > RANK(P), set B(P) ← +1 and M ← M − RANK(P) and P ← RLINK(P).
(If M = RANK(P), then P = Q and we proceed to the next step.)

C7. [Balancing act.] Several cases now arise.
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i) If B(S) = 0, set B(S) ← a, LLINK(HEAD) ← LLINK(HEAD) + 1, and
terminate the algorithm.

ii) If B(S) = −a, set B(S)← 0 and terminate the algorithm.
iii) If B(S) = a, go to step C8 if B(R) = a, to C9 if B(R) = −a.

C8. [Single rotation.] Set P←R, LINK(a,S)← LINK(−a,R), LINK(−a,R)← S,
B(S) ← B(R) ← 0. If a = +1, set RANK(R) ← RANK(R) + RANK(S); if
a = −1, set RANK(S)← RANK(S)− RANK(R). Go to C10.

C9. [Double rotation.] Do all the operations of step A9 (Algorithm A). Then
if a = +1, set RANK(R) ← RANK(R) − RANK(P), RANK(P) ← RANK(P) +
RANK(S); if a = −1, set RANK(P)← RANK(P) + RANK(R), then RANK(S)←
RANK(S)− RANK(P).

C10. [Finishing touch.] If S = RLINK(T) then set RLINK(T) ← P, otherwise set
LLINK(T)← P.

*Deletion, concatenation, etc. It is possible to do many other things to
balanced trees and maintain the balance, but the algorithms are sufficiently
lengthy that the details are beyond the scope of this book. We shall discuss
the general ideas here, and an interested reader will be able to fill in the details
without much difficulty.

The problem of deletion can be solved in O(log N) steps if we approach it
correctly [C. C. Foster, “A Study of AVL Trees,” Goodyear Aerospace Corp.
report GER-12158 (April 1965)]. In the first place we can reduce deletion of
an arbitrary node to the simple deletion of a node P for which LLINK(P) or
RLINK(P) is Λ, as in Algorithm 6.2.2D. The algorithm should also be modified
so that it constructs a list of pointers that specify the path to node P, namely

(P0, a0), (P1, a1), . . . , (Pl, al), (16)

where P0 = HEAD, a0 = +1; LINK(ai,Pi) = Pi+1, for 0 ≤ i < l; Pl = P; and
LINK(al,Pl) = Λ. This list can be placed on an auxiliary stack as we search down
the tree. The process of deleting node P sets LINK(al−1,Pl−1)← LINK(−al,Pl),
and we must adjust the balance factor at node Pl−1. Suppose that we need to
adjust the balance factor at node Pk, because the ak subtree of this node has
just decreased in height; the following adjustment procedure should be used: If
k = 0, set LLINK(HEAD)← LLINK(HEAD)− 1 and terminate the algorithm, since
the whole tree has decreased in height. Otherwise look at the balance factor
B(Pk); there are three cases:

i) B(Pk) = ak. Set B(Pk) ← 0, decrease k by 1, and repeat the adjustment
procedure for this new value of k.

ii) B(Pk) = 0. Set B(Pk) to −ak and terminate the deletion algorithm.
iii) B(Pk) = −ak. Rebalancing is required!
The situations that require rebalancing are almost the same as we met in the
insertion algorithm; referring again to (1), A is node Pk, and B is the node
LINK(−ak,Pk), on the opposite branch from where the deletion has occurred.
The only new feature is that node B might be balanced; this leads to a new
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Case 3, which is like Case 1 except that β has height h + 1. In the for-
mer cases, rebalancing as in (2) means that we decrease the height, so we set
LINK(ak−1,Pk−1) to the root of (2), decrease k by 1, and restart the adjustment
procedure for this new value of k. In Case 3 we do a single rotation, and this
leaves the balance factors of both A and B nonzero without changing the overall
height; after making LINK(ak−1,Pk−1) point to node B, we therefore terminate
the algorithm.

The important difference between deletion and insertion is that deletion
might require up to log N rotations, while insertion never needs more than one.
The reason for this becomes clear if we try to delete the rightmost node of a
Fibonacci tree (see Fig. 8 in Section 6.2.1). But empirical tests show that only
about 0.21 rotations per deletion are actually needed, on the average.

The use of balanced trees for linear list representation suggests also the
need for a concatenation algorithm, where we want to insert an entire tree L2 to
the right of tree L1, without destroying the balance. An elegant algorithm for
concatenation was first devised by Clark A. Crane: Assume that height(L1) ≥
height(L2); the other case is similar. Delete the first node of L2, calling it the
juncture node J , and let L′

2 be the new tree for L2 \{J}. Now go down the right
links of L1 until reaching a node P such that

height(P )− height(L′
2) = 0 or 1;

this is always possible, since the height changes by 1 or 2 each time we go down
one level. Then replace P by

J

P L′
2

and proceed to adjust L1 as if the new node J had just been inserted by
Algorithm A.

Crane also solved the more difficult inverse problem, to split a list into two
parts whose concatenation would be the original list. Consider, for example,
the problem of splitting the list in Fig. 20 to obtain two lists, one containing
{A, . . . , I} and the other containing {J, . . . , Q}; a major reassembly of the subtrees
is required. In general, when we want to split a tree at some given node P , the
path to P will be something like that in Fig. 25. We wish to construct a left
tree that contains the nodes of α1, P1, α4, P4, α6, P6, α7, P7, α, P in symmetric
order, and a right tree that contains β, P8, β8, P5, β5, P3, β3, P2, β2. This can be
done by a sequence of concatenations: First insert P at the right of α, then
concatenate β with β8 using P8 as juncture node, concatenate α7 with αP using
P7 as juncture node, α6 with α7P7αP using P6, βP8β8 with β5 using P5, etc.; the
nodes P8, P7, . . . , P1 on the path to P are used as juncture nodes. Crane proved
that this splitting algorithm takes only O(log N) units of time, when the original
tree contains N nodes; the essential reason is that concatenation using a given
juncture node takes O(k) steps, where k is the difference in heights between the
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α

α7

α6

α4

α1

β2

β3

β5

β8

β

P1

P4

P6

P7

P

P2

P3

P5

P8

Fig. 25. The problem of splitting a list.

trees being concatenated, and the values of k that must be summed essentially
form a telescoping series for both the left and right trees being constructed.

All of these algorithms can be used with either KEY or RANK fields or both,
although in the case of concatenation the keys of L2 must all be greater than
the keys of L1. For general purposes it is often preferable to use a triply linked
tree, with UP links as well as LLINKs and RLINKs, together with a new one-bit
field that specifies whether a node is the left or right child of its parent. The
triply linked tree representation simplifies the algorithms slightly, and allows us
to specify nodes in the tree without explicitly tracing the path to that node; we
can write a subroutine to delete NODE(P), given P, or to delete the node that
follows NODE(P) in symmetric order, or to find the list containing NODE(P), etc.
In the deletion algorithm for triply linked trees it is unnecessary to construct the
list (16), since the UP links provide the information we need. Of course, a triply
linked tree requires us to change a few more links when insertions, deletions, and
rotations are being performed. The use of a triply linked tree instead of a doubly
linked tree is analogous to the use of two-way linking instead of one-way: We can
start at any point and go either forward or backward. A complete description of
list algorithms based on triply linked balanced trees appears in Clark A. Crane’s
Ph.D. thesis (Stanford University, 1972).

Alternatives to AVL trees. Many other ways have been proposed to organize
trees so that logarithmic accessing time is guaranteed. For example, C. C. Foster
[CACM 16 (1973), 513–517] considered the binary trees that arise when we allow
the height difference of subtrees to be at most k. Such structures have been called
HB(k) (meaning “height-balanced”), so that ordinary balanced trees represent
the special case HB(1).
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The interesting concept of weight-balanced trees has been studied by J. Nie-
vergelt, E. Reingold, and C. K. Wong. Instead of considering the height of trees,
they stipulate that the subtrees of all nodes must satisfy

√
2− 1 <

left weight
right weight <

√
2 + 1, (17)

where the left and right weights count the number of external nodes in the
left and right subtrees, respectively. It is possible to show that weight balance
can be maintained under insertion, using only single and double rotations for
rebalancing as in Algorithm A (see exercise 25). However, it may be necessary
to do several rebalancings during a single insertion. It is possible to relax
the conditions of (17), decreasing the amount of rebalancing at the expense
of increased search time.

Weight-balanced trees may seem at first glance to require more memory
than plain balanced trees, but in fact they sometimes require slightly less! If we
already have a RANK field in each node, for the linear list representation, this is
precisely the left weight, and it is possible to keep track of the corresponding
right weights as we move down the tree. But it appears that the bookkeeping
required for maintaining weight balance takes more time than Algorithm A, and
the elimination of two bits per node is probably not worth the trouble.

Why don’t you pair ’em up in threes?
— attributed to YOGI BERRA (c. 1970)

Another interesting alternative to AVL trees, called “2-3 trees,” was intro-
duced by John Hopcroft in 1970 [see Aho, Hopcroft, and Ullman, The Design
and Analysis of Computer Algorithms (Reading, Mass.: Addison–Wesley, 1974),
Chapter 4]. The idea is to have either 2-way or 3-way branching at each node,
and to stipulate that all external nodes appear on the same level. Every internal
node contains either one or two keys, as shown in Fig. 26.

J

E L,T

A,C G K N,R V,X

Fig. 26. A 2-3 tree.

Insertion into a 2-3 tree is somewhat easier to explain than insertion into an
AVL tree: If we want to put a new key into a node that contains just one key,
we simply insert it as the second key. On the other hand, if the node already
contains two keys, we divide it into two one-key nodes, and insert the middle key
into the parent node. This may cause the parent node to be divided in a similar
way, if it already contains two keys. Figure 27 shows the process of inserting a
new key into the 2-3 tree of Fig. 26.
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J

E L,T

A,C G K M,N,R V,X

⇒
J

E L,N,T

A,C G K M V,XR

⇒
J,N

E L

A,C G K M V,XR

T

Fig. 27. Inserting the new key “M” into the 2-3 tree of Fig. 26.

Hopcroft observed that deletion, concatenation, and splitting can all be
done with 2-3 trees, in a reasonably straightforward manner analogous to the
corresponding operations with AVL trees.

R. Bayer [Proc. ACM–SIGFIDET Workshop (1971), 219–235] proposed an
interesting binary tree representation for 2-3 trees. See Fig. 28, which shows the
binary tree representation of Fig. 26; one bit in each node is used to distinguish
“horizontal” RLINKs from “vertical” ones. Note that the keys of the tree appear
from left to right in symmetric order, just as in any binary search tree. It turns
out that the transformations we need to perform on such a binary tree, while in-
serting a new key as in Fig. 27, are precisely the single and double rotations used
while inserting a new key into an AVL tree, although we need just one version
of each rotation, not the left-right reflections needed by Algorithms A and C.

J

E L T

A C G K N R V X

Fig. 28. The 2-3 tree of Fig. 26 represented as a binary search tree.

Elaboration of these ideas has led to many additional flavors of balanced
trees, most notably the red-black trees, also called symmetric binary B-trees or
half-balanced trees [R. Bayer, Acta Informatica 1 (1972), 290–306; L. Guibas
and R. Sedgewick, FOCS 19 (1978), 8–21; H. J. Olivié, RAIRO Informatique
Théorique 16 (1982), 51–71; R. E. Tarjan, Inf. Proc. Letters 16 (1983), 253–257;
T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms
(MIT Press, 1990), Chapter 14; R. Sedgewick, Algorithms in C (Addison–Wesley,
1997), §13.4]. There is also a strongly related family called hysterical B-trees or
(a, b)-trees, notably (2, 4)-trees [D. Maier and S. C. Salveter, Inf. Proc. Letters 12
(1981), 199–202; S. Huddleston and K. Mehlhorn, Acta Informatica 17 (1982),
157–184].
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When some keys are accessed much more frequently than others, we want
the important ones to be relatively close to the root, as in the optimum binary
search trees of Section 6.2.2. Dynamic trees that make it possible to maintain
weighted balance within a constant factor of the optimum, called biased trees,
have been developed by S. W. Bent, D. D. Sleator, and R. E. Tarjan, SICOMP
14 (1985), 545–568; J. Feigenbaum and R. E. Tarjan, Bell System Tech. J. 62
(1983), 3139–3158. The algorithms are, however, quite complicated.

A much simpler self-adjusting data structure called a splay tree was devel-
oped subsequently by D. D. Sleator and R. E. Tarjan [JACM 32 (1985), 652–686],
based on ideas like the move-to-front and transposition heuristics discussed in
Section 6.1; similar techniques had previously been explored by B. Allen and
I. Munro [JACM 25 (1978), 526–535] and by J. Bitner [SICOMP 8 (1979),
82–110]. Splay trees, like the other kinds of balanced trees already mentioned,
support the operations of concatenation and splitting as well as insertion and
deletion, and in a particularly simple way. Moreover, the time needed to access
data in a splay tree is known to be at most a small constant multiple of the access
time of a statically optimum tree, when amortized over any series of operations.
Indeed, Sleator and Tarjan conjectured that the total splay tree access time is
at most a constant multiple of the optimum time to access data and to perform
rotations dynamically by any binary tree algorithm whatsoever.

Randomization leads to methods that appear to be even simpler and faster
than splay trees. Jean Vuillemin [CACM 23 (1980), 229–239] introduced Car-
tesian trees, in which every node has two keys (x, y). The x parts are ordered
from left to right as in binary search trees; the y parts are ordered from top to
bottom as in the priority queue trees of Section 5.2.3. C. R. Aragon and R. G.
Seidel gave this data structure the more colorful name treap, because it neatly
combines the notions of trees and heaps. Exactly one treap can be formed with
n given key pairs (x1, y1), . . . , (xn, yn), if the x’s and y’s are distinct. One way to
obtain it is to insert the x’s by Algorithm 6.2.2T according to the order of the y’s;
but there is also a simple algorithm that inserts any new key pair directly into any
treap. Aragon and Seidel observed [FOCS 30 (1989), 540–546] that if the x’s are
ordinary keys while the y’s are chosen at random, we can be sure that the treap
has the shape of a random binary search tree. In particular, a treap with random
y values will always be reasonably well balanced, except with exponentially small
probability (see exercise 5.2.2–42). Aragon and Seidel also showed that treaps
can readily be biased so that, for example, a key x with relative frequency f
will appear suitably near the root when it is associated with y = U1/f , where
U is a random number between 0 and 1. Treaps performed consistently better
than splay trees in some experiments conducted by D. E. Knuth relating to the
calculation of convex hulls [Lecture Notes in Comp. Sci. 606 (1992), 53–55].

A new Section 6.2.5 devoted to randomized data structures is planned for
the next edition of the present book. It will discuss “skip lists” [W. Pugh,

CACM 33 (1990), 668–676] and “randomized binary search trees” [S. Roura and
C. Martínez, JACM 45 (1998), 288–323] as well as treaps.
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EXERCISES
1. [01 ] In Case 2 of (1), why isn’t it a good idea to restore the balance by simply

interchanging the left subtrees of A and B?
2. [16 ] Explain why the tree has gotten one level higher if we reach step A7 with

B(S) = 0.
x 3. [M25 ] Prove that a balanced tree with N internal nodes never contains more than

(ϕ− 1)N ≈ 0.61803N nodes whose balance factor is nonzero.
4. [M22 ] Prove or disprove: Among all balanced trees with Fh+1− 1 internal nodes,

the Fibonacci tree of order h has the greatest internal path length.
x 5. [M25 ] Prove or disprove: If Algorithm A is used to insert the keys K2, . . . ,KN

successively in increasing order into a tree that initially contains only the single key
K1, where K1 < K2 < · · · < KN, then the tree produced is always optimum (that is,
it has minimum internal path length over all N -node binary trees).

6. [M21 ] Prove that Eq. (5) defines the generating function for balanced trees of
height h.

7. [M27 ] (A. V. Aho and N. J. A. Sloane.) Prove the remarkable formula (9) for the
number of balanced trees of height h. [Hint: Let Cn = Bn + Bn−1, and use the fact
that log(Cn+1/C

2
n) is exceedingly small for large n.]

8. [M24 ] (L. A. Khizder.) Show that there is a constant β such that B′
h(1)/Bh(1) =

2hβ − 1 +O(2h/Bh−1) as h→∞.
9. [HM44 ] What is the asymptotic number of balanced binary trees with n internal

nodes,


h≥0 Bnh? What is the asymptotic average height,


h≥0 hBnh/h≥0 Bnh?
x 10. [27 ] (R. C. Richards.) Show that the shape of a balanced tree can be constructed

uniquely from the list of its balance factors B(1)B(2) . . . B(N) in symmetric order.
11. [M24 ] (Mark R. Brown.) Prove that when n ≥ 6 the average number of external
nodes of each of the types +A, -A, ++B, +-B, -+B, --B is exactly (n+ 1)/14, in a random
balanced tree of n internal nodes constructed by Algorithm A.

x 12. [24 ] What is the maximum possible running time of Program A when the eighth
node is inserted into a balanced tree? What is the minimum possible running time for
this insertion?
13. [05 ] Why is it better to use RANK fields as defined in the text, instead of simply
to store the index of each node as its key (calling the first node “1”, the second node
“2”, and so on)?
14. [11 ] Could Algorithms 6.2.2T and 6.2.2D be adapted to work with linear lists,
using a RANK field, just as the balanced tree algorithms of this section have been so
adapted?
15. [18 ] (C. A. Crane.) Suppose that an ordered linear list is being represented as
a binary tree, with both KEY and RANK fields in each node. Design an algorithm that
searches the tree for a given key, K, and determines the position of K in the list; that is,
it finds the number m such that K is the mth smallest key.

x 16. [20 ] Draw the balanced tree that is obtained after node E and the root node F are
deleted from Fig. 20, using the deletion algorithm suggested in the text.

x 17. [21 ] Draw the balanced trees that are obtained after the Fibonacci tree (12)
is concatenated (a) to the right, (b) to the left, of the tree in Fig. 20, using the
concatenation algorithm suggested in the text.
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18. [22 ] Draw the balanced trees that are obtained after Fig. 20 is split into two parts
{A, . . . , I} and {J, . . . , Q}, using the splitting algorithm suggested in the text.

x 19. [26 ] Find a way to transform a given balanced tree so that the balance factor at
the root is not −1. Your transformation should preserve the symmetric order of the
nodes; and it should produce another balanced tree in O(1) units of time, regardless of
the size of the original tree.
20. [40 ] Explore the idea of using the restricted class of balanced trees whose nodes
all have balance factors of 0 or +1. (Then the length of the B field can be reduced to
one bit.) Is there a reasonably efficient insertion procedure for such trees?

x 21. [30 ] (Perfect balancing.) Design an algorithm to construct N -node binary trees
that are optimum in the sense of exercise 5. Your algorithm should use O(N) steps and
it should be “online,” in the sense that it inputs the nodes one by one in increasing order
and builds partial trees as it goes, without knowing the final value of N in advance. (It
would be appropriate to use such an algorithm when restructuring a badly balanced
tree, or when merging the keys of two trees into a single tree.)
22. [M20 ] What is the analog of Theorem A, for weight-balanced trees?
23. [M20 ] (E. Reingold.) Demonstrate that there is no simple relation between
height-balanced trees and weight-balanced trees:

a) Prove that there exist height-balanced trees that have an arbitrarily small ratio
(left weight)/(right weight) in the sense of (17).

b) Prove that there exist weight-balanced trees that have an arbitrarily large differ-
ence between left and right subtree heights.

24. [M22 ] (E. Reingold.) Prove that if we strengthen condition (17) to
1
2 <

left weight
right weight < 2,

the only binary trees that satisfy this condition are perfectly balanced trees with 2n−1
internal nodes. (In such trees, the left and right weights are exactly equal at all nodes.)
25. [27 ] (J. Nievergelt, E. Reingold, C. Wong.) Show that it is possible to design
an insertion algorithm for weight-balanced trees so that condition (17) is preserved,
making at most O(logN) rotations per insertion.
26. [40 ] Explore the properties of balanced t-ary trees, for t > 2.

x 27. [M23 ] Estimate the maximum number of comparisons needed to search in a 2-3
tree with N internal nodes.
28. [41 ] Prepare efficient implementations of 2-3 tree algorithms.
29. [M47 ] Analyze the average behavior of 2-3 trees under random insertions.
30. [26 ] (E. McCreight.) Section 2.5 discusses several strategies for dynamic storage
allocation, including best-fit (choosing an available area as small as possible from among
all those that fulfill the request) and first-fit (choosing the available area with lowest
address among all those that fulfill the request). Show that if the available space is
linked together as a balanced tree in an appropriate way, it is possible to do (a) best-fit
(b) first-fit allocation in only O(logn) units of time, where n is the number of available
areas. (The algorithms given for those methods in Section 2.5 take order n steps.)
31. [34 ] (M. L. Fredman, 1975.) Invent a representation of linear lists with the
property that insertion of a new item between positions m− 1 and m, given m, takes
O(logm) units of time.
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32. [M27 ] Given two n-node binary trees, T and T ′, let us say that T ⪯ T ′ if T ′ can
be obtained from T by a sequence of zero or more rotations to the right. Prove that
T ⪯ T ′ if and only if rk ≤ r′k for 1 ≤ k ≤ n, where rk and r′k denote the respective sizes
of the right subtrees of the kth nodes of T and T ′ in symmetric order.

x 33. [25 ] (A. L. Buchsbaum.) Explain how to encode the balance factors of an AVL
tree implicitly, thus saving two bits per node, at the expense of additional work when
the tree is accessed.

Samuel considered the nation of Israel, tribe by tribe,
and the tribe of Benjamin was picked by lot.

Then he considered the tribe of Benjamin, family by family,
and the family of Matri was picked by lot.

Then he considered the family of Matri, man by man,
and Saul son of Kish was picked by lot.

But when they looked for Saul he could not be found.
— 1 Samuel 10:20–21

6.2.4. Multiway Trees
The tree search methods we have been discussing were developed primarily for
internal searching, when we want to look at a table that is contained entirely
within a computer’s high-speed internal memory. Let’s now consider the problem
of external searching, when we want to retrieve information from a very large
file that appears on direct access storage units such as disks or drums. (An
introduction to disks and drums appears in Section 5.4.9.)

Tree structures lend themselves nicely to external searching, if we choose
an appropriate way to represent the tree. Consider the large binary search
tree shown in Fig. 29, and imagine that it has been stored in a disk file. (The
LLINKs and RLINKs of the tree are now disk addresses instead of internal memory
addresses.) If we search this tree in a naïve manner, simply applying the
algorithms we have learned for internal tree searching, we will have to make
about lg N disk accesses before our search is complete. When N is a million,
this means we will need 20 or so seeks. But suppose we divide the table into
7-node “pages,” as shown by the dotted lines in Fig. 29; if we access one page at
a time, we need only about one third as many seeks, so the search goes about
three times as fast!

Grouping the nodes into pages in this way essentially changes the tree from
a binary tree to an octonary tree, with 8-way branching at each page-node. If
we let the pages be still larger, with 128-way branching after each disk access,
we can find any desired key in a million-entry table after looking at only three
pages. We can keep the root page in the internal memory at all times, so that
only two references to the disk are required even though the internal memory
never needs to hold more than 254 keys at any time.

Of course we don’t want to make the pages arbitrarily large, since the
internal memory size is limited and also since it takes a long time to read a
large page. For example, suppose that it takes 72.5 + 0.05m milliseconds to read
a page that allows m-way branching. The internal processing time per page will
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Fig. 29. A large binary search tree can be divided into “pages.”

be about a + b lg m, where a is small compared to 72.5 ms, so the total amount
of time needed for searching a large table is approximately proportional to lg N
times

(72.5 + 0.05m)/ lg m + b.

This quantity achieves a minimum when m ≈ 307; actually the minimum is
very “broad” — a nearly optimum value is achieved for all m between 200 and
500. In practice there will be a similar range of good values for m, based on the
characteristics of particular external memory devices and on the length of the
records in the table.

W. I. Landauer [IEEE Trans. EC-12 (1963), 863–871] suggested building an
m-ary tree by requiring level l to become nearly full before anything is allowed
to appear on level l + 1. This scheme requires a rather complicated rotation
method, since we may have to make major changes throughout the tree just to
insert a single new item; Landauer was assuming that we need to search for items
in the tree much more often than we need to insert or delete them.

When a file is stored on disk, and is subject to comparatively few insertions
and deletions, a three-level tree is appropriate, where the first level of branching
determines what cylinder is to be used, the second level of branching determines
the appropriate track on that cylinder, and the third level contains the records
themselves. This method is called indexed-sequential file organization [see JACM
16 (1969), 569–571].

R. Muntz and R. Uzgalis [Proc. Princeton Conf. on Inf. Sciences and Systems
4 (1970), 345–349] suggested modifying the tree search and insertion method,
Algorithm 6.2.2T, so that all insertions go onto nodes belonging to the same
page as their parent node, whenever possible; if that page is full, a new page
is started, whenever possible. If the number of pages is unlimited, and if the
data arrives in random order, it can be shown that the average number of page
accesses is approximately HN/(Hm−1), only slightly more than we would obtain
in the best possible m-ary tree. (See exercise 8.)

B-trees. A new approach to external searching by means of multiway tree
branching was discovered in 1970 by R. Bayer and E. McCreight [Acta Informa-
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tica 1 (1972), 173–189], and independently at about the same time by M. Kauf-
man [unpublished]. Their idea, based on a versatile new kind of data structure
called a B-tree, makes it possible both to search and to update a large file with
guaranteed efficiency, in the worst case, using comparatively simple algorithms.

A B-tree of order m is a tree that satisfies the following properties:
i) Every node has at most m children.
ii) Every node, except for the root and the leaves, has at least m/2 children.
iii) The root has at least 2 children (unless it is a leaf).
iv) All leaves appear on the same level, and carry no information.
v) A nonleaf node with k children contains k − 1 keys.

(As usual, a “leaf” is a terminal node, one with no children. Since the leaves
carry no information, we may regard them as external nodes that aren’t really
in the tree, so that Λ is a pointer to a leaf.)

Figure 30 shows a B-tree of order 7. Each node (except for the root and the
leaves) has between ⌈7/2⌉ and 7 children, so it contains 3, 4, 5, or 6 keys. The
root node is allowed to contain from 1 to 6 keys; in this case it has 2. All of the
leaves are at level 3. Notice that (a) the keys appear in increasing order from
left to right, using a natural extension of the concept of symmetric order; and
(b) the number of leaves is exactly one greater than the number of keys.

B-trees of order 1 or 2 are obviously uninteresting, so we will consider only
the case m ≥ 3. The 2-3 trees defined at the close of Section 6.2.3 are equivalent
to B-trees of order 3. (Bayer and McCreight considered only the case that m is
odd; some authors consider a B-tree of order m to be what we are calling a
B-tree of order 2m + 1.)

A node that contains j keys and j + 1 pointers can be represented as

P0,K1, P1,K2, P2, . . . , Pj−1,Kj , Pj

P

(1)

where K1 < K2 < · · · < Kj and Pi points to the subtree for keys between
Ki and Ki+1. Therefore searching in a B-tree is quite straightforward: After
node (1) has been fetched into the internal memory, we search for the given
argument among the keys K1, K2, . . . , Kj . (When j is large, we probably do a
binary search; but when j is smallish, a sequential search is best.) If the search
is successful, we have found the desired key; but if the search is unsuccessful
because the argument lies between Ki and Ki+1, we fetch the node indicated
by Pi and continue the process. The pointer P0 is used if the argument is less
than K1, and Pj is used if the argument is greater than Kj . If Pi = Λ, the search
is unsuccessful.

The nice thing about B-trees is that insertion is also quite simple. Consider
Fig. 30, for example; every leaf corresponds to a place where a new insertion
might happen. If we want to insert the new key 337, we simply change the
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011
017
023

041
047
059
067
073
083

103
109
127

149
157
167
179

197
211
227

241
257
269
277

307
313
331
347

367
379
389

419
431
439

461
467
487

509
523
547
563
571
587

607
617
631
643
653
661

691
709
727
739
751
761

797
811
823

853
859
877

907
919
937
947
967

031

097

137

191

283

353

401

499

599

677

773

829

883

233

449

A

Fig. 30. A B-tree of order 7, with all leaves
on level 3. Every node contains 3, 4, 5, or 6
keys. The leaf that precedes key 449 has
been marked A; see (8).
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appropriate node from

3
0
7

3
1
3

3
3
1

3
4
7

to

3
0
7

3
1
3

3
3
1

3
3
7

3
4
7

. (2)

On the other hand, if we want to insert the new key 071, there is no room since
the corresponding node on level 2 is already “full.” This case can be handled by
splitting the node into two parts, with three keys in each part, and passing the
middle key up to level 1:

. . .
0
3
1

0
9
7

. . .

0
4
1

0
4
7

0
5
9

0
6
7

0
7
1

0
7
3

0
8
3 becomes

. . .
0
3
1

0
6
7

0
9
7

. . .

0
4
1

0
4
7

0
5
9

0
7
1

0
7
3

0
8
3 . (3)

In general, if we want to insert a new item into a B-tree of order m, when
all the leaves are at level l, we insert the new key into the appropriate node on
level l − 1. If that node now contains m keys, so that it has the form (1) with
j = m, we split it into two nodes

P0,K1, P1, . . . ,Kdm/2e−1, Pdm/2e−1

P

Pdm/2e,Kdm/2e+1, Pdm/2e+1, . . . ,Km, Pm

P′

(4)

and insert the key K⌈m/2⌉ into the parent of the original node. (Thus the pointer
P in the parent node is replaced by the sequence P, K⌈m/2⌉, P′.) This insertion
may cause the parent node to contain m keys, and if so, it should be split in the
same way. (Figure 27 in the previous section illustrates the case m = 3.) If we
need to split the root node, which has no parent, we simply create a new root
node containing the single key K⌈m/2⌉; the tree gets one level taller in this case.

This insertion procedure neatly preserves all of the B-tree properties; in
order to appreciate the full beauty of the idea, the reader should work exercise 1.
The tree essentially grows up from the top, instead of down from the bottom,
since it gains in height only when the root splits.

Deletion from B-trees is only slightly more complicated than insertion (see
exercise 6).

Upper bounds on the running time. Let us now see how many nodes have
to be accessed in the worst case, while searching in a B-tree of order m. Suppose
that there are N keys, and that the N + 1 leaves appear on level l. Then the
number of nodes on levels 1, 2, 3, . . . is at least 2, 2⌈m/2⌉, 2⌈m/2⌉2, . . . ; hence

N + 1 ≥ 2⌈m/2⌉l−1. (5)

In other words,
l ≤ 1 + log⌈m/2⌉


N + 1

2


; (6)
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this means, for example, that if N = 1,999,998 and m = 199, then l is at most 3.
Since we need to access at most l nodes during a search, this formula guarantees
that the running time is quite small.

When a new key is being inserted, we may have to split as many as l nodes.
However, the average number of nodes that need to be split is much less, since the
total number of splittings that occur while the entire tree is being constructed
is just the total number of internal nodes in the tree, minus l. If there are p
internal nodes, there are at least 1 +


⌈m/2⌉ − 1


(p− 1) keys; hence

p ≤ 1 + N − 1
⌈m/2⌉ − 1 . (7)

It follows that (p − l)/N , the average number of times we need to split a node
while building a tree of N keys, is less than 1/


⌈m/2⌉ − 1


split per insertion.

Refinements and variations. There are several ways to improve upon the
basic B-tree structure defined above, by breaking the rules a little.

In the first place, we note that all of the pointers in the level l − 1 nodes
are Λ, and none of the pointers in the other levels are Λ. This often represents a
significant amount of wasted space, so we can save both time and space by elim-
inating all the Λ’s and using a different value of m for all of the “bottom” nodes.
This use of two different m’s does not foul up the insertion algorithm, since both
halves of a node that is being split remain on the same level as the original
node. We could in fact define a generalized B-tree of orders m1, m2, m3, . . . by
requiring all nonroot nodes on level l−k to have between mk/2 and mk children;
such a B-tree has different m’s on each level, yet the insertion algorithm still
works essentially as before.

To carry the idea in the preceding paragraph even further, we might use
a completely different node format in each level of the tree, and we might also
store information in the leaves. Sometimes the keys form only a small part of
the records in a file, and in such cases it is a mistake to store the entire records
in the branch nodes near the root of the tree; this would make m too small for
efficient multiway branching.

We can therefore reconsider Fig. 30, imagining that all the records of the
file are now stored in the leaves, and that only a few of the keys have been
duplicated in the branch nodes. Under this interpretation, the leftmost leaf
contains all records whose key is ≤ 011; the leaf marked A contains all records
whose key satisfies

439 < K ≤ 449; (8)
and so on. Under this interpretation the leaf nodes grow and split just as the
branch nodes do, except that a record is never passed up from a leaf to the next
level. Thus the leaves are always at least half filled to capacity. A new key
enters the nonleaf part of the tree whenever a leaf splits. If each leaf is linked
to its successor in symmetric order, we gain the ability to traverse the file both
sequentially and randomly in an efficient and convenient manner. This variant
has become known as a B+-tree.
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Some calculations by S. P. Ghosh and M. E. Senko [JACM 16 (1969),
569–579] suggest that it might be a good idea to make the leaves fairly large,
say up to about 10 consecutive pages long. By linear interpolation in the known
range of keys for each leaf, we can guess which of the 10 pages probably contains
a given search argument. If our guess is wrong, we lose time, but experiments
indicate that this loss might be less than the time we save by decreasing the size
of the tree.

T. H. Martin [unpublished] has pointed out that the idea underlying B-trees
can be used also for variable-length keys. We need not put bounds [m/2 . . m] on
the number of children of each node; instead we can say merely that each node
should be at least about half full of data. The insertion and splitting mechanism
still works fine, even though the exact number of keys per node depends on
whether the keys are long or short. However, the keys shouldn’t be allowed to
get extremely long, or they can mess things up. (See exercise 5.)

Another important modification to the basic B-tree scheme is the idea
of overflow introduced by Bayer and McCreight. The idea is to improve the
insertion algorithm by resisting its temptation to split nodes so often; a local
rotation is used instead. Suppose we have a node that is over-full because it
contains m keys and m + 1 pointers; instead of splitting it, we can look first
at its sibling node on the right, which has say j keys and j + 1 pointers. In
the parent node there is a key Kf that separates the keys of the two siblings;
schematically,

· · · Kf · · ·

K1 · · · Km K′
1 · · · K′

j

P P′

P0 P1 Pm P′0 P′1 P′j

(9)

If j < m − 1, a simple rearrangement makes splitting unnecessary: We leave
(m + j)/2


keys in the left node, we replace Kf by K⌊(m+j)/2⌋+1 in the parent

node, and we put the ⌈(m + j)/2⌉ remaining keys (including Kf ) and the
corresponding pointers into the right node. Thus the full node “flows over” into
its sibling node. On the other hand, if the sibling node is already full (j = m−1),
we can split both of the nodes, making three nodes each about two-thirds full,
containing, respectively,


(2m− 2)/3


,

(2m− 1)/3


, and ⌊2m/3⌋ keys:

· · · Kb(2m+1)/3c K′b(m−1)/3c · · ·

K1 K2 · · · · · ·Km Kf K′1 · · · · · · K′j

P P′′ P′

P0 P1 Pm P′0 P′1 P′j

(10)

If the original node has no right sibling, we can look at its left sibling in essentially
the same way. (If the original node has both a right and a left sibling, we could
even refrain from splitting off a new node unless both left and right siblings are
full.) Finally if the original node to be split has no siblings at all, it must be
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the root; we can change the definition of B-tree, allowing the root to contain as
many as 2


(2m− 2)/3


keys, so that when the root splits it produces two nodes

of

(2m− 2)/3


keys each.

The effect of all the technicalities in the preceding paragraph is to produce a
superior breed of tree, say a B∗-tree of order m, which can be defined as follows:

i) Every node except the root has at most m children.
ii) Every node, except for the root and the leaves, has at least (2m − 1)/3

children.
iii) The root has at least 2 and at most 2


(2m− 2)/3


+ 1 children.

iv) All leaves appear on the same level.
v) A nonleaf node with k children contains k − 1 keys.

The important change is condition (ii), which asserts that we utilize at least
two-thirds of the available space in every node. This change not only uses space
more efficiently, it also makes the search process faster, since we may replace
⌈m/2⌉ by


(2m − 1)/3


in (6) and (7). However, the insertion process gets

slower, because nodes tend to need more attention as they fill up; see B. Zhang
and M. Hsu, Acta Informatica 26 (1989), 421–438, for an approximate analysis
of the tradeoffs involved.

At the other extreme, it is sometimes better to let nodes become less than
half full in a tree that changes quite frequently, especially if insertions tend
to outnumber deletions. This situation has been analyzed by T. Johnson and
D. Shasha, J. Comput. Syst. Sci. 47 (1993), 45–76.

Perhaps the reader has been skeptical of B-trees because the degree of the
root can be as low as 2. Why should we waste a whole disk access on merely
a 2-way decision?! A simple buffering scheme, called least-recently-used page
replacement, overcomes this objection; we can keep several bufferloads of infor-
mation in the internal memory, so that input commands can be avoided when
the corresponding page is already present. Under this scheme, the algorithms
for searching or insertion issue “virtual read” commands that are translated
into actual input instructions only when the necessary page is not in memory;
a subsequent “release” command is issued when the buffer has been read and
possibly modified by the algorithm. When an actual read is required, the buffer
that has least recently been released is chosen; we write out that buffer, if its
contents have changed since they were read in, then we read the desired page
into the chosen buffer.

Since the number of levels in the tree is generally small compared to the
number of buffers, this paging scheme will ensure that the root page is always
present in memory; and if the root has only 2 or 3 children, the first-level pages
will almost surely stay there too. Any pages that might need to be split during
an insertion are automatically present in memory when they are needed, because
they will be remembered from the immediately preceding search.

Experiments by E. McCreight have shown that this policy is quite successful.
For example, he found that with 10 buffers and m = 121, the process of inserting
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100,000 keys in ascending order required only 22 actual read commands, and only
857 actual write commands; thus most of the activity took place in the internal
memory. Furthermore the tree contained only 835 nodes, just one higher than
the minimum possible value


100000/(m−1)


= 834; thus the storage utilization

was nearly 100 percent. For this experiment he used the overflow technique, but
with only 2-way node splitting as in (4), not 3-way splitting as in (10). (See
exercise 3.)

In another experiment, again with 10 buffers and m = 121 and the overflow
technique, he inserted 5000 keys into an initially empty tree, in random order;
this produced a 2-level tree with 48 nodes (87 percent storage utilization), after
making 2762 actual reads and 2739 actual writes. Then 1000 random searches
required 786 actual reads. The same experiment without the overflow feature
produced a 2-level tree with 62 nodes (67 percent storage utilization), after
making 2743 actual reads and 2800 actual writes; 1000 subsequent random
searches required 836 actual reads. This shows not only that the paging scheme
is effective but also that it is wise to handle overflows locally before deciding to
split a node.

Andrew Yao has proved that the average number of nodes after random
insertions without the overflow feature will be

N/(m ln 2) + O(N/m2),

for large N and m, so the storage utilization will be approximately ln 2 = 69.3
percent [Acta Informatica 9 (1978), 159–170]. See also the more detailed analyses
by B. Eisenbarth, N. Ziviani, G. H. Gonnet, K. Mehlhorn, and D. Wood, Infor-
mation and Control 55 (1982), 125–174; R. A. Baeza-Yates, Acta Informatica
26 (1989), 439–471.

B-trees became popular soon after they were invented. See, for example,
the article by Douglas Comer in Computing Surveys 11 (1979), 121–137, 412,
which discusses early developments and describes a widely used system called
VSAM (Virtual Storage Access Method) developed by IBM Corporation. One of
the innovations of VSAM was to replicate blocks on a disk track so that latency
time was minimized.

Two of the most interesting developments of the basic B-tree strategy have
unfortunately been given almost identical names: “SB-trees” and “SB-trees.”
The SB-tree of P. E. O’Neil [Acta Inf. 29 (1992), 241–265] is designed to min-
imize disk I/O time by allocating nearby records to the same track or cylinder,
maintaining efficiency in applications where many consecutive records need to be
accessed at the same time; in this case “SB” is in italic type and the S connotes
“sequential.” The SB-tree of P. Ferragina and R. Grossi [STOC 27 (1995), 693–
702; SODA 7 (1996), 373–382] is an elegant combination of B-tree structure
with the Patricia trees that we will consider in Section 6.3; in this case “SB”
is in roman type and the S connotes “string.” SB-trees have many applications
to large-scale text processing, and they provide a basis for efficient sorting of
variable-length strings on disk [see Arge, Ferragina, Grossi, and Vitter, STOC
29 (1997), 540–548].
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EXERCISES
1. [10 ] What B-tree of order 7 is obtained after the key 613 is inserted into Fig. 30?

(Do not use the overflow technique.)
2. [15 ] Work exercise 1, but use the overflow technique, with 3-way splitting as

in (10).
x 3. [23 ] Suppose we insert the keys 1, 2, 3, . . . in ascending order into an initially

empty B-tree of order 101. Which key causes the leaves to be on level 4 for the first time
a) when we use no overflow?
b) when we use overflow and only 2-way splitting as in (4)?
c) when we use a B∗-tree of order 101, with overflow and 3-way splitting as in (10)?
4. [21 ] (Bayer and McCreight.) Explain how to handle insertions into a generalized
B-tree so that all nodes except the root and leaves will be guaranteed to have at least
3
4m−

1
2 children.

x 5. [21 ] Suppose that a node represents 1000 character positions of external memory.
If each pointer occupies 5 characters, and if the keys are variable in length, between
5 and 50 characters long but always a multiple of 5 characters, what is the minimum
number of character positions occupied in a node after it splits during an insertion?
(Consider only a simple splitting procedure analogous to that described in the text
for fixed-length-key B-trees, without overflowing; move up the key that makes the
remaining two parts most nearly equal in size.)

6. [23 ] Design a deletion algorithm for B-trees.
7. [28 ] Design a concatenation algorithm for B-trees (see Section 6.2.3).

x 8. [HM37 ] Consider the generalization of tree insertion suggested by Muntz and
Uzgalis, where each page can hold M keys. After N random items have been inserted
into such a tree, so that there are N + 1 external nodes, let b(j)

Nk be the probability that
an unsuccessful search requires k page accesses and that it ends at an external node
whose parent node belongs to a page containing j keys. If B(j)

N (z) =

b

(j)
Nkz

k is the
corresponding generating function, prove that we have B(j)

1 (z) = δj1z and

B
(j)
N (z) = N − j − 1

N + 1 B
(j)
N−1(z) + j + 1

N + 1 B
(j−1)
N−1 (z), for 1 < j < M ;

B
(1)
N (z) = N − 2

N + 1 B
(1)
N−1(z) + 2z

N + 1 B
(M)
N−1(z);

B
(M)
N (z) = N − 1

N + 1 B
(M)
N−1(z) + M + 1

N + 1 B
(M−1)
N−1 (z).

Find the asymptotic behavior of C′
N =

M
j=1 B

(j)′
N (1), the average number of page

accesses per unsuccessful search. [Hint: Express the recurrence in terms of the matrix

W (z) =



−3 0 . . . 0 2z
3 −4 . . . 0 0
0 4 . . . 0 0
...

...
...

...
0 0 . . . −M−1 0
0 0 . . . M+1 −2


,

and relate C′
N to an Nth degree polynomial in W (1).]
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9. [22 ] Can the B-tree idea be used to retrieve items of a linear list by position
instead of by key value? (See Algorithm 6.2.3B.)

x 10. [35 ] Discuss how a large file, organized as a B-tree, can be used for concurrent
accessing and updating by a large number of simultaneous users, in such a way that
users of different pages rarely interfere with each other.

Little is known, even for otherwise equivalent algorithms,
about the optimization of storage allocation,

minimization of the number of required operations,
and so on. This area of investigation

must draw upon the most powerful resources
of both pure and applied mathematics

for further progress.
— ANTHONY G. OETTINGER (1961)
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6.3. DIGITAL SEARCHING
Instead of basing a search method on comparisons between keys, we can
make use of their representation as a sequence of digits or alphabetic characters.
Consider, for example, the thumb index on a large dictionary; from the first
letter of a given word, we can immediately locate the pages that contain all
words beginning with that letter.

If we pursue the thumb-index idea to one of its logical conclusions, we come
up with a searching scheme based on repeated “subscripting” as illustrated in
Table 1. Suppose that we want to test a given search argument to see whether it is
one of the 31 most common words of English (see Figs. 12 and 13 in Section 6.2.2).
The data is represented in Table 1 as a trie structure; this name was suggested
by E. Fredkin [CACM 3 (1960), 490–499] because it is a part of information
retrieval. A trie — pronounced “try” — is essentially an M -ary tree, whose nodes
are M -place vectors with components corresponding to digits or characters. Each
node on level l represents the set of all keys that begin with a certain sequence
of l characters called its prefix; the node specifies an M -way branch, depending
on the (l + 1)st character.

For example, the trie of Table 1 has 12 nodes; node (1) is the root, and we
look up the first letter here. If the first letter is, say, N, the table tells us that our
word must be NOT (or else it isn’t in the table). On the other hand, if the first
letter is W, node (1) tells us to go on to node (9), looking up the second letter
in the same way; node (9) says that the second letter should be A, H, or I. The
prefix of node (10) is HA. Blank entries in the table stand for null links.

The node vectors in Table 1 are arranged according to MIX character code.
This means that a trie search will be quite fast, since we are merely fetching
words of an array by using the characters of our keys as subscripts. Techniques
for making quick multiway decisions by subscripting have been called “table
look-at” as opposed to “table look-up” [see P. M. Sherman, CACM 4 (1961),
172–173, 175].

Algorithm T (Trie search). Given a table of records that form an M -ary trie,
this algorithm searches for a given argument K. The nodes of the trie are vectors
whose subscripts run from 0 to M − 1; each component of these vectors is either
a key or a link (possibly null).
T1. [Initialize.] Set the link variable P so that it points to the root of the trie.
T2. [Branch.] Set k to the next character of the input argument, K, from left to

right. (If the argument has been completely scanned, we set k to a “blank”
or end-of-word symbol. The character should be represented as a number
in the range 0 ≤ k < M.) Let X be table entry number k in NODE(P). If X
is a link, go to T3; but if X is a key, go to T4.

T3. [Advance.] If X ̸= Λ, set P ← X and return to step T2; otherwise the
algorithm terminates unsuccessfully.

T4. [Compare.] If X = K, the algorithm terminates successfully; otherwise it
terminates unsuccessfully.
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Table 1
A TRIE FOR THE 31 MOST COMMON ENGLISH WORDS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
␣ A I HE
A (2) (10) WAS THAT
B (3)
C
D HAD
E BE (11) THE
F (4) OF
G
H (5) (12) WHICH
I (6) HIS WITH THIS
´
J
K
L
M
N NOT AND IN ON
O (7) FOR TO
P
Q
R ARE FROM OR HER
˚
˝
S AS IS
T (8) AT IT
U BUT
V HAVE
W (9)
X
Y YOU BY
Z

Notice that if the search is unsuccessful, the longest match has been found.
This property is occasionally useful in applications.

In order to compare the speed of this algorithm to the others in this chapter,
we can write a short MIX program assuming that the characters are bytes and
that the keys are at most five bytes long.
Program T (Trie search). This program assumes that all keys are represented in
one MIX word, with blank spaces at the right whenever the key has less than five
characters. Since we use MIX character code, each byte of the search argument
is assumed to contain a number less than 30. Links are represented as negative
numbers in the 0:2 field of a node word. rI1 ≡ P, rX ≡ unscanned part of K.
01 START LDX K 1 T1. Initialize.
02 ENT1 ROOT 1 P← pointer to root of trie.
03 2H SLAX 1 C T2. Branch.
04 STA *+1(2:2) C Extract next character, k.
05 ENT2 0,1 C Q← P + k.
06 LD1N 0,2(0:2) C P = LINK(Q).
07 J1P 2B C T3. Advance. To T2 if P is a link ̸= Λ.
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Fig. 31. The trie of Table 1,
converted into a “forest.”
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08 LDA 0,2 1 T4. Compare. rA← KEY(Q).
09 CMPA K 1
10 JE SUCCESS 1 Exit successfully if rA = K.
11 FAILURE EQU * Exit if not in the trie.

The running time of this program is 8C +8 units, where C is the number of char-
acters examined. Since C ≤ 5, the search never needs more than 48 units of time.

If we now compare the efficiency of this program (using the trie of Table 1)
to Program 6.2.2T (using the optimum binary search tree of Fig. 13), we can
make the following observations.

1. The trie takes much more memory space; we are using 360 words just to
represent 31 keys, while the binary search tree uses only 62 words of memory.
(However, exercise 4 shows that, with some fiddling around, we can actually fit
the trie of Table 1 into only 49 words.)

2. A successful search takes about 26 units of time for both programs. But
an unsuccessful search will go faster in the trie, slower in the binary search tree.
For this data the search will be unsuccessful more often than it is successful, so
the trie is preferable from the standpoint of speed.

3. If we consider the KWIC indexing application of Fig. 15 instead of the
31 commonest English words, the trie loses its advantage because of the nature
of the data. For example, a trie requires 12 iterations to distinguish between
COMPUTATION and COMPUTATIONS. In this case it would be better to build the
trie so that words are scanned from right to left instead of from left to right.

The abstract concept of a trie to represent a family of strings was introduced
by Axel Thue, in a paper about strings that do not contain adjacent repeated
substrings [Skrifter udgivne af Videnskabs-Selskabet i Christiania, Mathematisk-
Naturvidenskabelig Klasse (1912), No. 1; reprinted in Thue’s Selected Mathe-
matical Papers (Oslo: Universitetsforlaget, 1977), 413–477].

Trie memory for computer searching was first recommended by René de la
Briandais [Proc. Western Joint Computer Conf. 15 (1959), 295–298]. He pointed
out that we can save memory space at the expense of running time if we use a
linked list for each node vector, since most of the entries in the vectors tend to
be empty. In effect, this idea amounts to replacing the trie of Table 1 by the
forest of trees shown in Fig. 31. Searching in such a forest proceeds by finding
the root that matches the first character, then finding the child node of that root
that matches the second character, etc.
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In his article, de la Briandais did not actually stop the tree branching exactly
as shown in Table 1 or Fig. 31; instead, he continued to represent each key,
character by character, until reaching the end-of-word delimiter. Thus he would
actually have used

H

A E I

D V  R S

 E   

 

(1)

in place of the “H” tree in Fig. 31. This representation requires more storage,
but it makes the processing of variable-length data especially easy. If we use two
link fields per character, dynamic insertions and deletions can be handled in a
simple manner.

If we use the normal way of representing trees as binary trees, (1) becomes
the binary tree

H

A E I

D V  R S

 E   

 

(2)

(In the representation of the full forest, Fig. 31, we would also have a pointer
leading to the right from H to its neighboring root I.) The search in this binary
tree proceeds by comparing a character of the argument to the character in the
tree, and following RLINKs until finding a match; then the LLINK is taken and
we treat the next character of the argument in the same way.

With such a binary tree, we are more or less doing a search by comparison,
with equal-unequal branching instead of less-greater branching. The elementary
theory of Section 6.2.1 tells that we must make at least lg N comparisons, on
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the average, to distinguish between N keys; the average number of tests made
when searching a tree like that of Fig. 31 must be at least as many as we make
when doing a binary search using the techniques of Section 6.2.

On the other hand, the trie in Table 1 is capable of making an M -way branch
all at once; we shall see that the average search time for large N involves only
about

logM N = lg N/ lg M

iterations, if the input data is random. We shall also see that a “pure” trie
scheme like that in Algorithm T requires a total of approximately N/ ln M nodes
to distinguish between N random inputs; hence the total amount of space is
proportional to MN/ ln M.

From these considerations it is clear that the trie idea pays off only in
the first few levels of the tree. We can get better performance by mixing two
strategies, using a trie for the first few characters and then switching to some
other technique. For example, E. H. Sussenguth, Jr. [CACM 6 (1963), 272–
279] suggested using a character-by-character scheme until we reach part of the
tree where only, say, six or fewer keys of the file are possible, and then we can
sequentially run through the short list of remaining keys. We shall see that this
mixed strategy decreases the number of trie nodes by roughly a factor of six,
without substantially changing the running time.

An interesting way to store large, growing tries in external memory was
suggested by S. Y. Berkovich in Doklady Akademii Nauk SSSR 202 (1972),
298–299 [English translation in Soviet Physics–Doklady 17 (1972), 20–21].

T. N. Turba [CACM 25 (1982), 522–526] points out that it is sometimes
most convenient to search for variable-length keys by having one search tree or
trie for each different length.
The binary case. Let us now consider the special case M = 2, in which we
scan the search argument one bit at a time. Two interesting methods have been
developed that are especially appropriate for this case.

The first method, which we call digital tree search, is due to E. G. Coffman
and J. Eve [CACM 13 (1970), 427–432, 436]. The idea is to store full keys
in the nodes just as we did in the tree search algorithm of Section 6.2.2, but
to use bits of the argument (instead of results of the comparisons) to govern
whether to take the left or right branch at each step. Figure 32 shows the binary
tree constructed by this method when we insert the 31 most common English
words in order of decreasing frequency. In order to provide binary data for this
illustration, the words have been expressed in MIX character code, and the codes
have been converted into binary numbers with 5 bits per byte. Thus, the word
WHICH is represented as the bit sequence 11010 01000 01001 00011 01000.

To search for this word WHICH in Fig. 32, we compare it first with the word
THE at the root of the tree. Since there is no match and since the first bit of
WHICH is 1, we move to the right and compare with OF. Since there is no match
and since the second bit of WHICH is 1, we move to the right and compare with
WITH; and so on. Alphabetic order of the keys in a digital search tree no longer
corresponds to symmetric order of the nodes.
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Fig. 32. A digital search tree for the 31 most common English words, inserted in
decreasing order of frequency.

It is interesting to note the contrast between Fig. 32 and Fig. 12 in Section
6.2.2, since the latter tree was formed in the same way but using comparisons
instead of key bits for the branching. If we consider the given frequencies,
the digital search tree of Fig. 32 requires an average of 3.42 comparisons per
successful search; this is somewhat better than the 4.04 comparisons needed by
Fig. 12, although of course the computing time per comparison will probably be
different.

Algorithm D (Digital tree search and insertion). Given a table of records
that form a binary tree as described above, this algorithm searches for a given
argument K. If K is not in the table, a new node containing K is inserted into
the tree in the appropriate place.

This algorithm assumes that the tree is nonempty and that its nodes have
KEY, LLINK, and RLINK fields just as in Algorithm 6.2.2T. In fact, the two
algorithms are almost identical, as the reader may verify.
D1. [Initialize.] Set P← ROOT, and K ′ ← K.
D2. [Compare.] If K = KEY(P), the search terminates successfully. Otherwise

set b to the leading bit of K ′, and shift K ′ left one place (thereby removing
that bit and introducing a 0 at the right). If b = 0, go to D3, otherwise go
to D4.

D3. [Move left.] If LLINK(P) ̸= Λ, set P ← LLINK(P) and go back to D2.
Otherwise go to D5.

D4. [Move right.] If RLINK(P) ̸= Λ, set P← RLINK(P) and go back to D2.
D5. [Insert into tree.] Set Q⇐ AVAIL, KEY(Q)←K, LLINK(Q)← RLINK(Q)← Λ.

If b = 0 set LLINK(P)← Q, otherwise set RLINK(P)← Q.
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Although the tree search of Algorithm 6.2.2T is inherently binary, it is not
difficult to see that the present algorithm could be extended to an M -ary digital
search for any M ≥ 2 (see exercise 13).

Donald R. Morrison [JACM 15 (1968), 514–534] has discovered a very pretty
way to form N -node search trees based on the binary representation of keys,
without storing keys in the nodes. His method, called “Patricia” (Practical
Algorithm To Retrieve Information Coded In Alphanumeric), is especially suit-
able for dealing with extremely long, variable-length keys such as titles or phrases
stored within a large bulk file. A closely related algorithm was published at
almost exactly the same time in Germany by G. Gwehenberger, Elektronische
Rechenanlagen 10 (1968), 223–226.

Patricia’s basic idea is to build a binary trie, but to avoid one-way branching
by including in each node the number of bits to skip over before making the next
test. There are several ways to exploit this idea; perhaps the simplest to explain
is illustrated in Fig. 33. We have a TEXT array of bits, which is usually quite
long; it may be stored as an external direct-access file, since each search accesses
TEXT only once. Each key to be stored in our table is specified by a starting
place in the text, and it can be imagined to go from this starting place all the
way to the end of the text. (Patricia does not search for strict equality between
key and argument; instead, it will determine whether or not there exists a key
beginning with the argument.)
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Fig. 33. An example of Patricia’s tree and TEXT.

The situation depicted in Fig. 33 involves seven keys, one starting at each
word, namely “THIS IS THE HOUSE THAT JACK BUILT?” and “IS THE HOUSE THAT
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JACK BUILT?” and . . . and “BUILT?”. There is one important restriction, namely
that no one key may be a prefix of another ; this restriction can be met if we end
the text with a unique end-of-text code (in this case “?”) that appears nowhere
else. The same restriction was implicit in the trie scheme of Algorithm T, where
“␣” was the termination code.

The tree that Patricia uses for searching should be contained in random-
access memory, or it should be arranged on pages as suggested in Section 6.2.4.
It consists of a header and N − 1 nodes, where the nodes contain several fields:

KEY, a pointer to the text. This field must be at least lg C bits long, if the
text contains C characters. In Fig. 33 the words shown within each node
would really be represented by pointers to the text; for example, instead
of “(JACK)” the node would contain the number 24 (which indicates the
starting place of “JACK BUILT?” in the text string).

LLINK and RLINK, pointers within the tree. These fields must be at least
lg N bits long.

LTAG and RTAG, one-bit fields that tell whether or not LLINK and RLINK,
respectively, are pointers to children or to ancestors of the node. The
dotted lines in Fig. 33 correspond to pointers whose TAG bit is 1.

SKIP, a number that tells how many bits to skip when searching, as explained
below. This field should be large enough to hold the largest number k
such that all keys with prefix σ agree in the next k bits following σ, for
some string σ that is a prefix of at least two different keys; in practice,
we may usually assume that k isn’t too large, and an error indication
can be given if the size of the SKIP field is exceeded. The SKIP fields
are shown as numbers within each non-header node of Fig. 33.

The header contains only KEY, LLINK, and LTAG fields.
A search in Patricia’s tree is carried out as follows: Suppose we are looking

up the word THE (bit pattern 10111 01000 00101). We start by looking at the
SKIP field of the root node α, which tells us to examine bit 1 of the argument.
That bit is 1, so we move to the right. The SKIP field in the next node, γ, tells
us to look at the 1 + 11 = 12th bit of the argument. It is 0, so we move to the
left. The SKIP field of the next node, ϵ, tells us to look at the (12 + 1)st bit,
which is 1; now we find RTAG = 1, so we go back to node γ, which refers us to
the TEXT. The search path we have taken would occur for any argument whose
bit pattern is 1xxxx xxxxx x01. . . , and we must check to see if it matches the
unique key beginning with that pattern, namely THE.

Suppose, on the other hand, that we are looking for any or all keys starting
with TH. The search process begins as above, but it eventually tries to look at
the (nonexistent) 12th bit of the 10-bit argument. At this point we compare the
argument to the TEXT at the point specified in the current node (in this case
node γ). If it does not match, the argument is not the beginning of any key;
but if it does match, the argument is the beginning of every key represented by
dotted links in node γ and its descendants (namely THIS, THAT, THE).
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The search process can be spelled out more precisely in the following way.

Algorithm P (Patricia). Given a TEXT array and a tree with KEY, LLINK, RLINK,
LTAG, RTAG, and SKIP fields, as described above, this algorithm determines
whether or not there is a key in the TEXT that begins with a specified argument K.
(If r such keys exist, for r ≥ 1, it is subsequently possible to locate them all in
O(r) steps; see exercise 14.) We assume that at least one key is present.
P1. [Initialize.] Set P← HEAD and j ← 0. (Variable P is a pointer that will move

down the tree, and j is a counter that will designate bit positions of the
argument.) Set n← number of bits in K.

P2. [Move left.] Set Q← P and P← LLINK(Q). If LTAG(Q) = 1, go to P6.
P3. [Skip bits.] (At this point we know that if the first j bits of K match any key

whatsoever, they match the key that starts at KEY(P).) Set j ← j+SKIP(P).
If j > n, go to P6.

P4. [Test bit.] (At this point we know that if the first j− 1 bits of K match any
key, they match the key starting at KEY(P).) If the jth bit of K is 0, go to
P2, otherwise go to P5.

P5. [Move right.] Set Q← P and P← RLINK(Q). If RTAG(Q) = 0, go to P3.
P6. [Compare.] (At this point we know that if K matches any key, it matches

the key starting at KEY(P).) Compare K to the key that starts at position
KEY(P) in the TEXT array. If they are equal (up to n bits, the length of K),
the algorithm terminates successfully; if unequal, it terminates unsuccess-
fully.

Exercise 15 shows how Patricia’s tree can be built in the first place. We can
also add to the text and insert new keys, provided that the new text material
always ends with a unique delimiter (for example, an end-of-text symbol followed
by a serial number).

Patricia is a little tricky, and she requires careful scrutiny before all of her
beauties are revealed.

Analyses of the algorithms. We shall conclude this section by making a
mathematical study of tries, digital search trees, and Patricia. A summary of
the main consequences of these analyses appears at the very end.

Let us consider first the case of binary tries, namely tries with M = 2.
Figure 34 shows the binary trie that is formed when the sixteen keys from the
sorting examples of Chapter 5 are treated as 10-bit binary numbers.


The keys

are shown in octal notation, so that for example 1144 represents the 10-bit
number 612 = (1001100100)2.


As in Algorithm T, we use the trie to store

information about the leading bits of the keys until we get to the first point
where the key is uniquely identified; then the key is recorded in full.

If Fig. 34 is compared to Table 5.2.2–3, an amazing relationship between
trie memory and radix exchange sorting is revealed. (Then again, perhaps this
relationship is obvious.) The 22 nodes of Fig. 34 correspond precisely to the 22
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Fig. 34. Example of a random binary trie.

partitioning stages in Table 5.2.2–3, with the pth node in preorder corresponding
to Stage p. The number of bit inspections in a partitioning stage is equal to the
number of keys within the corresponding node and its subtries; consequently we
may state the following result.

Theorem T. If N distinct binary numbers are put into a binary trie as described
above, then (i) the number of nodes of the trie is equal to the number of
partitioning stages required if these numbers are sorted by radix exchange; and
(ii) the average number of bit inspections required to retrieve a key by means of
Algorithm T is 1/N times the number of bit inspections required by the radix
exchange sort.

Because of this theorem, we can make use of all the mathematical machinery
that was developed for radix exchange in Section 5.2.2. For example, if we
assume that our keys are infinite-precision random uniformly distributed real
numbers between 0 and 1, the number of bit inspections needed for retrieval will
be lg N + γ/ ln 2 + 1/2 + δ(N) + O(N−1), and the number of trie nodes will be
N/ ln 2 + Nδ̄(N) + O(1). Here δ(N) and δ̄(N) are complicated functions that
may be neglected since their absolute value is always less than 10−6 (see exercises
5.2.2–38 and 5.2.2–48).

Of course there is still more work to be done, since we need to generalize
from binary tries to M -ary tries. We shall describe only the starting point of
the investigations here, leaving the instructive details as exercises.

Let AN be the average number of internal nodes in a random M -ary search
trie that contains N keys. Then A0 = A1 = 0, and for N ≥ 2 we have

AN = 1 +


k1+···+kM=N


N !

k1! . . . kM !M
−N


(Ak1 + · · ·+ AkM

), (3)
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since N ! M−N/k1! . . . kM ! is the probability that k1 of the keys are in the first
subtrie, . . . , kM in the Mth. This equation can be rewritten

AN = 1 + M1−N


k1+···+kM=N


N !

k1! . . . kM !


Ak1

= 1 + M1−N

k


N

k


(M − 1)N−kAk, for N ≥ 2, (4)

by using symmetry and then summing over k2, . . . , kM. Similarly, if CN denotes
the average total number of digit inspections needed to look up all N keys in the
trie, we find C0 = C1 = 0 and

CN = N + M1−N

k


N

k


(M − 1)N−kCk for N ≥ 2. (5)

Exercise 17 shows how to deal with general recurrences of this type, and exercises
18–25 work out the corresponding theory of random tries. [The analysis of AN

was first approached from another point of view by L. R. Johnson and M. H.
McAndrew, IBM J. Res. and Devel. 8 (1964), 189–193, in connection with an
equivalent hardware-oriented sorting algorithm.]

If we now turn to a study of digital search trees, we find that the formulas
are similar, yet different enough that it is not easy to see how to deduce the
asymptotic behavior. For example, if CN denotes the average total number of
digit inspections made when looking up all N keys in an M -ary digital search
tree, it is not difficult to deduce as above that C0 = C1 = 0, and

CN+1 = N + M1−N

k


N

k


(M − 1)N−k Ck for N ≥ 0. (6)

This is almost identical to Eq. (5); but the appearance of N + 1 instead of N
on the left-hand side of this equation is enough to change the entire character of
the recurrence, so the methods we have used to study (5) are wiped out.

Let’s consider the binary case first. Figure 35 shows the digital search tree
corresponding to the sixteen example keys of Fig. 34, when they have been
inserted in the order used in the examples of Chapter 5. If we want to determine
the average number of bit inspections made in a random successful search, this
is just the internal path length of the tree divided by N, since we need l bit
inspections to find a node on level l. Notice, however, that the average number
of bit inspections made in a random unsuccessful search is not simply related to
the external path length of the tree, since unsuccessful searches are more likely
to occur at external nodes near the root; thus, the probability of reaching the left
sub-branch of node 0075 in Fig. 35 is 1

8 (assuming infinitely precise keys), and
the left sub-branch of node 0232 will be encountered with probability only 1

32 .
For this reason, digital search trees tend to stay better balanced than the binary
search trees of Algorithm 6.2.2T, when the keys are uniformly distributed.
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Fig. 35. A random digital search tree constructed by Algorithm D.

We can use a generating function to describe the pertinent characteristics
of a digital search tree. If there are al internal nodes on level l, consider
the generating function a(z) =


l alz

l; for example, the generating function
corresponding to Fig. 35 is a(z) = 1 + 2z + 4z2 + 5z3 + 4z4. If there are bl
external nodes on level l, and if b(z) =


l blz

l, we have

b(z) = 1 + (2z − 1)a(z) (7)

by exercise 6.2.1–25. For example, 1 + (2z − 1)(1 + 2z + 4z2 + 5z3 + 4z4) =
3z3 + 6z4 + 8z5. The average number of bit inspections made in a random
successful search is a′(1)/a(1), since a′(1) is the internal path length of the tree
and a(1) is the number of internal nodes. The average number of bit inspections
made in a random unsuccessful search is


l lbl2−l = 1

2 b′( 1
2 ) = a( 1

2 ), since we
end up at a given external node on level l with probability 2−l. The number of
comparisons is the same as the number of bit inspections, plus one in a successful
search. For example, in Fig. 35, a successful search will take 2 9

16 bit inspections
and 3 9

16 comparisons, on the average; an unsuccessful search will take 3 7
8 of each.

Now let gN (z) be the “average” a(z) for trees with N nodes; in other words,
gN (z) is the sum


pT aT (z) over all binary digital search trees T with N internal

nodes, where aT (z) is the generating function for the internal nodes of T and
pT is the probability that T occurs when N random numbers are inserted using
Algorithm D. Then the average number of bit inspections will be g′

N (1)/N in a
successful search, gN ( 1

2 ) in an unsuccessful search.
We can compute gN (z) by mimicking the tree construction process, as

follows. If a(z) is the generating function for a tree of N nodes, we can form
N +1 trees from it by making the next insertion into any one of the external node
positions. The insertion goes into a given external node on level l with probability
2−l; hence the sum of the generating functions for the N +1 new trees, multiplied
by the probability of occurrence, is a(z) + b

 1
2 z


= a(z) + 1 + (z − 1)a

 1
2 z


.
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Averaging over all trees for N nodes, it follows that

gN+1(z) = gN (z) + 1 + (z − 1)gN
 1

2 z

; g0(z) = 0. (8)

The corresponding generating function for external nodes,

hN (z) = 1 + (2z − 1)gN (z),

is somewhat easier to work with, because (8) is equivalent to the formula

hN+1(z) = hN (z) + (2z − 1)hN

 1
2 z


; h0(z) = 1. (9)

Applying this rule repeatedly, we find that

hN+1(z) = hN−1(z) + 2(2z − 1)hN−1
 1

2 z


+ (2z − 1)(z − 1)hN−1
 1

4 z


= hN−2(z) + 3(2z − 1)hN−2
 1

2 z


+ 3(2z − 1)(z − 1)hN−2
 1

4 z


+ (2z − 1)(z − 1)
 1

2 z − 1

hN−2

 1
8 z


and so on, so that eventually we have

hN (z) =

k


N

k

 k−1
j=0

(21−jz − 1); (10)

gN (z) =

k≥0


N

k + 1

 k−1
j=0

(2−jz − 1). (11)

For example, g4(z) = 4 + 6(z − 1) + 4(z − 1)
 1

2 z − 1


+ (z − 1)
 1

2 z − 1
 1

4 z − 1

.

These formulas make it possible to express the quantities we are looking for as
sums of products:

CN = g′
N (1) =


k≥0


N

k + 2

 k
j=1

(2−j − 1); (12)

gN ( 1
2 ) =


k≥0


N

k + 1

 k
j=1

(2−j − 1) = CN+1 − CN . (13)

It is not at all obvious that this formula for CN satisfies (6)!
Unfortunately, these expressions are not suitable for calculation or for finding

an asymptotic expansion, since 2−j − 1 is negative; we get large terms and a lot
of cancellation. A more useful formula for CN can be obtained by applying the
partition identities of exercise 5.1.1–16. We have

CN =


j≥1
(1− 2−j)


k≥0


N

k + 2


(−1)k


l≥0

(1− 2−l−k−1)−1

=


j≥1
(1− 2−j)


k≥0


N

k + 2


(−1)k


m≥0

(2−k−1)m
m
r=1

(1− 2−r)−1



6.3 DIGITAL SEARCHING 505

=

m≥0

2m


k


N

k


(−2−m)k − 1 + 2−mN


j≥0

(1− 2−j−m−1)

=

m≥0

2m

(1−2−m)N− 1 + 2−mN


n≥0

(−2−m−1)n 2−n(n−1)/2n
r=1(1− 2−r)

. (14)

This may not seem at first glance to be an improvement over Eq. (12), but it
has the great advantage that the sum on m converges rapidly for each fixed n.
A precisely analogous situation occurred for the trie case in Eqs. 5.2.2–(38) and
5.2.2–(39); in fact, if we consider only the terms of (14) with n = 0, we have
exactly N − 1 plus the number of bit inspections in a binary trie. We can now
proceed to get the asymptotic value in essentially the same way as before; see
exercise 27. [The derivation above is largely based on an approach suggested by
A. J. Konheim and D. J. Newman, Discrete Mathematics 4 (1973), 57–63.]
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Fig. 36. Patricia constructs this tree instead of Fig. 34.

Finally let us take a mathematical look at Patricia. In her case the binary
tree is like the corresponding binary trie on the same keys, but squashed together
(because the SKIP fields eliminate 1-way branching), so that there are always
exactly N−1 internal nodes and N external nodes. Figure 36 shows the Patrician
tree corresponding to the sixteen keys in the trie of Fig. 34. The number shown
in each branch node is the amount of SKIP; the keys are indicated with the
external nodes, although the external node is not explicitly present (there is
actually a tagged link to an internal node that references the TEXT, in place of
each external node). For the purposes of analysis, we may assume that external
nodes exist as shown.

Since successful searches with Patricia end at external nodes, the average
number of bit inspections made in a random successful search will be the external
path length, divided by N. If we form the generating function b(z) for external
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nodes as above, this will be b′(1)/b(1). An unsuccessful search with Patricia also
ends at an external node, but weighted with probability 2−l for external nodes
on level l, so the average number of bit inspections is 1

2 b′
 1

2

. For example, in

Fig. 36 we have b(z) = 3z3+8z4+3z5+2z6; therefore there are 4 1
4 bit inspections

per successful search and 3 25
32 per unsuccessful search, on the average.

Let hn(z) be the “average” b(z) for a Patrician tree constructed with n
external nodes, using uniformly distributed keys. The recurrence relation

hn(z) = 21−n

k


n

k


hk(z)


z + δkn(1− z)


, h0(z) = 0, h1(z) = 1 (15)

appears to have no simple solution. But fortunately, there is a simple recurrence
for the average external path length h′

n(1), since

h′
n(1) = 21−n


k


n

k


h′
k(1) + 21−n


k


n

k


k(1− δkn)

= n− 21−nn + 21−n

k


n

k


h′
k(1). (16)

Since this has the form of (6), we can use the methods already developed to solve
for h′

n(1), which turns out to be exactly n less than the corresponding number
of bit inspections in a random binary trie. Thus, the SKIP fields save us about
one bit inspection per successful search, on random data. (See exercise 31.) The
redundancy of typical real data will lead to greater savings.

When we try to find the average number of bit inspections for a random
unsuccessful search by Patricia, we obtain the recurrence

an = 1 + 1
2n − 2


k<n


n

k


ak, for n ≥ 2; a0 = a1 = 0. (17)

Here an = 1
2 h′

n

 1
2

. This does not have the form of any recurrence we have

studied, nor is it easily transformed into such a recurrence. The theory of Mellin
transforms, introduced in Section 5.2.2 and the references cited there, provides
a high-level way to deal with recurrences that have a digital character. It turns
out that the solution to (17) involves the Bernoulli numbers:

nan−1

2 − n + 2 =
n−1
k=2


n

k


Bk

2k−1 − 1 , for n ≥ 2. (18)

This formula is probably the hardest asymptotic nut we have yet had to crack;
the solution in exercise 34 is an instructive review of many things we have done
before, with some slightly different twists.

Summary of the analyses. As a result of all the complicated mathematics in
this section, the following facts are perhaps the most noteworthy:

a) The number of nodes needed to store N random keys in an M -ary trie,
with the trie branching terminated for subfiles of ≤ s keys, is approximately
N/(s ln M). This approximation is valid for large N, small s, and small M.
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Since a trie node involves M link fields, we will need only about N/ ln M link
fields if we choose s = M.

b) The number of digits or characters examined during a random search is
approximately logM N for all methods considered. When M = 2, the various
analyses give us the following more accurate approximations to the number of
bit inspections:

Successful Unsuccessful
Trie search lg N + 1.33275 lg N − 0.10995
Digital tree search lg N − 1.71665 lg N − 0.27395
Patricia lg N + 0.33275 lg N − 0.31875

(These approximations can all be expressed in terms of fundamental mathemat-
ical constants; for example, 0.31875 stands for (ln π − γ)/ ln 2− 1/2.)

c) “Random” data here means that the M -ary digits are uniformly distrib-
uted, as if the keys were real numbers between 0 and 1 expressed in M -ary
notation. Digital search methods are insensitive to the order in which keys are
entered into the file (except for Algorithm D, which is only slightly sensitive to
the order); but they are very sensitive to the distribution of digits. For example,
if 0-bits are much more common than 1-bits, the trees will become much more
skewed than they would be for random data as considered in the analyses cited
above. Exercise 5.2.2–53 works out one example of what happens when the data
is biased in this way.

EXERCISES
1. [00 ] If a tree has leaves, what does a trie have?
2. [20 ] Design an algorithm for the insertion of a new key into an M -ary trie, using

the conventions of Algorithm T.
3. [21 ] Design an algorithm for the deletion of a key from an M -ary trie, using the

conventions of Algorithm T.
x 4. [21 ] Most of the 360 entries in Table 1 are blank (null links). But we can

compress the table into only 49 entries, by overlapping nonblank entries with blank
ones as follows:

Position

Entry

1
(1

0)
2 3
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S

4
TH
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5

(1
1)

6
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7
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8
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E
9
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S
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H
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WI
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IS

13 14
(1

2)
15

ON
16

I
17

HE
18

A
19

OR
20

(2
)

21
(3

)
22

TO
23

HA
D

24 25

Position

Entry (4
)

26
BU

T
27

(5
)

28
(6

)
29

FO
R

30
BY

31
IN

32
FR

OM
33

AN
D

34
NO

T
35

(7
)

36
HE

R
37

AR
E

38
IS

39
IT

40
AS

41
AT

42
(8

)
43 44

HA
VE

45
(9

)
46 47

YO
U

48 49

(Nodes (1), (2), . . . , (12) of Table 1 begin, respectively, at positions 20, 19, 3, 14, 1, 17,
1, 7, 3, 20, 18, 4 within this compressed table.)

Show that if the compressed table is substituted for Table 1, Program T will still
work, but not quite as fast.
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x 5. [M26 ] (Y. N. Patt.) The trees of Fig. 31 have their letters arranged in alphabetic
order within each family. This order is not necessary, and if we rearrange the order
of nodes within the families before constructing binary tree representations such as
(2) we may get a faster search. What rearrangement of Fig. 31 is optimum from
this standpoint? (Use the frequency assumptions of Fig. 32, and find the forest that
minimizes the successful search time when it has been represented as a binary tree.)

6. [15 ] What digital search tree is obtained if the fifteen 4-bit binary keys 0001,
0010, 0011, . . . , 1111 are inserted in increasing order by Algorithm D? (Start with
0001 at the root and then do fourteen insertions.)

x 7. [M26 ] If the fifteen keys of exercise 6 are inserted in a different order, we might
get a different tree. Of all the 15! possible permutations of these keys, which is the
worst, in the sense that it produces a tree with the greatest internal path length?

8. [20 ] Consider the following changes to Algorithm D, which have the effect of
eliminating variable K′: Change “K′” to “K” in both places in step D2, and delete
the operation “K′ ← K” from step D1. Will the resulting algorithm still be valid for
searching and insertion?

9. [21 ] Write a MIX program for Algorithm D, and compare it to Program 6.2.2T.
You may use binary operations such as SLB (shift left AX binary), JAE (jump if A even),
etc.; and you may also use the idea of exercise 8 if it helps.
10. [23 ] Given a file in which all the keys are n-bit binary numbers, and given a search
argument K = b1 b2 . . . bn, suppose we want to find the maximum value of k such that
there is a key in the file beginning with the bit pattern b1 b2 . . . bk. How can we do this
efficiently if the file is represented as

a) a binary search tree (Algorithm 6.2.2T)?
b) a binary trie (Algorithm T)?
c) a binary digital search tree (Algorithm D)?

11. [21 ] Can Algorithm 6.2.2D be used without change to delete a node from a digital
search tree?
12. [25 ] After a random element is deleted from a random digital search tree con-
structed by Algorithm D, is the resulting tree still random? (See exercise 11 and
Theorem 6.2.2H.)
13. [20 ] (M-ary digital searching.) Explain how Algorithms T and D can be combined
into a generalized algorithm that is essentially the same as Algorithm D when M = 2.
What changes would be made to Table 1, if your algorithm is used for M = 30?

x 14. [25 ] Design an efficient algorithm that can be performed just after Algorithm P
has terminated successfully, to locate all places where K appears in the TEXT.
15. [28 ] Design an efficient algorithm that can be used to construct the tree used by
Patricia, or to insert new TEXT references into an existing tree. Your insertion algorithm
should refer to the TEXT array at most twice.
16. [22 ] Why is it desirable for Patricia to make the restriction that no key is a prefix
of another?
17. [M25 ] Find a way to express the solution of the recurrence

x0 = x1 = 0, xn = an +m1−n


k


m

k


(m− 1)n−kxk, n ≥ 2,

in terms of binomial transforms, by generalizing the technique of exercise 5.2.2–36.
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18. [M21 ] Use the result of exercise 17 to express the solutions to (4) and (5) in terms
of functions Un and Vn analogous to those defined in exercise 5.2.2–38.
19. [HM23 ] Find the asymptotic value of the function

K(n, s,m) =

k≥2


n

k


k

s

 (−1)k

mk−1 − 1

to O(1) as n→∞, for fixed s ≥ 0 and m > 1. [The case s = 0 has already been solved
in exercise 5.2.2–50, and the case s = 1, m = 2 has been solved in exercise 5.2.2–48.]

x 20. [M30 ] Consider M -ary trie memory in which we use a sequential search whenever
reaching a subfile of s or fewer keys. (Algorithm T is the special case s = 1.) Apply
the results of the preceding exercises to analyze

a) the average number of trie nodes;
b) the average number of digit or character inspections in a successful search; and
c) the average number of comparisons made in a successful search.

State your answers as asymptotic formulas as N →∞, for fixed M and s; the answer
for (a) should be correct to within O(1), and the answers for (b) and (c) should be
correct to within O(N−1). [When M = 2, this analysis applies also to the modified
radix exchange sort, in which subfiles of size ≤ s are sorted by insertion.]
21. [M25 ] How many of the nodes, in a random M -ary trie containing N keys, have
a null pointer in table entry 0? (For example, 9 of the 12 nodes in Table 1 have a null
pointer in the “␣” position. “Random” in this exercise means as usual that the digits
of the keys are uniformly distributed between 0 and M − 1.)
22. [M25 ] How many trie nodes are on level l of a random M -ary trie containing
N keys, for l = 0, 1, 2, . . . ?
23. [M26 ] How many digit inspections are made on the average during an unsuccessful
search in an M -ary trie containing N random keys?
24. [M30 ] Consider an M -ary trie that has been represented as a forest (see Fig. 31).
Find exact and asymptotic expressions for

a) the average number of nodes in the forest;
b) the average number of times “P ← RLINK(P)” is performed during a random

successful search.
x 25. [M24 ] The mathematical derivations of asymptotic values in this section have

been quite difficult, involving complex variable theory, because it is desirable to get
more than just the leading term of the asymptotic behavior (and the second term is
intrinsically complicated). The purpose of this exercise is to show that elementary
methods are good enough to deduce some of the results in weaker form.

a) Prove by induction that the solution to (4) satisfies AN ≤M(N − 1)/(M − 1).
b) Let DN = CN − NHN−1/ lnM , where CN is defined by (5). Prove that DN =

O(N); hence CN = N logM N +O(N). [Hint: Use (a) and Theorem 1.2.7A.]
26. [23 ] Determine the value of the infinite product

(1− 1
2 )(1− 1

4 )(1− 1
8 )(1− 1

16 ) . . .

correct to five decimal places, by hand calculation. [Hint: See exercise 5.1.1–16.]
27. [HM31 ] What is the asymptotic value of CN, as given by (14), to within O(1)?
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28. [HM26 ] Find the asymptotic average number of digit inspections when searching
in a random M -ary digital search tree, for general M ≥ 2. Consider both successful
and unsuccessful search, and give your answer to within O(N−1).
29. [HM40 ] What is the asymptotic average number of nodes, in an M -ary digital
search tree, for which all M links are null? (We might save memory space by eliminating
such nodes; see exercise 13.)
30. [M24 ] Show that the Patrician generating function hn(z) defined in (15) can be
expressed in the rather horrible form

n

m≥1

zm

 
a1+···+am=n−1

a1,...,am≥1


n− 1

a1, . . . , am


1

(2a1 − 1)(2a1+a2 − 1) . . . (2a1+···+am − 1)


.

[Thus, if there is a simple formula for hn(z), we will be able to simplify this rather
ungainly expression.]
31. [M21 ] Solve the recurrence (16).
32. [M21 ] What is the average value of the sum of all SKIP fields in a random Patrician
tree with N − 1 internal nodes?
33. [M30 ] Prove that (18) is a solution to the recurrence (17). [Hint: Consider the
generating function A(z) =


n≥0 anz

n/n!.]
34. [HM40 ] The purpose of this exercise is to find the asymptotic behavior of (18).

a) Prove that, if n ≥ 2,

1
n


2≤k<n


n

k


Bk

2k−1 − 1 =

j≥1


1n−1 + 2n−1 + · · ·+ (2j − 1)n−1

2j(n−1) − 2j

n
+ 1

2


.

b) Show that the summand in (a) is approximately 1/(ex − 1) − 1/x + 1/2, where
x = n/2j ; the resulting sum equals the original sum plus O(n−1).

c) Show that

1
ex − 1 −

1
x

+ 1
2 = 1

2πi

 − 1
2 +i∞

− 1
2 −i∞

ζ(z)Γ (z)x−zdz, for real x > 0.

d) Therefore the sum equals

1
2πi

 − 1
2 +i∞

− 1
2 −i∞

ζ(z)Γ (z)n−z

2−z − 1 dz +O(n−1);

evaluate this integral.
x 35. [M20 ] What is the probability that Patricia’s tree on five keys will be

a

b c

d

with the SKIP fields a, b, c, d as shown? (Assume that the keys have independent
random bits, and give your answer as a function of a, b, c, and d.)



6.3 DIGITAL SEARCHING 511

36. [M25 ] There are five binary trees with three internal nodes. If we consider how
frequently each particular one of these occurs as the search tree in various algorithms,
for random data, we find the following different probabilities:

Tree search
(Algorithm 6.2.2T)

1
6

1
6

1
3

1
6

1
6

Digital tree search
(Algorithm D)

1
8

1
8

1
2

1
8

1
8

Patricia
(Algorithm P)

1
7

1
7

3
7

1
7

1
7

(Notice that the digital search tree tends to be balanced more often than the others.)
In exercise 6.2.2–5 we found that the probability of a tree in the tree search algorithm
was

(1/s(x)), where the product is over all internal nodes x, and s(x) is the number
of internal nodes in the subtree rooted at x. Find similar formulas for the probability
of a tree in the case of (a) Algorithm D; (b) Algorithm P.

x 37. [M22 ] Consider a binary tree with bl external nodes on level l. The text observes
that the running time for unsuccessful searching in digital search trees is not directly
related to the external path length


lbl, but instead it is essentially proportional to

the modified external path length

lbl2−l. Prove or disprove: The smallest modified

external path length, over all trees with N external nodes, occurs when all of the
external nodes appear on at most two adjacent levels. (See exercise 5.3.1–20.)
38. [M40 ] Develop an algorithm to find the n-node tree having the minimum value
of α · (internal path length) +β · (modified external path length), given α and β, in the
sense of exercise 37.
39. [M43 ] Develop an algorithm to find optimum digital search trees, analogous to
the optimum binary search trees considered in Section 6.2.2.

x 40. [25 ] Let a0 a1 a2 . . . be a periodic binary sequence with aN+k = ak for all k ≥ 0.
Show that there is a way to represent any fixed sequence of this type in O(N) memory
locations, so that the following operation can be done in only O(N) steps: Given any
binary pattern b0 b1 . . . bn−1, determine how often the pattern occurs in the period
(thus, find how many values of p exist with 0 ≤ p < N and bk = ap+k for 0 ≤ k < n).
The length n of the pattern is variable as well as the pattern itself. Assume that each
memory location can hold arbitrary integers between 0 and N . [Hint: See exercise 14.]
41. [HM28 ] This is an application to group theory. Let G be the free group on the
letters {a1, . . . , an}, namely the set of all strings α = b1 . . . br, where each bi is one of the
aj or a−j and no adjacent pair aja

−
j or a−j aj occurs. The inverse of α is b−r . . . b−1 , and we

multiply two such strings by concatenating them and canceling adjacent inverse pairs.
Let H be the subgroup of G generated by the strings {β1, . . . , βp}, namely the set of all
elements of G that can be written as products of the β’s and their inverses. According
to a well-known theorem of Jakob Nielsen (see Marshall Hall, The Theory of Groups
(New York: Macmillan, 1959), Chapter 7), we can always find generators θ1, . . . , θm
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of H, with m ≤ p, having the property that the middle character of θi (or at least one of
the two central characters of θi if it has even length) is never canceled in the expressions
θiθ

e
j or θe

jθi, e = ±1, unless j = i and e = −1. This property implies that there is
a simple algorithm for testing whether an arbitrary element of G is in H: Record the
2m keys θ1, . . . , θm, θ−1 , . . . , θ−m in a character-oriented search tree, using the 2n letters
a1, . . . , an, a−1 , . . . , a−n . Let α = b1 . . . br be a given element of G; if r = 0, α is obviously
in H. Otherwise look up α, finding the longest prefix b1 . . . bk that matches a key. If
there is more than one key beginning with b1 . . . bk, α is not in H; otherwise let the
unique such key be b1 . . . bkc1 . . . cl = θe

i , and replace α by θ−e
i α = c−l . . . c

−
1 bk+1 . . . br.

If this new value of α is longer than the old (that is, if l > k), α is not in H; otherwise
repeat the process on the new value of α. The Nielsen property implies that this
algorithm will always terminate. If α is eventually reduced to the null string, we can
reconstruct the representation of the original α as a product of θ’s.

For example, let {θ1, θ2, θ3} = {bbb, b−a−b−, ba−b} and α = bbabaab. The forest

b

a a− b

b b b

θ−2 θ3 θ1

b−

a a− b−

b− b− b−

θ−3 θ2 θ−1

can be used with the algorithm above to deduce that α = θ1θ
−
3 θ1θ

−
3 θ

−
2 . Implement

this algorithm, given the θ’s as input to your program.
42. [23 ] (Front and rear compression.) When a set of binary keys is being used as an
index, to partition a larger file, we need not store the full keys. For example, if the
sixteen keys of Fig. 34 are used, they can be truncated at the right, as soon as enough
digits have been given to identify them uniquely: 0000, 0001, 00100, 00101, 010, . . . ,
1110001. These truncated keys can be used to partition a file into seventeen parts,
where for example the fifth part consists of all keys beginning with 0011 or 010, and
the last part contains all keys beginning with 111001, 11101, or 1111. The truncated
keys can be represented more compactly if we suppress all leading digits common to
the previous key: 0000, ⋄⋄⋄1, ⋄⋄100, ⋄⋄⋄⋄1, ⋄10, . . . , ⋄⋄⋄⋄⋄⋄1. The bit following a ⋄ is
always 1, so it may be suppressed. A large file will have many ⋄’s, and we need store
only the number of ⋄’s and the values of the following bits.

Show that the total number of bits in the compressed file, excluding ⋄’s and the
following 1-bits, is always equal to the number of nodes in the binary trie for the keys.

(Consequently the average total number of such bits in the entire index is about
N/ ln 2, only 1.44 bits per key. This compression technique was shown to the author by
A. Heller and R. L. Johnsen. Still further compression is possible, since we need only
represent the trie structure; see Theorem 2.3.1A.)
43. [HM42 ] Analyze the height of a random M -ary trie that has N keys and cutoff
parameter s as in exercise 20. (When s = 1, this is the length of the longest common
prefix of N long random words in an M -ary alphabet.)

x 44. [30 ] (J. L. Bentley and R. Sedgewick.) Explore a ternary representation of tries,
in which left and right links correspond to the horizontal branches of (2) while middle
links correspond to the downward branches.

x 45. [M25 ] If the seven keys of Fig. 33 are inserted in random order by the algorithm
of exercise 15, what is the probability of obtaining the tree shown?
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6.4. HASHING
So far we have considered search methods based on comparing the given
argument K to the keys in the table, or using its digits to govern a branching
process. A third possibility is to avoid all this rummaging around by doing some
arithmetical calculation on K, computing a function f(K) that is the location
of K and the associated data in the table.

For example, let’s consider again the set of 31 English words that we have
subjected to various search strategies in Sections 6.2.2 and 6.3. Table 1 shows
a short MIX program that transforms each of the 31 keys into a unique number
f(K) between −10 and 30. If we compare this method to the MIX programs
for the other methods we have considered (for example, binary search, optimal
tree search, trie memory, digital tree search), we find that it is superior from
the standpoint of both space and speed, except that binary search uses slightly
less space. In fact, the average time for a successful search, using the program
of Table 1 with the frequency data of Fig. 12, is only about 17.8u, and only 41
table locations are needed to store the 31 keys.

Unfortunately, such functions f(K) aren’t very easy to discover. There are
4131 ≈ 1050 possible functions from a 31-element set into a 41-element set, and
only 41 · 40 · . . . · 11 = 41!/10! ≈ 1043 of them will give distinct values for each
argument; thus only about one of every 10 million functions will be suitable.

Functions that avoid duplicate values are surprisingly rare, even with a fairly
large table. For example, the famous “birthday paradox” asserts that if 23 or
more people are present in a room, chances are good that two of them will have
the same month and day of birth! In other words, if we select a random function
that maps 23 keys into a table of size 365, the probability that no two keys map
into the same location is only 0.4927 (less than one-half). Skeptics who doubt
this result should try to find the birthday mates at the next large parties they
attend. [The birthday paradox was discussed informally by mathematicians in
the 1930s, but its origin is obscure; see I. J. Good, Probability and the Weighing
of Evidence (Griffin, 1950), 38. See also R. von Mises, İstanbul Üniversitesi
Fen Fakültesi Mecmuası 4 (1939), 145–163, and W. Feller, An Introduction to
Probability Theory (New York: Wiley, 1950), Section II.3.]

On the other hand, the approach used in Table 1 is fairly flexible [see
M. Greniewski and W. Turski, CACM 6 (1963), 322–323], and for a medium-
sized table a suitable function can be found after about a day’s work. In
fact it is rather amusing to solve a puzzle like this. Suitable techniques have
been discussed by many people, including for example R. Sprugnoli, CACM 20
(1977), 841–850, 22 (1979), 104, 553; R. J. Cichelli, CACM 23 (1980), 17–19;
T. J. Sager, CACM 28 (1985), 523–532, 29 (1986), 557; B. S. Majewski, N. C.
Wormald, G. Havas, and Z. J. Czech, Comp. J. 39 (1996), 547–554; Czech,
Havas, and Majewski, Theoretical Comp. Sci. 182 (1997), 1–143. See also the
article by J. Körner and K. Marton, Europ. J. Combinatorics 9 (1988), 523–530,
for theoretical limitations on perfect hash functions.

Of course this method has a serious flaw, since the contents of the table
must be known in advance; adding one more key will probably ruin everything,



514 SEARCHING 6.4
Table 1

TRANSFORMING A SET OF KEYS INTO UNIQUE ADDRESSES

A AN
D

AR
E

AS AT BE BU
T

BY FO
R

FR
OM

HA
D

HA
VE HE HE
R

Instruction
LD1N K(1:1) −1 −1 −1 −1 −1 −2 −2 −2 −6 −6 −8 −8 −8 −8
LD2 K(2:2) −1 −1 −1 −1 −1 −2 −2 −2 −6 −6 −8 −8 −8 −8
INC1 -8,2 −9 6 10 13 14 −5 14 18 2 5 −15 −15 −11 −11
J1P *+2 −9 6 10 13 14 −5 14 18 2 5 −15 −15 −11 −11
INC1 16,2 7 . . . . 16 . . . . 2 2 10 10
LD2 K(3:3) 7 6 10 13 14 16 14 18 2 5 2 2 10 10
J2Z 9F 7 6 10 13 14 16 14 18 2 5 2 2 10 10
INC1 -28,2 . −18 −13 . . . 9 . −7 −7 −22 −1 . 1
J1P 9F . −18 −13 . . . 9 . −7 −7 −22 −1 . 1
INC1 11,2 . −3 3 . . . . . 23 20 −7 35 . .
LDA K(4:4) . −3 3 . . . . . 23 20 −7 35 . .
JAZ 9F . −3 3 . . . . . 23 20 −7 35 . .
DEC1 -5,2 . . . . . . . . . 9 . 15 . .
J1N 9F . . . . . . . . . 9 . 15 . .
INC1 10 . . . . . . . . . 19 . 25 . .

9H LDA K 7 −3 3 13 14 16 9 18 23 19 −7 25 10 1
CMPA TABLE,1 7 −3 3 13 14 16 9 18 23 19 −7 25 10 1
JNE FAILURE 7 −3 3 13 14 16 9 18 23 19 −7 25 10 1

making it necessary to start over almost from scratch. We can obtain a much
more versatile method if we give up the idea of uniqueness, permitting different
keys to yield the same value f(K), and using a special method to resolve any
ambiguity after f(K) has been computed.

These considerations lead to a popular class of search methods commonly
known as hashing or scatter storage techniques. The verb “to hash” means
to chop something up or to make a mess out of it; the idea in hashing is to
scramble some aspects of the key and to use this partial information as the basis
for searching. We compute a hash address h(K) and begin searching there.

The birthday paradox tells us that there will probably be distinct keys
Ki ̸= Kj that hash to the same value h(Ki) = h(Kj). Such an occurrence is
called a collision, and several interesting approaches have been devised to handle
the collision problem. In order to use a hash table, programmers must make two
almost independent decisions: They must choose a hash function h(K), and they
must select a method for collision resolution. We shall now consider these two
aspects of the problem in turn.

Hash functions. To make things more explicit, let us assume throughout this
section that our hash function h takes on at most M different values, with

0 ≤ h(K) < M, (1)

for all keys K. The keys in actual files that arise in practice usually have a great
deal of redundancy; we must be careful to find a hash function that breaks up
clusters of almost identical keys, in order to reduce the number of collisions.
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HI
S I IN IS IT NO
T

OF ON OR TH
AT

TH
E

TH
IS TO WA
S

WH
IC
H

WI
TH

YO
U

Contents of rI1 after executing the instruction, given a particular key K
−8 −9 −9 −9 −9 −15 −16 −16 −16 −23 −23 −23 −23 −26 −26 −26 −28
−8 −9 −9 −9 −9 −15 −16 −16 −16 −23 −23 −23 −23 −26 −26 −26 −28
−7 −17 −2 5 6 −7 −18 −9 −5 −23 −23 −23 −15 −33 −26 −25 −20
−7 −17 −2 5 6 −7 −18 −9 −5 −23 −23 −23 −15 −33 −26 −25 −20
18 −1 29 . . 25 4 22 30 1 1 1 17 −16 −2 0 12
18 −1 29 5 6 25 4 22 30 1 1 1 17 −16 −2 0 12
18 −1 29 5 6 25 4 22 30 1 1 1 17 −16 −2 0 12
12 . . . . 20 . . . −26 −22 −18 . −22 −21 −5 8
12 . . . . 20 . . . −26 −22 −18 . −22 −21 −5 8

. . . . . . . . . −14 −6 2 . 11 −1 29 .

. . . . . . . . . −14 −6 2 . 11 −1 29 .

. . . . . . . . . −14 −6 2 . 11 −1 29 .

. . . . . . . . . −10 . −2 . . −5 11 .

. . . . . . . . . −10 . −2 . . −5 11 .

. . . . . . . . . . . . . . . 21 .
12 −1 29 5 6 20 4 22 30 −10 −6 −2 17 11 −5 21 8
12 −1 29 5 6 20 4 22 30 −10 −6 −2 17 11 −5 21 8
12 −1 29 5 6 20 4 22 30 −10 −6 −2 17 11 −5 21 8

It is theoretically impossible to define a hash function that creates truly
random data from the nonrandom data in actual files. But in practice it is not
difficult to produce a pretty good imitation of random data, by using simple
arithmetic as we have discussed in Chapter 3. And in fact we can often do even
better, by exploiting the nonrandom properties of actual data to construct a hash
function that leads to fewer collisions than truly random keys would produce.

Consider, for example, the case of 10-digit keys on a decimal computer.
One hash function that suggests itself is to let M = 1000, say, and to let h(K)
be three digits chosen from somewhere near the middle of the 20-digit product
K × K. This would seem to yield a fairly good spread of values between 000
and 999, with low probability of collisions. Experiments with actual data show,
in fact, that this “middle square” method isn’t bad, provided that the keys do
not have a lot of leading or trailing zeros; but it turns out that there are safer
and saner ways to proceed, just as we found in Chapter 3 that the middle square
method is not an especially good random number generator.

Extensive tests on typical files have shown that two major types of hash
functions work quite well. One is based on division, and the other is based on
multiplication.

The division method is particularly easy; we simply use the remainder
modulo M :

h(K) = K mod M. (2)
In this case, some values of M are obviously much better than others. For
example, if M is an even number, h(K) will be even when K is even and odd
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when K is odd, and this will lead to a substantial bias in many files. It would
be even worse to let M be a power of the radix of the computer, since K mod M
would then be simply the least significant digits of K (independent of the other
digits). Similarly we can argue that M probably shouldn’t be a multiple of 3;
for if the keys are alphabetic, two keys that differ only by permutation of letters
would then differ in numeric value by a multiple of 3. (This occurs because
22n mod 3 = 1 and 10n mod 3 = 1.) In general, we want to avoid values of M
that divide rk ± a, where k and a are small numbers and r is the radix of the
alphabetic character set (usually r = 64, 256, or 100), since a remainder modulo
such a value of M tends to be largely a simple superposition of the key digits.
Such considerations suggest that we choose M to be a prime number such that
rk ̸≡ ±a (modulo M) for small k and a. This choice has been found to be quite
satisfactory in most cases.

For example, on the MIX computer we could choose M = 1009, computing
h(K) by the sequence

LDX K rX← K.
ENTA 0 rA← 0.
DIV =1009= rX← K mod 1009.

(3)

The multiplicative hashing scheme is equally easy to do, but it is slightly
harder to describe because we must imagine ourselves working with fractions
instead of with integers. Let w be the word size of the computer, so that w is
usually 1010 or 230 for MIX; we can regard an integer A as the fraction A/w if we
imagine the radix point to be at the left of the word. The method is to choose
some integer constant A relatively prime to w, and to let

h(K) =


M


A

w
K


mod 1


. (4)

In this case we usually let M be a power of 2 on a binary computer, so that
h(K) consists of the leading bits of the least significant half of the product AK.

In MIX code, if we let M = 2m and assume a binary radix, the multiplicative
hash function is

LDA K rA← K.
MUL A rAX← AK.
ENTA 0 rAX← AK mod w.
SLB m Shift rAX m bits to the left.

(5)

Now h(K) appears in register A. Since MIX has rather slow multiplication and
shift instructions, this sequence takes exactly as long to compute as (3); but on
many machines multiplication is significantly faster than division.

In a sense this method can be regarded as a generalization of (3), since
we could for example take A to be an approximation to w/1009; multiplying
by the reciprocal of a constant is often faster than dividing by that constant.
The technique of (5) is almost a “middle square” method, but there is one
important difference: We shall see that multiplication by a suitable constant has
demonstrably good properties.
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One of the nice features of the multiplicative scheme is that no information
is lost when we blank out the A register in (5); we could determine K again,
given only the contents of rAX after (5) has finished. The reason is that A is
relatively prime to w, so Euclid’s algorithm can be used to find a constant A′

with AA′ mod w = 1; this implies that K =

A′(AK mod w)


mod w. In other

words, if f(K) denotes the contents of register X just before the SLB instruction
in (5), then

K1 ̸= K2 implies f(K1) ̸= f(K2). (6)
Of course f(K) takes on values in the range 0 to w − 1, so it isn’t any good as
a hash function, but it can be very useful as a scrambling function, namely a
function satisfying (6) that tends to randomize the keys. Such a function can be
very useful in connection with the tree search algorithms of Section 6.2.2, if the
order of keys is unimportant, since it removes the danger of degeneracy when
keys enter the tree in increasing order. (See exercise 6.2.2–10.) A scrambling
function is also useful in connection with the digital tree search algorithm of
Section 6.3, if the bits of the actual keys are biased.

Another feature of the multiplicative hash method is that it makes good
use of the nonrandomness found in many files. Actual sets of keys often have
a preponderance of arithmetic progressions, where {K, K+d, K+2d, . . . , K+td}
all appear in the file; for example, consider alphabetic names like {PART1, PART2,
PART3} or {TYPEA, TYPEB, TYPEC}. The multiplicative hash method converts
an arithmetic progression into an approximate arithmetic progression h(K),
h(K+d), h(K+2d), . . . of distinct hash values, reducing the number of collisions
from what we would expect in a random situation. The division method has this
same property.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 n

{nφ−1}

0

1

Fig. 37. Fibonacci hashing.

Figure 37 illustrates this aspect of multiplicative hashing in a particularly
interesting case. Suppose that A/w is approximately the golden ratio ϕ−1 =√

5−1

/2 ≈ 0.6180339887; then the successive values h(K), h(K +1), h(K +2),

. . . have essentially the same behavior as the successive hash values h(0), h(1),
h(2), . . . , so the following experiment suggests itself: Starting with the line
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segment [0 . . 1], we successively mark off the points {ϕ−1}, {2ϕ−1}, {3ϕ−1}, . . . ,
where {x} denotes the fractional part of x (namely x−⌊x⌋, or x mod 1). As shown
in Fig. 37, these points stay very well separated from each other; in fact, each
newly added point falls into one of the largest remaining intervals, and divides
it in the golden ratio! [This phenomenon was observed long ago by botanists
Louis and Auguste Bravais, Annales des Sciences Naturelles 7 (1837), 42–110,
who gave an illustration equivalent to Fig. 37 and related it to the Fibonacci
sequence. See also S. Świerczkowski, Fundamenta Math. 46 (1958), 187–189.]

The remarkable scattering property of the golden ratio is actually just a
special case of a very general result, originally conjectured by Hugo Steinhaus
and first proved by Vera Turán Sós [Acta Math. Acad. Sci. Hung. 8 (1957),
461–471; Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 127–134]:
Theorem S. Let θ be any irrational number. When the points {θ}, {2θ}, . . . ,
{nθ} are placed in the line segment [0 . . 1], the n + 1 line segments formed have
at most three different lengths. Moreover, the next point {(n+1)θ} will fall in
one of the largest existing segments.
Thus, the points {θ}, {2θ}, . . . , {nθ} are spread out very evenly between 0 and 1.
If θ is rational, the same theorem holds if we give a suitable interpretation to
the segments of length 0 that appear when n is greater than or equal to the
denominator of θ. A proof of Theorem S, together with a detailed analysis of
the underlying structure of the situation, appears in exercise 8; it turns out that
the segments of a given length are created and destroyed in a first-in-first-out
manner. Of course, some θ’s are better than others, since for example a value
that is near 0 or 1 will start out with many small segments and one large segment.
Exercise 9 shows that the two numbers ϕ−1 and ϕ−2 = 1−ϕ−1 lead to the “most
uniformly distributed” sequences, among all numbers θ between 0 and 1.

The theory above suggests Fibonacci hashing, where we choose the constant
A to be the nearest integer to ϕ−1w that is relatively prime to w. For example
if MIX were a decimal computer we would take

A = + 61 80 33 98 87 . (7)

This multiplier will spread out alphabetic keys like LIST1, LIST2, LIST3 very
nicely. But notice what happens when we have an arithmetic series in the
fourth character position, as in the keys SUM1␣, SUM2␣, SUM3␣: The effect is
as if Theorem S were being used with θ = {100A/w} = .80339887 instead of
θ = .6180339887 = A/w. The resulting behavior is still all right, in spite of the
fact that this value of θ is not quite as good as ϕ−1. On the other hand, if the
progression occurs in the second character position, as in A1␣␣␣, A2␣␣␣, A3␣␣␣,
the effective θ is .9887, and this is probably too close to 1.

Therefore we might do better with a multiplier like

A = + 61 61 61 61 61

in place of (7); such a multiplier will separate out consecutive sequences of keys
that differ in any character position. Unfortunately this choice suffers from



6.4 HASHING 519

another problem analogous to the difficulty of dividing by rk ± 1: Keys such
as XY and YX will tend to hash to the same location! One way out of this
difficulty is to look more closely at the structure underlying Theorem S. For
short progressions of keys, only the first few partial quotients of the continued
fraction representation of θ are relevant, and small partial quotients correspond
to good distribution properties. Therefore we find that the best values of θ lie
in the ranges

1
4 < θ < 3

10 , 1
3 < θ < 3

7 , 4
7 < θ < 2

3 , 7
10 < θ < 3

4 .

A value of A can be found so that each of its bytes lies in a good range and is
not too close to the values of the other bytes or their complements, for example

A = + 61 25 42 33 71 . (8)

Such a multiplier can be recommended. (These ideas about multiplicative hash-
ing are due largely to R. W. Floyd.)

A good hash function should satisfy two requirements:
a) Its computation should be very fast.
b) It should minimize collisions.

Property (a) is machine-dependent, and property (b) is data-dependent. If the
keys were truly random, we could simply extract a few bits from them and use
those bits for the hash function; but in practice we nearly always need to have a
hash function that depends on all bits of the key in order to satisfy (b).

So far we have considered how to hash one-word keys. Multiword or vari-
able-length keys can be handled by multiple-precision extensions of the methods
above, but it is generally adequate to speed things up by combining the individual
words together into a single word, then doing a single multiplication or division
as above. The combination can be done by addition mod w, or by exclusive-or
on a binary computer; both of these operations have the advantage that they are
invertible, namely that they depend on all bits of both arguments, and exclusive-
or is sometimes preferable because it avoids arithmetic overflow. However, both
of these operations are commutative, hence (X, Y ) and (Y, X) will hash to the
same address; G. D. Knott has suggested avoiding this problem by doing a cyclic
shift just before adding or exclusive-oring.

An even better way to hash l-character or l-word keys K = x1x2 . . . xl is to
compute

h(K) =

h1(x1) + h2(x2) + · · ·+ hl(xl)


mod M, (9)

where each hj is an independent hash function. This idea, introduced by J. L.
Carter and M. N. Wegman in 1977, is especially efficient when each xj is a single
character, because we can then use a precomputed array for each hj . Such arrays
make multiplication unnecessary. If M is a power of 2, we can avoid the division
in (9) by substituting exclusive-or for addition; this gives a different, but equally
good, hash function. Therefore (9) certainly satisfies property (a). Moreover,
Carter and Wegman proved that if the hj are chosen at random, property (b)
will hold regardless of the input data. (See exercise 72.)
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Many more methods for hashing have been suggested, but none of them
have proved to be superior to the simple methods described above. For a survey
of several approaches together with detailed statistics on their performance with
actual files, see the article by V. Y. Lum, P. S. T. Yuen, and M. Dodd, CACM
14 (1971), 228–239.

Of all the other hash methods that have been tried, perhaps the most in-
teresting is a technique based on algebraic coding theory; the idea is analogous
to the division method above, but we divide by a polynomial modulo 2 instead of
dividing by an integer. (As observed in Section 4.6, this operation is analogous
to division, just as addition is analogous to exclusive-or.) For this method,
M should be a power of 2, say M = 2m, and we make use of an mth degree
polynomial P (x) = xm + pm−1xm−1 + · · · + p0. An n-digit binary key K =
(kn−1 . . . k1 k0)2 can be regarded as the polynomial K(x) = kn−1xn−1 + · · · +
k1x + k0, and we compute the remainder

K(x) mod P (x) = hm−1xm−1 + · · ·+ h1x + h0

using polynomial arithmetic modulo 2; then h(K) = (hm−1 . . . h1 h0)2. If P (x) is
chosen properly, this hash function can be guaranteed to avoid collisions between
nearly equal keys. For example if n = 15, m = 10, and

P (x) = x10 + x8 + x5 + x4 + x2 + x + 1, (10)

it can be shown that h(K1) will be unequal to h(K2) whenever K1 and K2
are distinct keys that differ in fewer than seven bit positions. (See exercise 7
for further information about this scheme; it is, of course, more suitable for
hardware or microprogramming implementation than for software.)

It is often convenient to use the constant hash function h(K) = 0 when
debugging a program, since all keys will be stored together; an efficient h(K)
can be substituted later.
Collision resolution by “chaining.” We have observed that some hash
addresses will probably be burdened with more than their share of keys. Perhaps
the most obvious way to solve this problem is to maintain M linked lists, one
for each possible hash code. A LINK field should be included in each record,
and there will also be M list heads, numbered say from 1 through M. After
hashing the key, we simply do a sequential search in list number h(K) + 1. (See
exercise 6.1–2. The situation is very similar to multiple-list-insertion sorting,
Program 5.2.1M.)

Figure 38 illustrates this simple chaining scheme when M = 9, for the
sequence of seven keys

K = EN, TO, TRE, FIRE, FEM, SEKS, SYV (11)

(the numbers 1 through 7 in Norwegian), having the respective hash codes

h(K) + 1 = 3, 1, 4, 1, 5, 9, 2. (12)

The first list has two elements, and three of the lists are empty.
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Λ

Λ

Λ

TO

SYV Λ

EN Λ

TRE Λ

FEM Λ

SEKS Λ

FIRE ΛHEAD[1]:

HEAD[2]:

HEAD[3]:

HEAD[4]:

HEAD[5]:

HEAD[6]:

HEAD[7]:

HEAD[8]:

HEAD[9]:

Fig. 38. Separate chaining.

Chaining is quite fast, because the lists are short. If 365 people are gathered
together in one room, there will probably be many pairs having the same birth-
day, but the average number of people with any given birthday will be only 1!
In general, if there are N keys and M lists, the average list size is N/M ; thus
hashing decreases the average amount of work needed for sequential searching
by roughly a factor of M. (A precise formula is worked out in exercise 34.)

This method is a straightforward combination of techniques we have dis-
cussed before, so we do not need to formulate a detailed algorithm for chained
hash tables. It is often a good idea to keep the individual lists in order by key,
so that unsuccessful searches — which must precede insertions — go faster. Thus
if we choose to make the lists ascending, the TO and FIRE nodes of Fig. 38 would
be interchanged, and all the Λ links would be replaced by pointers to a dummy
record whose key is ∞. (See Algorithm 6.1T.) Alternatively we could make use
of the “self-organizing” concept discussed in Section 6.1; instead of keeping the
lists in order by key, they may be kept in order according to the time of most
recent occurrence.

For the sake of speed we would like to make M rather large. But when M is
large, many of the lists will be empty and much of the space for the M list heads
will be wasted. This suggests another approach, when the records are small: We
can overlap the record storage with the list heads, making room for a total of
M records and M links instead of for N records and M + N links. Sometimes
it is possible to make one pass over all the data to find out which list heads will
be used, then to make another pass inserting all the “overflow” records into the
empty slots. But this is often impractical or impossible, and we’d rather have a
technique that processes each record only once when it first enters the system.
The following algorithm, due to F. A. Williams [CACM 2, 6 (June 1959), 21–24],
is a convenient way to solve the problem.

Algorithm C (Chained hash table search and insertion). This algorithm looks
for a given key K in an M -node table. If K is not in the table and the table is
not full, K is inserted.
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C1. Hash

C2. Is there a list?

C3. Compare C4. Advance
to next

C5. Find
empty node

C6. Insert
new key

Yes

No

K=KEY[i]

SUCCESS

End
of list R=0

OVERFLOW

Fig. 39. Chained hash table search and insertion.

The nodes of the table are denoted by TABLE[i], for 0 ≤ i ≤ M, and they
are of two distinguishable types, empty and occupied. An occupied node contains
a key field KEY[i], a link field LINK[i], and possibly other fields.

The algorithm makes use of a hash function h(K). An auxiliary variable
R is also used, to help find empty spaces; when the table is empty, we have
R = M + 1, and as insertions are made it will always be true that TABLE[j] is
occupied for all j in the range R ≤ j ≤M. By convention, TABLE[0] will always
be empty.
C1. [Hash.] Set i← h(K) + 1. (Now 1 ≤ i ≤M.)
C2. [Is there a list?] If TABLE[i] is empty, go to C6. (Otherwise TABLE[i] is

occupied; we will look at the list of occupied nodes that starts here.)
C3. [Compare.] If K = KEY[i], the algorithm terminates successfully.
C4. [Advance to next.] If LINK[i] ̸= 0, set i← LINK[i] and go back to step C3.
C5. [Find empty node.] (The search was unsuccessful, and we want to find an

empty position in the table.) Decrease R one or more times until finding
a value such that TABLE[R] is empty. If R = 0, the algorithm terminates
with overflow (there are no empty nodes left); otherwise set LINK[i] ← R,
i← R.

C6. [Insert new key.] Mark TABLE[i] as an occupied node, with KEY[i] ← K
and LINK[i]← 0.

This algorithm allows several lists to coalesce, so that records need not be
moved after they have been inserted into the table. For example, see Fig. 40,
where SEKS appears in the list containing TO and FIRE since the latter had already
been inserted into position 9.

In order to see how Algorithm C compares with others in this chapter, we can
write the following MIX program. The analysis worked out below indicates that
the lists of occupied cells tend to be short, and the program has been designed
with this fact in mind.
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TO

SYV Λ

EN Λ

TRE Λ

FEM Λ

SEKS Λ

FIRE

TABLE[1]:

TABLE[2]:

TABLE[3]:

TABLE[4]:

TABLE[5]:

TABLE[6]:

TABLE[7]:

TABLE[8]:

TABLE[9]:

Fig. 40. Coalesced chaining.

Program C (Chained hash table search and insertion). For convenience, the
keys are assumed to be only three bytes long, and nodes are represented as
follows:

empty node − 1 0 0 0 0 ;

occupied node + LINK KEY .
(13)

The table size M is assumed to be prime; TABLE[i] is stored in location TABLE+i.
rI1 ≡ i, rA ≡ K; rI2 ≡ LINK[i] and/or R.

01 KEY EQU 3:5
02 LINK EQU 0:2
03 START LDX K 1 C1. Hash.
04 ENTA 0 1
05 DIV =M= 1
06 STX *+1(0:2) 1
07 ENT1 * 1 i← h(K)
08 INC1 1 1 + 1.
09 LDA K 1
10 LD2 TABLE,1(LINK) 1 C2. Is there a list?
11 J2N 6F 1 To C6 if TABLE[i] empty.
12 CMPA TABLE,1(KEY) A C3. Compare.
13 JE SUCCESS A Exit if K = KEY[i].
14 J2Z 5F A− S1 To C5 if LINK[i] = 0.
15 4H ENT1 0,2 C − 1 C4. Advance to next.
16 CMPA TABLE,1(KEY) C − 1 C3. Compare.
17 JE SUCCESS C − 1 Exit if K = KEY[i].
18 LD2 TABLE,1(LINK) C − 1− S2
19 J2NZ 4B C − 1− S2 Advance if LINK[i] ̸= 0.
20 5H LD2 R A− S C5. Find empty node.
21 DEC2 1 T R← R− 1.
22 LDX TABLE,2 T
23 JXNN *-2 T Repeat until TABLE[R] empty.
24 J2Z OVERFLOW A− S Exit if no empty nodes left.
25 ST2 TABLE,1(LINK) A− S LINK[i]← R.
26 ENT1 0,2 A− S i← R.
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27 ST2 R A− S Update R in memory.
28 6H STZ TABLE,1(LINK) 1− S C6. Insert new key. LINK[i]← 0.
29 STA TABLE,1(KEY) 1− S KEY[i]← K.

The running time of this program depends on
C = number of table entries probed while searching;
A = [initial probe found an occupied node];
S = [search was successful];
T = number of table entries probed while looking for an empty space.

Here S = S1 + S2, where S1 = 1 if successful on the first try. The total running
time for the searching phase of Program C is (7C + 4A + 17− 3S + 2S1)u, and
the insertion of a new key when S = 0 takes an additional (8A + 4T + 4)u.

Suppose there are N keys in the table at the start of this program, and let

α = N/M = load factor of the table. (14)

Then the average value of A in an unsuccessful search is obviously α, if the hash
function is random; and exercise 39 proves that the average value of C in an
unsuccessful search is

C ′
N = 1 + 1

4


1 + 2

M

N
− 1− 2N

M


≈ 1 + e2α − 1− 2α

4 . (15)

Thus when the table is half full, the average number of probes made in an
unsuccessful search is about 1

4 (e + 2) ≈ 1.18; and even when the table gets
completely full, the average number of probes made just before inserting the
final item will be only about 1

4 (e2 + 1) ≈ 2.10. The standard deviation is also
small, as shown in exercise 40. These statistics prove that the lists stay short
even though the algorithm occasionally allows them to coalesce, when the hash
function is random. Of course C can be as high as N, if the hash function is bad
or if we are extremely unlucky.

In a successful search, we always have A = 1. The average number of probes
during a successful search may be computed by summing the quantity C + A
over the first N unsuccessful searches and dividing by N, if we assume that each
key is equally likely. Thus we obtain

CN = 1
N


0≤k<N


C ′

k + k

M


= 1 + 1

8
M

N


1 + 2

M

N
− 1− 2N

M


+ 1

4
N − 1

M

≈ 1 + e2α − 1− 2α

8α
+ α

4 (16)

as the average number of probes in a random successful search. Even a full table
will require only about 1.80 probes, on the average, to find an item! Similarly
(see exercise 42), the average value of S1 turns out to be

S1N = 1− 1
2

(N − 1)/M


≈ 1− 1

2 α. (17)

At first glance it may appear that step C5 is inefficient, since it has to search
sequentially for an empty position. But actually the total number of table probes
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made in step C5 as a table is being built will never exceed the number of items
in the table; so we make an average of at most one of these probes per insertion.
Exercise 41 proves that T is approximately αeα in a random unsuccessful search.

It would be possible to modify Algorithm C so that no two lists coalesce, but
then it would become necessary to move records around. For example, consider
the situation in Fig. 40 just before we wanted to insert SEKS into position 9; in
order to keep the lists separate, it would be necessary to move FIRE, and for
this purpose it would be necessary to discover which node points to FIRE. We
could solve this problem without providing two-way linkage by hashing FIRE
and searching down its list, as suggested by D. E. Ferguson, since the lists are
short. Exercise 34 shows that the average number of probes, when lists aren’t
coalesced, is reduced to

C ′
N = 1 + N(N − 1)

2M2 ≈ 1 + α2

2 (unsuccessful search), (18)

CN = 1 + N − 1
2M

≈ 1 + α

2 (successful search). (19)

This is not enough of an improvement over (15) and (16) to warrant changing
the algorithm.

On the other hand, Butler Lampson has observed that most of the space that
is occupied by links can actually be saved in the chaining method, if we avoid
coalescing the lists. This leads to an interesting algorithm that is discussed in
exercise 13. Lampson’s method introduces a tag bit in each entry, and causes the
average number of probes needed in an unsuccessful search to decrease slightly,
from (18) to 

1− 1
M

N
+ N

M
≈ e−α + α. (18′)

Separate chaining as in Fig. 38 can be used when N > M, so overflow is
not a serious problem in that case. When the lists coalesce as in Fig. 40 and
Algorithm C, we can link extra items into an auxiliary storage pool; L. Guibas
has proved that the average number of probes to insert the (M + L + 1)st item
is then


L/2M + 1

4


(1 + 2/M)M − 1


+ 1
2 . However, it is usually preferable to

use an alternative scheme that puts the first colliding elements into an auxiliary
storage area, allowing lists to coalesce only when this auxiliary area has filled
up; see exercise 43.

Collision resolution by “open addressing.” Another way to resolve the
problem of collisions is to do away with links entirely, simply looking at various
entries of the table one by one until either finding the key K or finding an empty
position. The idea is to formulate some rule by which every key K determines a
“probe sequence,” namely a sequence of table positions that are to be inspected
whenever K is inserted or looked up. If we encounter an empty position while
searching for K, using the probe sequence determined by K, we can conclude
that K is not in the table, since the same sequence of probes will be made every
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time K is processed. This general class of methods was named open addressing
by W. W. Peterson [IBM J. Research & Development 1 (1957), 130–146].

The simplest open addressing scheme, known as linear probing, uses the
cyclic probe sequence

h(K), h(K)− 1, . . . , 0, M − 1, M − 2, . . . , h(K) + 1 (20)

as in the following algorithm.

Algorithm L (Linear probing and insertion). This algorithm searches an M -
node table, looking for a given key K. If K is not in the table and the table is
not full, K is inserted.

The nodes of the table are denoted by TABLE[i], for 0 ≤ i < M, and they
are of two distinguishable types, empty and occupied. An occupied node contains
a key, called KEY[i], and possibly other fields. An auxiliary variable N is used
to keep track of how many nodes are occupied; this variable is considered to be
part of the table, and it is increased by 1 whenever a new key is inserted.

This algorithm makes use of a hash function h(K), and it uses the linear
probing sequence (20) to address the table. Modifications of that sequence are
discussed below.
L1. [Hash.] Set i← h(K). (Now 0 ≤ i < M.)
L2. [Compare.] If TABLE[i] is empty, go to step L4. Otherwise if KEY[i] = K,

the algorithm terminates successfully.
L3. [Advance to next.] Set i ← i − 1; if now i < 0, set i ← i + M. Go back to

step L2.
L4. [Insert.] (The search was unsuccessful.) If N = M − 1, the algorithm

terminates with overflow. (This algorithm considers the table to be full
when N = M − 1, not when N = M ; see exercise 15.) Otherwise set
N ← N + 1, mark TABLE[i] occupied, and set KEY[i]← K.

Figure 41 shows what happens when the seven example keys (11) are inserted
by Algorithm L, using the respective hash codes 2, 7, 1, 8, 2, 8, 1: The last three
keys, FEM, SEKS, and SYV, have been displaced from their initial locations h(K).

FEM

TRE

EN

SYV

SEKS

TO

FIRE

0

1

2

3

4

5

6

7

8

Fig. 41. Linear open addressing.
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Program L (Linear probing and insertion). This program deals with full-word
keys; but a key of 0 is not allowed, since 0 is used to signal an empty position
in the table. (Alternatively, we could require the keys to be nonnegative, letting
empty positions contain −1.) The table size M is assumed to be prime, and
TABLE[i] is stored in location TABLE + i for 0 ≤ i < M. For speed in the inner
loop, location TABLE−1 is assumed to contain 0. Location VACANCIES is assumed
to contain the value M − 1−N ; and rA ≡ K, rI1 ≡ i.

In order to speed up the inner loop of this program, the test “i < 0” has been
removed from the loop so that only the essential parts of steps L2 and L3 remain.
The total running time for the searching phase comes to (7C + 9E + 21− 4S)u,
and the insertion after an unsuccessful search adds an extra 8u.

01 START LDX K 1 L1. Hash.
02 ENTA 0 1
03 DIV =M= 1
04 STX *+1(0:2) 1
05 ENT1 * 1 i← h(K).
06 LDA K 1
07 JMP 2F 1
08 8H INC1 M+1 E L3. Advance to next.
09 3H DEC1 1 C + E − 1 i← i− 1.
10 2H CMPA TABLE,1 C + E L2. Compare.
11 JE SUCCESS C + E Exit if K = KEY[i].
12 LDX TABLE,1 C + E − S
13 JXNZ 3B C + E − S To L3 if TABLE[i] nonempty.
14 J1N 8B E + 1− S To L3 with i←M if i = −1.
15 4H LDX VACANCIES 1− S L4. Insert.
16 JXZ OVERFLOW 1− S Exit with overflow if N = M − 1.
17 DECX 1 1− S
18 STX VACANCIES 1− S Increase N by 1.
19 STA TABLE,1 1− S TABLE[i]← K.

As in Program C, the variable C denotes the number of probes, and S tells
whether or not the search was successful. We may ignore the variable E, which
is 1 only if a spurious probe of TABLE[−1] has been made, since its average value
is (C − 1)/M.

Experience with linear probing shows that the algorithm works fine until
the table begins to get full; but eventually the process slows down, with long
drawn-out searches becoming increasingly frequent. The reason for this behavior
can be understood by considering the following hypothetical hash table in which
M = 19 and N = 9:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
(21)

Shaded squares represent occupied positions. The next key K to be inserted
into the table will go into one of the ten empty spaces, but these are not equally
likely; in fact, K will be inserted into position 11 if 11 ≤ h(K) ≤ 15, while it
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will fall into position 8 only if h(K) = 8. Therefore position 11 is five times as
likely as position 8; long lists tend to grow even longer.

This phenomenon isn’t enough by itself to account for the relatively poor
behavior of linear probing, since a similar thing occurs in Algorithm C. (A list
of length 4 is four times as likely to grow in Algorithm C as a list of length 1.)
The real problem occurs when a cell like 4 or 16 becomes occupied in (21); then
two separate lists are combined, while the lists in Algorithm C never grow by
more than one step at a time. Consequently the performance of linear probing
degrades rapidly when N approaches M.

We shall prove later in this section that the average number of probes needed
by Algorithm L is approximately

C ′
N ≈

1
2


1 +

 1
1− α

2
(unsuccessful search), (22)

CN ≈
1
2


1 + 1

1− α


(successful search), (23)

where α = N/M is the load factor of the table. Therefore Program L is almost
as fast as Program C, when the table is less than 75 percent full, in spite of the
fact that Program C deals with unrealistically short keys. On the other hand,
when α approaches 1 the best thing we can say about Program L is that it works,
slowly but surely. In fact, when N = M−1, there is only one vacant space in the
table, so the average number of probes in an unsuccessful search is (M + 1)/2;
we shall also prove that the average number of probes in a successful search is
approximately


πM/8 when the table is full.

The pileup phenomenon that makes linear probing costly on a nearly full
table is aggravated by the use of division hashing, if consecutive key values
{K, K+1, K+2, . . .} are likely to occur, since these keys will have consecutive
hash codes. Multiplicative hashing will break up these clusters satisfactorily.

Another way to protect against the consecutive hash code problem is to set
i ← i − c in step L3, instead of i ← i − 1. Any positive value of c will do, so
long as it is relatively prime to M, since the probe sequence will still examine
every position of the table in this case. Such a change would make Program L a
bit slower, because of the test for i < 0. Decreasing by c instead of by 1 won’t
alter the pileup phenomenon, since groups of c-apart records will still be formed;
equations (22) and (23) will still apply. But the appearance of consecutive keys
{K, K+1, K+2, . . .} will now actually be a help instead of a hindrance.

Although a fixed value of c does not reduce the pileup phenomenon, we
can improve the situation nicely by letting c depend on K. This idea leads to
an important modification of Algorithm L, first introduced by Guy de Balbine
[Ph.D. thesis, Calif. Inst. of Technology (1968), 149–150]:

Algorithm D (Open addressing with double hashing). This algorithm is almost
identical to Algorithm L, but it probes the table in a slightly different fashion by
making use of two hash functions h1(K) and h2(K). As usual h1(K) produces a
value between 0 and M − 1, inclusive; but h2(K) must produce a value between
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1 and M − 1 that is relatively prime to M. (For example, if M is prime, h2(K)
can be any value between 1 and M − 1 inclusive; or if M = 2m, h2(K) can be
any odd value between 1 and 2m − 1.)
D1. [First hash.] Set i← h1(K).
D2. [First probe.] If TABLE[i] is empty, go to D6. Otherwise if KEY[i] = K, the

algorithm terminates successfully.
D3. [Second hash.] Set c← h2(K).
D4. [Advance to next.] Set i← i− c; if now i < 0, set i← i + M.
D5. [Compare.] If TABLE[i] is empty, go to D6. Otherwise if KEY[i] = K, the

algorithm terminates successfully. Otherwise go back to D4.
D6. [Insert.] If N = M − 1, the algorithm terminates with overflow. Otherwise

set N ← N + 1, mark TABLE[i] occupied, and set KEY[i]← K.

Several possibilities have been suggested for computing h2(K). If M is
prime and h1(K) = K mod M, we might let h2(K) = 1 +


K mod (M − 1)


; but

since M − 1 is even, it would be better to let h2(K) = 1 +

K mod (M − 2)


.

This suggests choosing M so that M and M − 2 are “twin primes” like 1021
and 1019. Alternatively, we could set h2(K) = 1 +


⌊K/M⌋mod (M − 2)


,

since the quotient ⌊K/M⌋ might be available in a register as a by-product of the
computation of h1(K).

If M = 2m and we are using multiplicative hashing, h2(K) can be computed
simply by shifting left m more bits and “oring in” a 1, so that the coding sequence
in (5) would be followed by

ENTA 0 Clear rA.
SLB m Shift rAX m bits left.
OR =1= rA← rA | 1.

(24)

This is faster than the division method.
In each of the techniques suggested above, h1(K) and h2(K) are essentially

independent, in the sense that different keys will yield the same values for both h1
and h2 with probability approximately proportional to 1/M2 instead of to 1/M .
Empirical tests show that the behavior of Algorithm D with independent hash
functions is essentially indistinguishable from the number of probes that would
be required if the keys were inserted at random into the table; there is practically
no “piling up” or “clustering” as in Algorithm L.

It is also possible to let h2(K) depend on h1(K), as suggested by Gary Knott
in 1968; for example, if M is prime we could let

h2(K) =


1, if h1(K) = 0;
M − h1(K), if h1(K) > 0.

(25)

This would be faster than doing another division, but we shall see that it does
cause a certain amount of secondary clustering, requiring slightly more probes
because of the increased chance that two or more keys will follow the same path.
The formulas derived below can be used to determine whether the gain in hashing
time outweighs the loss of probing time.
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Algorithms L and D are very similar, yet there are enough differences that
it is instructive to compare the running time of the corresponding MIX programs.
Program D (Open addressing with double hashing). Since this program is
substantially like Program L, it is presented without comments. rI2 ≡ c− 1.
01 START LDX K 1
02 ENTA 0 1
03 DIV =M= 1
04 STX *+1(0:2) 1
05 ENT1 * 1
06 LDX TABLE,1 1
07 CMPX K 1
08 JE SUCCESS 1
09 JXZ 4F 1− S1
10 SRAX 5 A− S1
11 DIV =M-2= A− S1
12 STX *+1(0:2) A− S1
13 ENT2 * A− S1
14 LDA K A− S1

15 3H DEC1 1,2 C − 1
16 J1NN *+2 C − 1
17 INC1 M B
18 CMPA TABLE,1 C − 1
19 JE SUCCESS C − 1
20 LDX TABLE,1 C − 1− S2
21 JXNZ 3B C − 1− S2
22 4H LDX VACANCIES 1− S
23 JXZ OVERFLOW 1− S
24 DECX 1 1− S
25 STX VACANCIES 1− S
26 LDA K 1− S
27 STA TABLE,1 1− S

The frequency counts A, C, S1, S2 in this program have a similar interpretation
to those in Program C above. The other variable B will be about (C−1)/2 on the
average. (If we restricted the range of h2(K) to, say, 1 ≤ h2(K) ≤M/2, B would
be only about (C − 1)/4; this increase of speed will probably not be offset by a
noticeable increase in the number of probes.) When there are N = αM keys in
the table, the average value of A is, of course, α in an unsuccessful search, and
A = 1 in a successful search. As in Algorithm C, the average value of S1 in a
successful search is 1− 1

2

(N − 1)/M


≈ 1− 1

2 α. The average number of probes
is difficult to determine exactly, but empirical tests show good agreement with
formulas derived below for “uniform probing,” namely

C ′
N = M +1

M +1−N
≈ (1−α)−1 (unsuccessful search), (26)

CN = M +1
N

(HM+1−HM+1−N ) ≈ −α−1 ln(1−α) (successful search), (27)

when h1(K) and h2(K) are independent. When h2(K) depends on h1(K) as
in (25), the secondary clustering causes (26) and (27) to be increased to

C ′
N = M +1

M +1−N
− N

M +1 +HM+1−HM+1−N +O(M−1)

≈ (1−α)−1−α−ln(1−α); (28)

CN = 1+HM+1−HM+1−N−
N

2(M +1)−(HM+1−HM+1−N )/N +O(N−1)

≈ 1−ln(1−α)− 1
2 α. (29)

(See exercise 44.) Note that as the table gets full, these values of CN approach
HM+1 − 1 and HM+1 − 1

2 , respectively, when N = M ; this is much better than
we observed in Algorithm L, but not as good as in the chaining methods.
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Fig. 42. The running time for successful searching by three open addressing schemes.

Since each probe takes slightly less time in Algorithm L, double hashing
is advantageous only when the table gets full. Figure 42 compares the average
running time of Program L, Program D, and a modified Program D that involves
secondary clustering, replacing the rather slow calculation of h2(K) in lines 10–13
by the following three instructions:

ENN2 1-M,1 c←M − i.
J1NZ *+2
ENT2 0 If i = 0, c← 1.

(30)

Program D takes a total of 8C + 19A + B + 26 − 13S − 17S1 units of time;
modification (30) saves about 15(A− S1) ≈ 7.5α of these in a successful search.
In this case, secondary clustering is preferable to independent double hashing.

On a binary computer, we could speed up the computation of h2(K) in
another way, if M is prime greater than, say, 512, replacing lines 10–13 by

AND =511= rA← rA mod 512.
STA *+1(0:2)
ENT2 * c← rA + 1.

(31)

This idea (suggested by Bell and Kaman, CACM 13 (1970), 675–677, who
discovered Algorithm D independently) avoids secondary clustering without the
expense of another division.

Many other probe sequences have been proposed as improvements on Algo-
rithm L, but none seem to be superior to Algorithm D except possibly the method
described in exercise 20.

By using the relative order of keys we can reduce the average running
time for unsuccessful searches by Algorithms L or D to the average running
time for successful search; see exercise 66. This technique can be important in
applications for which unsuccessful searches are common; for example, TEX uses
such an algorithm when looking for exceptions to its hyphenation rules.
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Fig. 43. The number of times a compiler typically searches for variable names. The
names are listed from left to right in order of their first appearance.

Brent’s Variation. Richard P. Brent has discovered a way to modify Algo-
rithm D so that the average successful search time remains bounded as the table
gets full. His method [CACM 16 (1973), 105–109] is based on the fact that
successful searches are much more common than insertions, in many applications;
therefore he proposes doing more work when inserting an item, moving records
in order to reduce the expected retrieval time.

For example, Fig. 43 shows the number of times each identifier was actually
found to appear, in a typical PL/I procedure. This data indicates that a PL/I
compiler that uses a hash table to keep track of variable names will be looking up
many of the names five or more times but inserting them only once. Similarly,
Bell and Kaman found that a COBOL compiler used its symbol table algorithm
10988 times while compiling a program, but made only 735 insertions into the
table; this is an average of about 14 successful searches per unsuccessful search.
Sometimes a table is actually created only once (for example, a table of symbolic
opcodes in an assembler), and it is used thereafter purely for retrieval.

Brent’s idea is to change the insertion process in Algorithm D as follows.
Suppose an unsuccessful search has probed locations p0, p1, . . . , pt−1, pt, where
pj =


h1(K)−jh2(K)


mod M and TABLE[pt] is empty. If t ≤ 1, we insert K in

position pt as usual; but if t ≥ 2, we compute c0 = h2(K0), where K0 = KEY[p0],
and see if TABLE[(p0 − c0) mod M] is empty. If it is, we set it to TABLE[p0] and
then insert K in position p0. This increases the retrieval time for K0 by one step,
but it decreases the retrieval time for K by t ≥ 2 steps, so it results in a net
improvement. Similarly, if TABLE[(p0 − c0) mod M] is occupied and t ≥ 3, we
try TABLE[(p0 − 2c0) mod M]; if that is full too, we compute c1 = h2(KEY[p1])
and try TABLE[(p1 − c1) mod M]; etc. In general, let cj = h2(KEY[pj]) and
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pj,k = (pj − kcj) mod M ; if we have found TABLE[pj,k] occupied for all indices j
and k such that j+k < r, and if t ≥ r+1, we look at TABLE[p0,r], TABLE[p1,r−1],
. . . , TABLE[pr−1,1]. If the first empty space occurs at position pj,r−j we set
TABLE[pj,r−j]← TABLE[pj] and insert K in position pj .

Brent’s analysis indicates that the average number of probes per successful
search is reduced to the levels shown in Fig. 44, on page 545, with a maximum
value of about 2.49.

The number t+1 of probes in an unsuccessful search is not reduced by Brent’s
variation; it remains at the level indicated by Eq. (26), approaching 1

2 (M + 1)
as the table gets full. The average number of times h2 needs to be computed
per insertion is α2 + α5 + 1

3 α6 + · · · , according to Brent’s analysis, eventually
approaching Θ(

√
M ); and the number of additional table positions probed while

deciding how to make the insertion is about α2 + α4 + 4
3 α5 + α6 + · · · .

E. G. Mallach [Comp. J. 20 (1977), 137–140] has experimented with refine-
ments of Brent’s variation, and further results have been obtained by Gaston H.
Gonnet and J. Ian Munro [SICOMP 8 (1979), 463–478].

Deletions. Many computer programmers have great faith in algorithms, and
they are surprised to find that the obvious way to delete records from a hash
table doesn’t work. For example, if we try to delete the key EN from Fig. 41,
we can’t simply mark that table position empty, because another key FEM would
suddenly be forgotten! (Recall that EN and FEM both hashed to the same location.
When looking up FEM, we would find an empty place, indicating an unsuccessful
search.) A similar problem occurs with Algorithm C, due to the coalescing of
lists; imagine the deletion of both TO and FIRE from Fig. 40.

In general, we can handle deletions by putting a special code value in the
corresponding cell, so that there are three kinds of table entries: empty, occupied,
and deleted. When searching for a key, we should skip over deleted cells, as if
they were occupied. If the search is unsuccessful, the key can be inserted in place
of the first deleted or empty position that was encountered.

But this idea is workable only when deletions are very rare, because the
entries of the table never become empty again once they have been occupied.
After a long sequence of repeated insertions and deletions, all of the empty spaces
will eventually disappear, and every unsuccessful search will take M probes!
Furthermore the time per probe will be increased, since we will have to test
whether i has returned to its starting value in step D4; and the number of
probes in a successful search will drift upward from CN to C ′

N .
When linear probing is being used (Algorithm L), we can make deletions in

a way that avoids such a sorry state of affairs, if we are willing to do some extra
work for the deletion.

Algorithm R (Deletion with linear probing). Assuming that an open hash table
has been constructed by Algorithm L, this algorithm deletes the record from a
given position TABLE[i].
R1. [Empty a cell.] Mark TABLE[i] empty, and set j ← i.
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R2. [Decrease i.] Set i← i− 1, and if this makes i negative set i← i + M .
R3. [Inspect TABLE[i].] If TABLE[i] is empty, the algorithm terminates. Other-

wise set r ← h(KEY[i]), the original hash address of the key now stored at
position i. If i ≤ r < j or if r < j < i or j < i ≤ r (in other words, if r lies
cyclically between i and j), go back to R2.

R4. [Move a record.] Set TABLE[j]← TABLE[i], and return to step R1.

Exercise 22 shows that this algorithm causes no degradation in performance;
in other words, the average number of probes predicted in Eqs. (22) and (23)
will remain the same. (A weaker result for tree insertion was proved in Theorem
6.2.2H.) But the validity of Algorithm R depends heavily on the fact that linear
probing is involved, and no analogous deletion procedure for use with Algorithm
D is possible. The average running time of Algorithm R is analyzed in exercise 64.

Of course when chaining is used with separate lists for each possible hash
value, deletion causes no problems since it is simply a deletion from a linked
linear list. Deletion with Algorithm C is discussed in exercise 23.

Algorithm R may move some of the table entries, and this is undesirable
if they are being pointed to from elsewhere. Another approach to deletions is
possible by adapting some of the ideas used in garbage collection (see Section
2.3.5): We might keep a reference count with each key telling how many other
keys collide with it; then it is possible to convert unoccupied cells to empty status
when their reference drops to zero. Alternatively we might go through the entire
table whenever too many deleted entries have accumulated, changing all the
unoccupied positions to empty and then looking up all remaining keys, in order
to see which unoccupied positions still require “deleted” status. These proce-
dures, which avoid relocation and work with any hash technique, were originally
suggested by T. Gunji and E. Goto [J. Information Proc. 3 (1980), 1–12].

*Analysis of the algorithms. It is especially important to know the average
behavior of a hashing method, because we are committed to trusting in the
laws of probability whenever we hash. The worst case of these algorithms is
almost unthinkably bad, so we need to be reassured that the average behavior
is very good.

Before we get into the analysis of linear probing, etc., let us consider an
approximate model of the situation, called uniform probing. In this model, which
was suggested by W. W. Peterson [IBM J. Research & Devel. 1 (1957), 135–136],
we assume that each key is placed in a completely random location of the table, so
that each of the


M
N


possible configurations of N occupied cells and M−N empty

cells is equally likely. This model ignores any effect of primary or secondary
clustering; the occupancy of each cell in the table is essentially independent of
all the others. Then the probability that any permutation of table positions needs
exactly r probes to insert the (N + 1)st item is the number of configurations in
which r−1 given cells are occupied and another is empty, divided by


M
N


, namely

Pr =


M − r

N − r + 1


M

N


;
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therefore the average number of probes for uniform probing is

C ′
N =

M
r=1

rPr = M + 1−
M
r=1

(M + 1− r)Pr

= M + 1−
M
r=1

(M + 1− r)


M − r

M −N − 1


M

N



= M + 1−
M
r=1

(M −N)


M + 1− r

M −N


M

N


= M + 1− (M −N)


M + 1

M −N + 1


M

N


= M + 1− (M −N) M + 1

M−N +1 = M + 1
M−N +1 , for 1 ≤ N < M. (32)

(We have already solved essentially the same problem in connection with random
sampling, in exercise 3.4.2–5.) Setting α = N/M, this exact formula for C ′

N is
approximately equal to

1
1− α

= 1 + α + α2 + α3 + · · · , (33)

a series that has a rough intuitive interpretation: With probability α we need
more than one probe, with probability α2 we need more than two, etc. The
corresponding average number of probes for a successful search is

CN = 1
N

N−1
k=0

C ′
k = M + 1

N

 1
M + 1 + 1

M
+ · · ·+ 1

M −N + 2


= M + 1

N


HM+1 −HM−N+1


≈ 1

α
ln 1

1− α
. (34)

As remarked above, extensive tests show that Algorithm D with two independent
hash functions behaves essentially like uniform probing, for all practical purposes.
In fact, double hashing is asymptotically equivalent to uniform probing, in the
limit as M →∞ (see exercise 70).

This completes our analysis of uniform probing. In order to study linear
probing and other types of collision resolution, we need to set up the theory
in a different, more realistic way. The probabilistic model we shall use for this
purpose assumes that each of the MN possible “hash sequences”

a1 a2 . . . aN , 0 ≤ aj < M, (35)

is equally likely, where aj denotes the initial hash address of the jth key inserted
into the table. The average number of probes in a successful search, given any
particular searching algorithm, will be denoted by CN as above; this is assumed
to be the average number of probes needed to find the kth key, averaged over
1 ≤ k ≤ N with each key equally likely, and averaged over all hash sequences (35)
with each sequence equally likely. Similarly, the average number of probes needed
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when the Nth key is inserted, considering all sequences (35) to be equally likely,
will be denoted by C ′

N−1; this is the average number of probes in an unsuccessful
search starting with N − 1 elements in the table. When open addressing is used,

CN = 1
N

N−1
k=0

C ′
k, (36)

so that we can deduce one quantity from the other as we have done in (34).
Strictly speaking, there are two defects even in this more accurate model. In

the first place, the different hash sequences aren’t all equally probable, because
the keys themselves are distinct. This makes the probability that a1 = a2 slightly
less than 1/M ; but the difference is usually negligible since the set of all possible
keys is typically very large compared to M. (See exercise 24.) Furthermore a
good hash function will exploit the nonrandomness of typical data, making it
even less likely that a1 = a2; as a result, our estimates for the number of probes
will be pessimistic. Another inaccuracy in the model is indicated in Fig. 43:
Keys that occur earlier are (with some exceptions) more likely to be looked up
than keys that occur later. Therefore our estimate of CN tends to be doubly
pessimistic, and the algorithms should perform slightly better in practice than
our analysis predicts.

With these precautions, we are ready to make an “exact” analysis of linear
probing.* Let f(M, N) be the number of hash sequences (35) such that position 0
of the table will be empty after the keys have been inserted by Algorithm L. The
circular symmetry of linear probing implies that position 0 is empty just as often
as any other position, so it is empty with probability 1−N/M ; in other words

f(M, N) =


1− N

M


MN . (37)

By convention we also set f(0, 0) = 1. Now let g(M, N, k) be the number of
hash sequences (35) such that the algorithm leaves position 0 empty, positions 1
through k occupied, and position k + 1 empty. We have

g(M, N, k) =


N

k


f(k+1, k)f(M−k−1, N−k), (38)

because all such hash sequences are composed of two subsequences, one (con-
taining k elements ai ≤ k) that leaves position 0 empty and positions 1 through
k occupied and one (containing N − k elements aj ≥ k + 1) that leaves po-
sition k + 1 empty; there are f(k+1, k) subsequences of the former type and
f(M−k−1, N−k) of the latter type, and there are


N
k


ways to intersperse two

such subsequences. Finally let Pk be the probability that exactly k + 1 probes
will be needed when the (N + 1)st key is inserted; it follows (see exercise 25)

* The author cannot resist inserting a biographical note at this point: I first formulated
the following derivation in 1962, shortly after beginning work on The Art of Computer Pro-
gramming. Since this was the first nontrivial algorithm I had ever analyzed satisfactorily, it
had a strong influence on the structure of these books. Ever since that day, the analysis of
algorithms has in fact been one of the major themes of my life.
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that
Pk = M−N


g(M, N, k) + g(M, N, k+1) + · · ·+ g(M, N, N)


. (39)

Now C ′
N =


N
k=0 (k + 1)Pk; putting this equation together with (36)–(39) and

simplifying yields the following result.

Theorem K. The average number of probes needed by Algorithm L, assuming
that all MN hash sequences (35) are equally likely, is

CN = 1
2

1 + Q0(M, N−1)


(successful search), (40)

C ′
N = 1

2

1 + Q1(M, N)


(unsuccessful search), (41)

where

Qr(M, N) =


r

0


+


r + 1
1


N

M
+


r + 2
2


N(N − 1)

M2 + · · ·

=

k≥0


r + k

k


N

M

N − 1
M

· · · N − k + 1
M

. (42)

Proof. Details of the calculation are worked out in exercise 27. (For the variance,
see exercises 28, 67, and 68.)

The rather strange-looking function Qr(M, N) that appears in this theorem
is really not hard to deal with. We have

Nk −


k

2


Nk−1 ≤ N(N − 1) . . . (N − k + 1) ≤ Nk;

hence if N/M = α,
k≥0


r + k

k


Nk −


k

2


Nk−1


Mk ≤ Qr(M, N) ≤


k≥0


r + k

k


Nk/Mk,


k≥0


r + k

k


αk − α

M


k≥0


r + k

k


k

2


αk−2 ≤ Qr(M, αM) ≤


k≥0


r + k

k


αk;

that is,
1

(1− α)r+1 −
1

M


r + 2

2


α

(1− α)r+3 ≤ Qr(M, αM) ≤ 1
(1− α)r+1 . (43)

This relation gives us a good estimate of Qr(M, N) when M is large and α is
not too close to 1. (The lower bound is a better approximation than the upper
bound.) When α approaches 1, these formulas become useless, but fortunately
Q0(M, M−1) is the function Q(M) whose asymptotic behavior was studied in
great detail in Section 1.2.11.3; and Q1(M, M−1) is simply equal to M (see
exercise 50). In terms of the standard notation for hypergeometric functions,
Eq. 1.2.6–(39), we have Qr(M, N) = F (r+1,−N ; ;−1/M) = F


r+1,−N,1

1
− 1

M


.
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Another approach to the analysis of linear probing was taken in the early
days by G. Schay, Jr. and W. G. Spruth [CACM 5 (1962), 459–462]. Although
their method yielded only an approximation to the exact formulas in Theorem
K, it sheds further light on the algorithm, so we shall sketch it briefly here. First
let us consider a surprising property of linear probing that was first noticed by
W. W. Peterson in 1957:

Theorem P. The average number of probes in a successful search by Algo-
rithm L is independent of the order in which the keys were inserted; it depends
only on the number of keys that hash to each address.

In other words, any rearrangement of a hash sequence a1 a2 . . . aN yields
a hash sequence with the same average displacement of keys from their hash
addresses. (We are assuming, as stated earlier, that all keys in the table have
equal importance. If some keys are more frequently accessed than others, the
proof can be extended to show that an optimal arrangement occurs if we insert
them in decreasing order of frequency, using the method of Theorem 6.1S.)

Proof. It suffices to show that the total number of probes needed to insert keys
for the hash sequence a1 a2 . . . aN is the same as the total number needed for
a1 . . . ai−1 ai+1 ai ai+2 . . . aN , 1 ≤ i < N. There is clearly no difference unless the
(i + 1)st key in the second sequence falls into the position occupied by the ith
in the first sequence. But then the ith and (i + 1)st merely exchange places, so
the number of probes for the (i + 1)st is decreased by the same amount that the
number for the ith is increased.

Theorem P tells us that the average search length for a hash sequence
a1 a2 . . . aN can be determined from the numbers b0 b1 . . . bM−1, where bj is the
number of a’s that equal j. From this sequence we can determine the “carry
sequence” c0 c1 . . . cM−1, where cj is the number of keys for which both locations
j and j − 1 are probed as the key is inserted. This sequence is determined by
the rule

cj =
 0, if bj = c(j+1) mod M = 0;

bj + c(j+1) mod M − 1, otherwise. (44)

For example, let M = 10, N = 8, and b0 . . . b9 = 0 3 2 0 1 0 0 0 0 2; then
c0 . . . c9 = 2 3 1 0 0 0 0 1 2 3, since one key needs to be “carried over” from
position 2 to position 1, three from position 1 to position 0, two of these from
position 0 to position 9, etc. We have b0 + b1 + · · ·+ bM−1 = N, and the average
number of probes needed for retrieval of the N keys is

1 + (c0 + c1 + · · ·+ cM−1)/N. (45)

Rule (44) seems to be a circular definition of the c’s in terms of themselves, but
actually there is a unique solution to the stated equations whenever N < M (see
exercise 32).

Schay and Spruth used this idea to determine the probability qk that cj = k,
in terms of the probability pk that bj = k. (These probabilities are independent
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of j.) Thus
q0 = p0q0 + p1q0 + p0q1,

q1 = p2q0 + p1q1 + p0q2,

q2 = p3q0 + p2q1 + p1q2 + p0q3,

(46)

etc., since, for example, the probability that cj = 2 is the probability that
bj + c(j+1) mod M = 3. Let B(z) =


pkzk and C(z) =


qkzk be the generating

functions for these probability distributions; the equations (46) are equivalent to

B(z)C(z) = p0q0 + (q0 − p0q0)z + q1z2 + · · · = p0q0(1− z) + zC(z).

Since B(1) = 1, we may write B(z) = 1 + (z − 1)D(z), and it follows that

C(z) = p0q0

1−D(z) = 1−D(1)
1−D(z) , (47)

since C(1) = 1. The average number of probes needed for retrieval, according
to (45), will therefore be

1 + M

N
C ′(1) = 1 + M

N

D′(1)
1−D(1) = 1 + M

2N

B′′(1)
1−B′(1) . (48)

Since we are assuming that each hash sequence a1 . . . aN is equally likely, we
have

pk = Pr(exactly k of the ai are equal to j, for fixed j)

=


N

k

 1
M

k
1− 1

M

N−k

; (49)

hence

B(z) =


1 + z − 1
M

N
, B′(1) = N

M
, B′′(1) = N(N − 1)

M2 , (50)

and the average number of probes according to (48) will be

CN = 1
2


1 + M − 1

M −N


. (51)

Can the reader spot the incorrect reasoning that has caused this answer to be
different from the correct result in Theorem K? (See exercise 33.)

*Optimality considerations. We have seen several examples of probe sequences
for open addressing, and it is natural to ask for one that can be proved best
possible in some meaningful sense. This problem has been set up in the follow-
ing interesting way by J. D. Ullman [JACM 19 (1972), 569–575]: Instead of
computing a hash address h(K), we map each key K into an entire permutation
of {0, 1, . . . , M−1}, which represents the probe sequence to use for K. Each of
the M ! permutations is assigned a probability, and the generalized hash function
is supposed to select each permutation with that probability. The question is,
“What assignment of probabilities to permutations gives the best performance,
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in the sense that the corresponding average number of probes CN or C ′
N is

minimized?”
For example, if we assign the probability 1/M ! to each permutation, it is

easy to see that we have exactly the behavior of uniform probing that we have
analyzed above in (32) and (34). However, Ullman found an example with M = 4
and N = 2 for which C ′

N is smaller than the value 5
3 obtained with uniform

probing. His construction assigns zero probability to all but the following six
permutations:

Permutation Probability Permutation Probability
0 1 2 3 (1 + 2ϵ)/6 1 0 3 2 (1 + 2ϵ)/6
2 0 1 3 (1− ϵ)/6 2 1 0 3 (1− ϵ)/6
3 0 1 2 (1− ϵ)/6 3 1 0 2 (1− ϵ)/6

(52)

Roughly speaking, the first probe tends to be either 2 or 3, but the second probe
is always 0 or 1. The average number of probes needed to insert the third item,
C ′

2, turns out to be 5
3 −

1
9 ϵ + O(ϵ2), so we can improve on uniform probing by

taking ϵ to be a small positive value.
However, the corresponding value of C ′

1 for these probabilities is 23
18 + O(ϵ),

which is larger than 5
4 (the uniform probing value). Ullman proved that any

assignment of probabilities such that C ′
N < (M + 1)/(M + 1 − N) for some N

always implies that C ′
n > (M + 1)/(M + 1− n) for some n < N ; you can’t win

all the time over uniform probing.
Actually the number of probes CN for a successful search is a better measure

than C ′
N . The permutations in (52) do not lead to an improved value of CN for

any N, and indeed Ullman conjectured that no assignment of probabilities will
be able to make CN less than the uniform value


(M +1)/N


(HM+1−HM+1−N ).

Andrew Yao proved an asymptotic form of this conjecture by showing that the
limiting cost when N = αM and M → ∞ is always ≥ 1

α ln 1
1−α [JACM 32

(1985), 687–693].
The strong form of Ullman’s conjecture appears to be very difficult to prove,

especially because there are many ways to assign probabilities to achieve the
effect of uniform probing; we do not need to assign 1/M ! to each permutation.
For example, the following assignment for M = 4 is equivalent to uniform
probing:

Permutation Probability Permutation Probability
0 1 2 3 1/6 0 2 1 3 1/12
1 2 3 0 1/6 1 3 2 0 1/12
2 3 0 1 1/6 2 0 3 1 1/12
3 0 1 2 1/6 3 1 0 2 1/12

(53)

with zero probability assigned to the other 16 permutations.
The following theorem characterizes all assignments that produce the be-

havior of uniform probing.
Theorem U. An assignment of probabilities to permutations will make each
of the


M
N


configurations of empty and occupied cells equally likely after N
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insertions, for 0 < N < M , if and only if the sum of probabilities assigned to all
permutations whose first N elements are the members of a given N -element set
is 1/


M
N


, for all N and for all N -element sets.

For example, the sum of probabilities assigned to each of the 3!(M−3)! per-
mutations beginning with the numbers {0, 1, 2} in some order must be 1/


M
3


=
3!(M−3)!/M !. Observe that the condition of this theorem holds in (53), because
1/6 + 1/12 = 1/4.

Proof. Let A ⊆ {0, 1, . . . , M−1}, and let Π (A) be the set of all permutations
whose first |A| elements are members of A; also let S(A) be the sum of the
probabilities assigned to those permutations. Let Pk(A) be the probability that
the first |A| insertions of the open addressing procedure occupy the locations
specified by A, and that the last insertion required exactly k probes. Finally, let
P (A) = P1(A) + P2(A) + · · · . The proof is by induction on N ≥ 1, assuming
that

P (A) = S(A) = 1


M

n


for all sets A with |A| = n < N. Let B be any N -element set. Then

Pk(B) =

A⊆B

|A|=k


π∈Π(A)

Pr(π)P

B \ {πk}


,

where Pr(π) is the probability assigned to permutation π and πk is its kth
element. By induction

Pk(B) =

A⊆B

|A|=k

1
M

N−1
 

π∈Π(A)

Pr(π),

which equals 
N

k


M

N − 1


M

k


, if k < N ;

hence

P (B) = 1
M

N−1
S(B) +

N−1
k=1


N
k


M
k

,

and this can be equal to 1


M
N


if and only if S(B) has the correct value.

External searching. Hashing techniques lend themselves well to external
searching on direct-access storage devices like disks or drums. For such ap-
plications, as in Section 6.2.4, we want to minimize the number of accesses to
the file, and this has two major effects on the choice of algorithms:
1) It is reasonable to spend more time computing the hash function, since the

penalty for bad hashing is much greater than the cost of the extra time
needed to do a careful job.

2) The records are usually grouped into pages or buckets, so that several records
are fetched from the external memory each time.
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The file is divided into M buckets containing b records each. Collisions now
cause no problem unless more than b keys have the same hash address. The
following three approaches to collision resolution seem to be best:
A) Chaining with separate lists. If more than b records fall into the same bucket,
a link to an overflow record can be inserted at the end of the first bucket. These
overflow records are kept in a special overflow area. There is usually no advantage
in having buckets in the overflow area, since comparatively few overflows occur;
thus, the extra records are usually linked together so that the (b + k)th record
of a list requires 1 + k accesses. It is usually a good idea to leave some room for
overflows on each cylinder of a disk file, so that most accesses are to the same
cylinder.

Although this method of handling overflows seems inefficient, the number of
overflows is statistically small enough that the average search time is very good.
See Tables 2 and 3, which show the average number of accesses required as a
function of the load factor

α = N/Mb, (54)
for fixed α as M, N → ∞. Curiously when α = 1 the asymptotic number of
accesses for an unsuccessful search increases with increasing b.

Table 2
AVERAGE ACCESSES IN AN UNSUCCESSFUL SEARCH BY SEPARATE CHAINING

Bucket Load factor, α
size, b 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%

1 1.0048 1.0187 1.0408 1.0703 1.1065 1.1488 1.197 1.249 1.307 1.34
2 1.0012 1.0088 1.0269 1.0581 1.1036 1.1638 1.238 1.327 1.428 1.48
3 1.0003 1.0038 1.0162 1.0433 1.0898 1.1588 1.252 1.369 1.509 1.59
4 1.0001 1.0016 1.0095 1.0314 1.0751 1.1476 1.253 1.394 1.571 1.67
5 1.0000 1.0007 1.0056 1.0225 1.0619 1.1346 1.249 1.410 1.620 1.74

10 1.0000 1.0000 1.0004 1.0041 1.0222 1.0773 1.201 1.426 1.773 2.00
20 1.0000 1.0000 1.0000 1.0001 1.0028 1.0234 1.113 1.367 1.898 2.29
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0007 1.018 1.182 1.920 2.70

Table 3
AVERAGE ACCESSES IN A SUCCESSFUL SEARCH BY SEPARATE CHAINING

Bucket Load factor, α
size, b 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%

1 1.0500 1.1000 1.1500 1.2000 1.2500 1.3000 1.350 1.400 1.450 1.48
2 1.0063 1.0242 1.0520 1.0883 1.1321 1.1823 1.238 1.299 1.364 1.40
3 1.0010 1.0071 1.0215 1.0458 1.0806 1.1259 1.181 1.246 1.319 1.36
4 1.0002 1.0023 1.0097 1.0257 1.0527 1.0922 1.145 1.211 1.290 1.33
5 1.0000 1.0008 1.0046 1.0151 1.0358 1.0699 1.119 1.186 1.268 1.32

10 1.0000 1.0000 1.0002 1.0015 1.0070 1.0226 1.056 1.115 1.206 1.27
20 1.0000 1.0000 1.0000 1.0000 1.0005 1.0038 1.018 1.059 1.150 1.22
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.001 1.015 1.083 1.16
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B) Chaining with coalescing lists. Instead of providing a separate overflow area,
we can adapt Algorithm C to external files. A doubly linked list of available
space can be maintained for each cylinder, linking together each bucket that is
not yet full. Under this scheme, every bucket contains a count of how many
record positions are empty, and the bucket is removed from the doubly linked
list only when its count becomes zero. A “roving pointer” can be used to
distribute overflows (see exercise 2.5–6), so that different chains tend to use
different overflow buckets. This method has not yet been analyzed, but it might
prove to be quite useful.
C) Open addressing. We can also do without links, using an “open” method.
Linear probing is probably better than random probing when we consider exter-
nal searching, because the increment c can often be chosen so that it minimizes
latency delays between consecutive accesses. The approximate theoretical model
of linear probing that was worked out above can be generalized to account for
the influence of buckets, and it shows that linear probing is indeed satisfactory
unless the table has gotten very full. For example, see Table 4; when the load
factor is 90 percent and the bucket size is 50, the average number of accesses in
a successful search is only 1.04. This is actually better than the 1.08 accesses
required by the chaining method (A) with the same bucket size!

Table 4
AVERAGE ACCESSES IN A SUCCESSFUL SEARCH BY LINEAR PROBING

Bucket Load factor, α
size, b 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%

1 1.0556 1.1250 1.2143 1.3333 1.5000 1.7500 2.167 3.000 5.500 10.50
2 1.0062 1.0242 1.0553 1.1033 1.1767 1.2930 1.494 1.903 3.147 5.64
3 1.0009 1.0066 1.0201 1.0450 1.0872 1.1584 1.286 1.554 2.378 4.04
4 1.0001 1.0021 1.0085 1.0227 1.0497 1.0984 1.190 1.386 2.000 3.24
5 1.0000 1.0007 1.0039 1.0124 1.0307 1.0661 1.136 1.289 1.777 2.77

10 1.0000 1.0000 1.0001 1.0011 1.0047 1.0154 1.042 1.110 1.345 1.84
20 1.0000 1.0000 1.0000 1.0000 1.0003 1.0020 1.010 1.036 1.144 1.39
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.001 1.005 1.040 1.13

The analysis of methods (A) and (C) involves some very interesting mathe-
matics; we shall merely summarize the results here, since the details are worked
out in exercises 49 and 55. The formulas involve two functions strongly related
to the Q-functions of Theorem K, namely

R(α, n) = n

n + 1 + n2α

(n + 1)(n + 2) + n3α2

(n + 1)(n + 2)(n + 3) + · · · , (55)

and

tn(α) = e−nα


(αn)n

(n + 1)! + 2 (αn)n+1

(n + 2)! + 3 (αn)n+2

(n + 3)! + · · ·


= e−nαnnαn

n!

1− (1− α)R(α, n)


. (56)
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In terms of these functions, the average number of accesses made by the chaining
method (A) in an unsuccessful search is

C ′
N = 1 + αbtb(α) + O

 1
M


(57)

as M, N →∞, and the corresponding number in a successful search is

CN = 1+ e−bαbbαb

2b!

2+(α−1)b+


α2 +(α−1)2(b−1)


R(α, b)


+O

 1
M


. (58)

The limiting values of these formulas are the quantities shown in Tables 2 and 3.
Since chaining method (A) requires a separate overflow area, we need to

estimate how many overflows will occur. The average number of overflows will
be M(C ′

N − 1) = Ntb(α), since C ′
N − 1 is the average number of overflows in any

given list. Therefore Table 2 can be used to deduce the amount of overflow space
required. For fixed α, the standard deviation of the total number of overflows
will be roughly proportional to

√
M as M →∞.

Asymptotic values for C ′
N and CN appear in exercise 53, but the approxi-

mations aren’t very good when b is small or α is large; fortunately the series for
R(α, n) converges rather rapidly even when α is large, so the formulas can be
evaluated to any desired precision without much difficulty. The maximum values
occur for α = 1, when

max C ′
N = 1 + e−bbb+1

b! =


b

2π
+ 1 + O(b−1/2), (59)

max CN = 1 + e−bbb

2b!

R(b) + 1


= 5

4 +


2
9πb

+ O(b−1), (60)

as b → ∞, by Stirling’s approximation and the analysis of the function R(n) =
R(1, n)− 1 in Section 1.2.11.3.

The average number of accesses in a successful external search with linear
probing has the remarkably simple expression

CN ≈ 1 + tb(α) + t2b(α) + t3b(α) + · · · , (61)

which can be understood as follows: The average total number of accesses to
look up all N keys is NCN, and this is N +T1 +T2 + · · · , where Tk is the average
number of keys that require more than k accesses. Theorem P says that we can
enter the keys in any order without affecting CN, and it follows that Tk is the
average number of overflow records that would occur in the chaining method if
we had M/k buckets of size kb, namely Ntkb(α) by what we said above. Further
justification of Eq. (61) appears in exercise 55.

An excellent early discussion of practical considerations involved in the de-
sign of external hash tables was given by Charles A. Olson, Proc. ACM Nat. Conf.
24 (1969), 539–549. He included several worked examples and pointed out that
the number of overflow records will increase substantially if the file is subject to
frequent insertion/deletion activity without relocating records. He also presented
an analysis of this situation that was obtained jointly with J. A. de Peyster.
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Fig. 44. Comparison of collision resolution methods: limiting values of the average
number of probes as M →∞.

Comparison of the methods. We have now studied a large number of
techniques for searching; how can we select the right one for a given application?
It is difficult to summarize in a few words all the relevant details of the trade-offs
involved in the choice of a search method, but the following things seem to be
of primary importance with respect to the speed of searching and the requisite
storage space.

Figure 44 summarizes the analyses of this section, showing that the various
methods for collision resolution lead to different numbers of probes. But probe
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counting does not tell the whole story, since the time per probe varies in different
methods, and the latter variation has a noticeable effect on the running time (as
we have seen in Fig. 42). Linear probing accesses the table more frequently
than the other methods shown in Fig. 44, but it has the advantage of simplicity.
Furthermore, even linear probing isn’t terribly bad: When the table is 90 percent
full, Algorithm L requires fewer than 5.5 probes, on the average, to locate a
random item in the table. (However, a 90-percent-full table does require about
50.5 probes for every new item inserted by Algorithm L.)

Figure 44 shows that the chaining methods are quite economical with re-
spect to the number of probes, but the extra memory space needed for link
fields sometimes makes open addressing more attractive for small records. For
example, if we have to choose between a chained hash table of capacity 500 and
an open hash table of capacity 1000, the latter is clearly preferable, since it allows
efficient searching when 500 records are present and it is capable of absorbing
twice as much data. On the other hand, sometimes the record size and format
will allow space for link fields at virtually no extra cost. (See exercise 65.)

How do hash methods compare with the other search strategies we have
studied in this chapter? From the standpoint of speed we can argue that they
are better, when the number of records is large, because the average search time
for a hash method stays bounded as N →∞ if we stipulate that the table never
gets too full. For example, Program L will take only about 55 units of time for
a successful search when the table is 90 percent full; this beats the fastest MIX
binary search routine we have seen (exercise 6.2.1–24) when N is greater than 600
or so, at the cost of only 11 percent in storage space. Moreover the binary search
is suitable only for fixed tables, while a hash table allows efficient insertions.

We can also compare Program L to the tree-oriented search methods that
allow dynamic insertions. Program L with a 90-percent-full table is faster than
Program 6.2.2T when N is greater than about 90, and faster than Program 6.3D
(exercise 6.3–9) when N is greater than about 75.

Only one search method in this chapter is efficient for successful searching
with virtually no storage overhead, namely Brent’s variation of Algorithm D.
His method allows us to put N records into a table of size M = N + 1, and
to find any record in about 2.5 probes on the average. No extra space for link
fields or tag bits is needed; however, an unsuccessful search will be very slow,
requiring about N/2 probes.

Thus hashing has several advantages. On the other hand, there are three
important respects in which hash table searching is inferior to other methods:

a) After an unsuccessful search in a hash table, we know only that the
desired key is not present. Search methods based on comparisons always yield
more information; they allow us to find the largest key ≤ K and/or the smallest
key ≥ K. This is important in many applications; for example, it allows us to
interpolate function values from a stored table. We can also use comparison-
based algorithms to locate all keys that lie between two given values K and K ′.
Furthermore the tree search algorithms of Section 6.2 make it easy to traverse
the contents of a table in ascending order, without sorting it separately.
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b) The storage allocation for hash tables is often somewhat difficult; we
have to dedicate a certain area of the memory for use as the hash table, and
it may not be obvious how much space should be allotted. If we provide too
much memory, we may be wasting storage at the expense of other lists or other
computer users; but if we don’t provide enough room, the table will overflow.
By contrast, the tree search and insertion algorithms deal with trees that grow
no larger than necessary. In a virtual memory environment we can keep memory
accesses localized if we use tree search or digital tree search, instead of creating a
large hash table that requires the operating system to access a new page nearly
every time we hash a key.

c) Finally, we need a great deal of faith in probability theory when we use
hashing methods, since they are efficient only on the average, while their worst
case is terrible! As in the case of random number generators, we can never be
completely sure that a hash function will perform properly when it is applied
to a new set of data. Therefore hash tables are inappropriate for certain real-
time applications such as air traffic control, where people’s lives are at stake; the
balanced tree algorithms of Sections 6.2.3 and 6.2.4 are much safer, since they
provide guaranteed upper bounds on the search time.

History. The idea of hashing appears to have been originated by H. P. Luhn,
who wrote an internal IBM memorandum in January 1953 that suggested the
use of chaining; in fact, his suggestion was one of the first applications of linked
linear lists. He pointed out the desirability of using buckets that contain more
than one element, for external searching. Shortly afterwards, A. D. Lin carried
Luhn’s analysis further, and suggested a technique for handling overflows that
used “degenerative addresses”; for example, the overflows from primary bucket
2748 were put in secondary bucket 274; overflows from that bucket went to
tertiary bucket 27, and so on, assuming the presence of 10000 primary buckets,
1000 secondary buckets, 100 tertiary buckets, etc. The hash functions originally
suggested by Luhn were digital in nature; for example, he combined adjacent
pairs of key digits by adding them mod 10, so that 31415926 would be compressed
to 4548.

At about the same time the idea of hashing occurred independently to
another group of IBMers: Gene M. Amdahl, Elaine M. Boehm, N. Rochester,
and Arthur L. Samuel, who were building an assembly program for the IBM 701.
In order to handle the collision problem, Amdahl originated the idea of open
addressing with linear probing. [See also Derr and Luke, JACM 3 (1956), 303.]

Hash coding was first described in the open literature by Arnold I. Dumey,
Computers and Automation 5, 12 (December 1956), 6–9. He was the first to
mention the idea of dividing by a prime number and using the remainder as
the hash address. Dumey’s interesting article mentions chaining but not open
addressing. A. P. Ershov of Russia independently discovered linear open ad-
dressing in 1957 [Doklady Akad. Nauk SSSR 118 (1958), 427–430]; he published
empirical results about the number of probes, conjecturing correctly that the
average number of probes per successful search is < 2 when N/M < 2/3.
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A classic article by W. W. Peterson, IBM J. Research & Development 1
(1957), 130–146, was the first major paper dealing with the problem of search-
ing in large files. Peterson defined open addressing in general, analyzed the
performance of uniform probing, and gave numerous empirical statistics about
the behavior of linear open addressing with various bucket sizes, noting the
degradation in performance that occurred when items were deleted. Another
comprehensive survey of the subject was published six years later by Werner
Buchholz [IBM Systems J. 2 (1963), 86–111], who gave an especially good
discussion of hash functions. Correct analyses of Algorithm L were first pub-
lished by A. G. Konheim and B. Weiss, SIAM J. Appl. Math. 14 (1966), 1266–
1274; V. Podderjugin, Wissenschaftliche Zeitschrift der Technischen Universität
Dresden 17 (1968), 1087–1089.

Up to this time linear probing was the only type of open addressing scheme
that had appeared in the literature, but another scheme based on repeated ran-
dom probing by independent hash functions had independently been developed
by several people (see exercise 48). During the next few years hashing became
very widely used, but hardly anything more was published about it. Then Robert
Morris wrote a very influential survey of the subject [CACM 11 (1968), 38–44],
in which he introduced the idea of random probing with secondary clustering.
Morris’s paper touched off a flurry of activity that culminated in Algorithm D
and its refinements.

It is interesting to note that the word “hashing” apparently never appeared
in print, with its present meaning, until the late 1960s, although it had already
become common jargon in several parts of the world by that time. The first
published appearance of the word seems to have been in H. Hellerman’s book
Digital Computer System Principles (New York: McGraw–Hill, 1967), 152; the
only previous occurrence among approximately 60 relevant documents studied by
the author as this section was being written was in an unpublished memorandum
written by W. W. Peterson in 1961. Somehow the verb “to hash” magically
became standard terminology for key transformation during the mid-1960s, yet
nobody was rash enough to use such an undignified word in print until 1967!

Later developments. Many advances in the theory and practice of hashing
have been made since the author first prepared this chapter in 1972, although
the basic ideas discussed above still remain useful for ordinary applications. For
example, the book Design and Analysis of Coalesced Hashing by J. S. Vitter
and W.-C. Chen (New York: Oxford Univ. Press, 1987) discusses and analyzes
several instructive variants of Algorithm C.

From a practical standpoint, the most important hash technique invented in
the late 1970s is probably the method that Witold Litwin called linear hashing
[Proc. 6th International Conf. on Very Large Databases (1980), 212–223]. Linear
hashing — which incidentally has nothing to do with the classical technique of
linear probing — allows the number of hash addresses to grow and/or contract
gracefully as items are inserted and/or deleted. An excellent discussion of linear
hashing, including comparisons with other methods for internal searching, has
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been given by Per-Åke Larson in CACM 31 (1988), 446–457; see also W. G.
Griswold and G. M. Townsend, Software Practice & Exp. 23 (1993), 351–367,
for improvements when many large and/or small tables are present simultane-
ously. Linear hashing can also be used for huge databases that are distributed
between many different sites on a network [see Litwin, Neimat, and Schneider,
ACM Trans. Database Syst. 21 (1996), 480–525]. An alternative scheme called
extendible hashing, which has the property that at most two references to external
pages are needed to retrieve any record, was proposed at about the same time by
R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong [ACM Trans. Database
Syst. 4 (1979), 315–344]; related ideas had been explored by G. D. Knott, Proc.
ACM-SIGFIDET Workshop on Data Description, Access and Control (1971),
187–206. Both linear hashing and extendible hashing are preferable to the B-
trees of Section 6.2.4, when the order of keys is unimportant.

In the theoretical realm, more complicated methods have been devised by
which it is possible to guarantee O(1) maximum time per access, with O(1)
average amortized time per insertion and deletion, regardless of the keys being
examined; moreover, the total storage used at any time is bounded by a constant
times the number of items currently present, plus another additive constant.
This result, which builds on ideas of Fredman, Komlós, and Szemerédi [JACM
31 (1984), 538–544], is due to Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der
Heide, Rohnert, and Tarjan [SICOMP 23 (1994), 738–761].

EXERCISES
1. [20 ] When the instruction 9H in Table 1 is reached, how small and how large can

the contents of rI1 possibly be, assuming that bytes 1, 2, 3 of K each contain alphabetic
character codes less than 30?

2. [20 ] Find a reasonably common English word not in Table 1 that could be added
to that table without changing the program.

3. [23 ] Explain why no program beginning with the five instructions
LD1 K(1:1) or LD1N K(1:1)
LD2 K(2:2) or LD2N K(2:2)
INC1 a,2
LD2 K(3:3)
J2Z 9F

could be used in place of the more complicated program in Table 1, for any constant a,
since unique addresses would not be produced for the given keys.

4. [M30 ] How many people should be invited to a party in order to make it likely
that there are three with the same birthday?

5. [15 ] Mr. B. C. Dull was writing a FORTRAN compiler using a decimal MIX com-
puter, and he needed a symbol table to keep track of the names of variables in the
FORTRAN program being compiled. These names were restricted to be at most ten
characters in length. He decided to use a hash table with M = 100, and to use the fast
hash function h(K) = leftmost byte of K. Was this a good idea?

6. [15 ] Would it be wise to change the first two instructions of (3) to LDA K; ENTX 0?
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7. [HM30 ] (Polynomial hashing.) The purpose of this exercise is to consider the
construction of polynomials P (x) such as (10), which convert n-bit keys into m-bit
addresses, in such a way that distinct keys differing in t or fewer bits will hash to
different addresses. Given n and t ≤ n, and given an integer k such that n divides
2k − 1, we shall construct a polynomial whose degree m is a function of n, t, and k.
(Usually n is increased, if necessary, so that k can be chosen to be reasonably small.)

Let S be the smallest set of integers such that {1, 2, . . . , t} ⊆ S and (2j) mod n ∈ S
for all j ∈ S. For example, when n = 15, k = 4, and t = 6, we have S = {1, 2, 3, 4,
5, 6, 8, 10, 12, 9}. We now define the polynomial P (x) =


j∈S(x − αj), where α is an

element of order n in the finite field GF(2k), and where the coefficients of P (x) are
computed in this field. The degree m of P (x) is the number of elements of S. Since
α2j is a root of P (x) whenever αj is a root, it follows that the coefficients pi of P (x)
satisfy p2

i = pi , so they are 0 or 1.
Prove that if R(x) = rn−1x

n−1 +· · ·+r1x+r0 is any nonzero polynomial modulo 2,
with at most t nonzero coefficients, then R(x) is not a multiple of P (x) modulo 2.
[It follows that the corresponding hash function behaves as advertised.]

8. [M34 ] (The three-distance theorem.) Let θ be an irrational number between 0
and 1, whose regular continued fraction representation in the notation of Section 4.5.3
is θ = //a1, a2, a3, . . . //. Let q0 = 0, p0 = 1, q1 = 1, p1 = 0, and qk+1 = akqk + qk−1,
pk+1 = akpk + pk−1 for k ≥ 1. Let {x} denote xmod 1 = x − ⌊x⌋, and let {x}+

denote x− ⌈x⌉+ 1. As the points {θ}, {2θ}, {3θ}, . . . are successively inserted into the
interval [0 . . 1], let the line segments be numbered as they appear in such a way that the
first segment of a given length is number 0, the next is number 1, etc. Prove that the
following statements are all true: Interval number s of length {tθ}, where t = rqk +qk−1
and 0 ≤ r < ak and k is even and 0 ≤ s < qk, has left endpoint {sθ} and right endpoint
{(s+ t)θ}+. Interval number s of length 1−{tθ}, where t = rqk + qk−1 and 0 ≤ r < ak

and k is odd and 0 ≤ s < qk, has left endpoint {(s + t)θ} and right endpoint {sθ}+.
Every positive integer n can be uniquely represented as n = rqk + qk−1 + s for some
k ≥ 1, 1 ≤ r ≤ ak, and 0 ≤ s < qk. In terms of this representation, just before the
point {nθ} is inserted the n intervals present are

the first s intervals (numbered 0, . . . , s− 1) of length {(−1)k(rqk + qk−1)θ};
the first n− qk intervals (numbered 0, . . . , n− qk − 1) of length {(−1)k+1qkθ};
the last qk−s intervals (numbered s, . . . , qk−1) of length {(−1)k((r−1)qk+qk−1)θ}+.

The operation of inserting {nθ} removes interval number s of the third type and
converts it into interval number s of the first type, number n− qk of the second type.

9. [M30 ] When we successively insert the points {θ}, {2θ}, . . . into the interval
[0 . . 1], Theorem S asserts that each new point always breaks up one of the largest
remaining intervals. If the interval [a . . c] is thereby broken into two parts [a . . b],
[b . . c], we may call it a bad break if one of these parts is more than twice as long as the
other, namely if b− a > 2(c− b) or c− b > 2(b− a).

Prove that bad breaks will occur for some {nθ} unless θ mod 1 = ϕ−1 or ϕ−2; and
the latter values of θ never produce bad breaks.
10. [M38 ] (R. L. Graham.) If θ, α1, . . . , αd are real numbers with α1 = 0, and if
n1, . . . , nd are positive integers, and if the points {nθ+αj} are inserted into the interval
[0 . . 1] for 0 ≤ n < nj and 1 ≤ j ≤ d, prove that the resulting n1 + · · · + nd (possibly
empty) intervals have at most 3d different lengths.
11. [16 ] Successful searches are often more frequent than unsuccessful ones. Would
it therefore be a good idea to interchange lines 12–13 of Program C with lines 10–11?
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x 12. [21 ] Show that Program C can be rewritten so that there is only one conditional
jump instruction in the inner loop. Compare the running time of the modified program
with the original.

x 13. [24 ] (Abbreviated keys.) Let h(K) be a hash function, and let q(K) be a function
of K such that K can be determined once h(K) and q(K) are given. For example, in
division hashing we may let h(K) = K modM and q(K) = ⌊K/M⌋; in multiplicative
hashing we may let h(K) be the leading bits of (AK/w) mod 1, and q(K) can be the
other bits.

Show that when chaining is used without overlapping lists, we need only store q(K)
instead of K in each record. (This almost saves the space needed for the link fields.)
Modify Algorithm C so that it allows such abbreviated keys by avoiding overlapping
lists, yet uses no auxiliary storage locations for overflow records.

14. [24 ] (E. W. Elcock.) Show that it is possible to let a large hash table share
memory with any number of other linked lists. Let every word of the list area have a
2-bit TAG field and two link fields called LINK and AUX, with the following interpretation:

TAG(P) = 0 indicates a word in the list of available space; LINK(P) points to the
next entry in this list, and AUX(P) is unused.

TAG(P) = 1 indicates a word in use where P is not the hash address of any key in
the hash table; the other fields of the word in location P may have any desired
format.

TAG(P) = 2 indicates that P is the hash address of at least one key; AUX(P) points
to a linked list specifying all such keys, and LINK(P) points to another word
in the list memory. Whenever a word with TAG(P) = 2 is accessed during the
processing of any list, we set P ← LINK(P) repeatedly until reaching a word
with TAG(P) ≤ 1. (For efficiency we might also then change prior links so that
it will not be necessary to skip over the same entries again and again.)

Define suitable algorithms for inserting and retrieving keys in such a hash table.

15. [16 ] Why is it a good idea for Algorithm L and Algorithm D to signal overflow
when N = M − 1 instead of when N = M?

16. [10 ] Program L says that K should not be zero. But doesn’t it actually work
even when K is zero?

17. [15 ] Why not simply define h2(K) = h1(K) in (25), when h1(K) ̸= 0?

x 18. [21 ] Is (31) better or worse than (30), as a substitute for lines 10–13 of Program D?
Give your answer on the basis of the average values of A, S1, and C.

19. [40 ] Empirically test the effect of restricting the range of h2(K) in Algorithm D,
so that (a) 1 ≤ h2(K) ≤ r for r = 1, 2, 3, . . . , 10; (b) 1 ≤ h2(K) ≤ ρM for ρ =
1

10 ,
2

10 , . . . ,
9

10 .

20. [M25 ] (R. Krutar.) Change Algorithm D as follows, avoiding the hash function
h2(K): In step D3, set c ← 0; and at the beginning of step D4, set c ← c + 1.
Prove that if M = 2m, the corresponding probe sequence h1(K), (h1(K)− 1) modM ,
. . . ,


h1(K)−


M
2


modM will be a permutation of {0, 1, . . . ,M−1}. When this
“quadratic probing” method is programmed for MIX, how does it compare with the
three programs considered in Fig. 42, assuming that the algorithm behaves like random
probing with secondary clustering?
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x 21. [20 ] Suppose that we wish to delete a record from a table constructed by Algo-
rithm D, marking it “deleted” as suggested in the text. Should we also decrease the
variable N that is used to govern Algorithm D?
22. [27 ] Prove that Algorithm R leaves the table exactly as it would have been if
KEY[i] had never been inserted in the first place.

x 23. [33 ] Design an algorithm analogous to Algorithm R, for deleting entries from a
chained hash table that has been constructed by Algorithm C.
24. [M20 ] Suppose that the set of all possible keys that can occur has MP elements,
where exactly P keys hash to any given address. (In practical cases, P is very large; for
example, if the keys are arbitrary 10-digit numbers and if M = 103, we have P = 107.)
Assume that M ≥ 7 and N = 7. If seven distinct keys are selected at random from the
set of all possible keys, what is the exact probability that the hash sequence 1 2 6 2 1 6 1
will be obtained (namely that h(K1) = 1, h(K2) = 2, . . . , h(K7) = 1), as a function of
M and P?
25. [M19 ] Explain why Eq. (39) is true.
26. [M20 ] How many hash sequences a1 a2 . . . a9 yield the pattern of occupied cells
(21), using linear probing?
27. [M27 ] Complete the proof of Theorem K. [Hint: Let

s(n, x, y) =


k


n

k


(x+ k)k+1(y − k)n−k−1(y − n);

use Abel’s binomial theorem, Eq. 1.2.6–(16), to prove that s(n, x, y) = x(x + y)n +
ns(n−1, x+1, y−1).]
28. [M30 ] In the old days when computers were much slower than they are now, it
was possible to watch the lights flashing and see how fast Algorithm L was running.
When the table began to fill up, some entries would be processed very quickly, while
others took a great deal of time.

This experience suggests that the standard deviation of the number of probes in
an unsuccessful search is rather high, when linear probing is used. Find a formula that
expresses the variance in terms of the Qr functions defined in Theorem K, and estimate
the variance when N = αM as M →∞.
29. [M21 ] (The parking problem.) A certain one-way street has m parking spaces in
a row, numbered 1 through m. A man and his dozing wife drive by, and suddenly she
wakes up and orders him to park immediately. He dutifully parks at the first available
space; but if there are no places left that he can get to without backing up (that is, if
his wife awoke when the car approached space k, but spaces k, k + 1, . . . , m are all
full), he expresses his regrets and drives on.

Suppose, in fact, that this happens for n different cars, where the jth wife wakes
up just in time to park at space aj . In how many of the sequences a1 . . . an will all of
the cars get safely parked, assuming that the street is initially empty and that nobody
leaves after parking? For example, when m = n = 9 and a1 . . . a9 = 3 1 4 1 5 9 2 6 5,
the cars get parked as follows:

2 4 1 3 5 7 8 9 6

[Hint: Use the analysis of linear probing.]
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30. [M38 ] When n = m in the parking problem of exercise 29, show that all cars get
parked if and only if there exists a permutation p1 p2 . . . pn of {1, 2, . . . , n} such that
aj ≤ pj for all j.
31. [M40 ] When n = m in the parking problem of exercise 29, the number of solutions
turns out to be (n+ 1)n−1; and from exercise 2.3.4.4–22 we know that this is the same
as the number of free trees on n + 1 labeled vertices! Find an interesting connection
between parking sequences and trees.
32. [M27 ] Prove that the system of equations (44) has a unique solution (c0, c1, . . . ,
cM−1), whenever b0, b1, . . . , bM−1 are nonnegative integers whose sum is less than M.
Design an algorithm to find that solution.

x 33. [M23 ] Explain why (51) is only an approximation to the true average number of
probes made by Algorithm L. What was there about the derivation of (51) that wasn’t
rigorously exact?

x 34. [M23 ] The purpose of this exercise is to investigate the average number of probes
in a chained hash table when the lists are kept separate as in Fig. 38.

a) What is PNk, the probability that a given list has length k, when the MN hash
sequences (35) are equally likely?

b) Find the generating function Pn(z) =


k≥0 PNkz
k.

c) Express the average number of probes for a successful search in terms of this
generating function.

d) Deduce the average number of probes in an unsuccessful search, considering vari-
ants of the data structure in which the following conventions are used: (i) hashing
is always to a list head (see Fig. 38); (ii) hashing is to a table position (see Fig. 40),
but all keys except the first of a list go into a separate overflow area; (iii) hashing
is to a table position and all entries appear in the hash table.

35. [M24 ] Continuing exercise 34, what is the average number of probes in an unsuc-
cessful search when the individual lists are kept in order by their key values? Consider
data structures (i), (ii), and (iii).
36. [M23 ] Continuing exercise 34(d), find the variance of the number of probes when
the search is unsuccessful, using data structures (i) and (ii).

x 37. [M29 ] Equation (19) gives the average number of probes in separate chaining
when the search is successful; what is the variance of that number of probes?
38. [M32 ] (Tree hashing.) A clever programmer might try to use binary search trees
instead of linear lists in the chaining method, thereby combining Algorithm 6.2.2T
with hashing. Analyze the average number of probes that would be required by
this compound algorithm, for both successful and unsuccessful searches. [Hint: See
Eq. 5.2.1–(15).]
39. [M28 ] Let cN (k) be the total number of lists of length k formed when Algorithm C
is applied to all MN hash sequences (35). Find a recurrence relation on the numbers
cN (k) that makes it possible to determine a simple formula for the sum

SN =


k


k

2


cN (k).

How is SN related to the number of probes in an unsuccessful search by Algorithm C?
40. [M33 ] Equation (15) gives the average number of probes used by Algorithm C in
an unsuccessful search; what is the variance of that number of probes?
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41. [M40 ] Analyze TN, the average number of times the index R is decreased by 1
when the (N + 1)st item is being inserted by Algorithm C.

x 42. [M20 ] Derive (17), the probability that Algorithm C succeeds immediately.
43. [HM44 ] Analyze a modification of Algorithm C that uses a table of size M ′ ≥M .
Only the first M locations are used for hashing, so the first M ′−M empty nodes found
in step C5 will be in the extra locations of the table. For fixed M ′, what choice of M
in the range 1 ≤M ≤M ′ leads to the best performance?
44. [M43 ] (Random probing with secondary clustering.) The object of this exercise is
to determine the expected number of probes in the open addressing scheme with probe
sequence

h(K), (h(K) + p1) modM, (h(K) + p2) modM, . . . , (h(K) + pM−1) modM,

where p1 p2 . . . pM−1 is a randomly chosen permutation of {1, 2, . . . ,M−1} that depends
on h(K). In other words, all keys with the same value of h(K) follow the same probe
sequence, and the (M − 1)!M possible choices of M probe sequences with this property
are equally likely.

This situation can be modeled accurately by the following experimental procedure
performed on an initially empty linear array of size m. Do the following operation n
times: “With probability p, occupy the leftmost empty position. Otherwise (that is,
with probability q = 1 − p), select any table position except the one at the extreme
left, with each of these m− 1 positions equally likely. If the selected position is empty,
occupy it; otherwise select any empty position (including the leftmost) and occupy it,
considering each of the empty positions equally likely.”

For example, when m = 5 and n = 3, the array configuration after such an
experiment will be (occupied, occupied, empty, occupied, empty) with probability

7
192qqq + 1

6pqq + 1
6qpq + 11

64qqp+ 1
3ppq + 1

4pqp+ 1
4qpp.

(This procedure corresponds to random probing with secondary clustering, when p =
1/m, since we can renumber the table entries so that a particular probe sequence is 0,
1, 2, . . . and all the others are random.)

Find a formula for the average number of occupied positions at the left of the
array (namely 2 in the example above). Also find the asymptotic value of this quantity
when p = 1/m, n = α(m+ 1), and m→∞.
45. [M43 ] Solve the analog of exercise 44 with tertiary clustering, when the probe
sequence begins h1(K), ((h1(K) + h2(K)) modM, and the succeeding probes are ran-
domly chosen depending only on h1(K) and h2(K). (Thus the (M−2)!M(M−1) possible
choices of M(M − 1) probe sequences with this property are considered to be equally
likely.) Is this procedure asymptotically equivalent to uniform probing?
46. [M42 ] Determine C′

N and CN for the open addressing method that uses the probe
sequence

h(K), 0, 1, . . . , h(K)− 1, h(K) + 1, . . . , M − 1.
47. [M25 ] Find the average number of probes needed by open addressing when the
probe sequence is

h(K), h(K)− 1, h(K) + 1, h(K)− 2, h(K) + 2, . . . .

This probe sequence was once suggested because all the distances between consecutive
probes are distinct when M is even. [Hint: Find the trick and this problem is easy.]
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x 48. [M21 ] Analyze the open addressing method that probes locations h1(K), h2(K),
h3(K), . . . , given an infinite sequence of mutually independent random hash functions
⟨hn(K)⟩. In this setup it is possible to probe the same location twice, for example if
h1(K) = h2(K), but such coincidences are rather unlikely until the table gets full.
49. [HM24 ] Generalizing exercise 34 to the case of b records per bucket, determine the
average number of probes (external memory accesses) CN and C′

N , for chaining with
separate lists, assuming that a list containing k elements requires max(1, k − b + 1)
probes in an unsuccessful search. Instead of using the exact probability PNk as in
exercise 34, use the Poisson approximation

N

k

 1
M

k
1− 1

M

N−k

= N

M

N − 1
M

· · · N − k + 1
M


1− 1

M

N
1− 1

M

−k 1
k!

= e−ρρk

k! (1 +O(k2/M)),

which is valid for N = ρM and k ≤
√
M as M →∞; derive formulas (57) and (58).

50. [M20 ] Show that Q1(M,N) = M−(M−N−1)Q0(M,N), in the notation of (42).
[Hint: Prove first that Q1(M,N) = (N + 1)Q0(M,N)−NQ0(M,N−1).]
51. [HM17 ] Express the function R(α, n) defined in (55) in terms of the function Q0
defined in (42).
52. [HM20 ] Prove that Q0(M,N) =

∞
0 e−t(1 + t/M)N dt.

53. [HM20 ] Prove that the function R(α, n) can be expressed in terms of the incom-
plete gamma function, and use the result of exercise 1.2.11.3–9 to find the asymptotic
value of R(α, n) to O(n−2) as n→∞, for fixed α < 1.
54. [HM28 ] Show that when b = 1, Eq. (61) is equivalent to Eq. (23). Hint: We have

tn(α) = (−1)n−1

n!α


m>n

(−nα)m

m(m− 1)(m− n− 1)! .

55. [HM43 ] Generalize the Schay–Spruth model, discussed after Theorem P, to the
case of M buckets of size b. Prove that C(z) is equal to Q(z)/(B(z)− zb), where Q(z)
is a polynomial of degree b and Q(1) = 0. Show that the average number of probes is

1 + M

N
C′(1) = 1 + 1

b


1

1− q1
+ · · ·+ 1

1− qb−1
− 1

2
B′′(1)− b(b− 1)

B′(1)− b


,

where q1, . . . , qb−1 are the roots of Q(z)/(z − 1). Replacing the binomial probability
distribution B(z) by the Poisson approximation P (z) = ebα(z−1), where α = N/Mb,
and using Lagrange’s inversion formula (see Eq. 2.3.4.4–(21) and exercise 4.7–8), reduce
your answer to Eq. (61).
56. [HM43 ] Generalize Theorem K, obtaining an exact analysis of linear probing with
buckets of size b. What is the asymptotic number of probes in a successful search when
the table is full (N = Mb)?
57. [M47 ] Does the uniform assignment of probabilities to probe sequences give the
minimum value of CN, over all open addressing methods?
58. [M21 ] (S. C. Johnson.) Find ten permutations on {0, 1, 2, 3, 4} that are equivalent
to uniform probing in the sense of Theorem U.
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59. [M25 ] Prove that if an assignment of probabilities to permutations is equivalent to
uniform probing, in the sense of Theorem U, the number of permutations with nonzero
probabilities exceeds Ma for any fixed exponent a, when M is sufficiently large.
60. [M47 ] Let us say that an open addressing scheme involves single hashing if it uses
exactly M probe sequences, one beginning with each possible value of h(K), each of
which occurs with probability 1/M.

Are the best single-hashing schemes (in the sense of minimum CN ) asymptotically
better than the random ones described by (29)? In particular, is CαM ≥ 1 + 1

2α +
1
2α

2 +O(α3) as M →∞?
61. [M46 ] Is the method analyzed in exercise 46 the worst possible single-hashing
scheme, in the sense of exercise 60?
62. [M49 ] A single hashing scheme is called cyclic if the increments p1 p2 . . . pM−1 in
the notation of exercise 44 are fixed for all K. (Examples of such methods are linear
probing and the sequences considered in exercises 20 and 47.) An optimum single
hashing scheme is one for which CM is minimum, over all (M − 1)!M single hashing
schemes for a given M . When M ≤ 5 the best single hashing schemes are cyclic. Is
this true for all M?
63. [M25 ] If repeated random insertions and deletions are made in a hash table, how
many independent insertions are needed on the average before all M locations have
become occupied at one time or another? (This is the mean time to failure of the
deletion method that simply marks cells “deleted.”)
64. [M41 ] Analyze the expected behavior of Algorithm R (deletion with linear prob-
ing). How many times will step R4 be performed, on the average?

x 65. [20 ] (Variable-length keys.) Many applications of hash tables deal with keys that
can be any number of characters long. In such cases we can’t simply store the key in
the table as in the programs of this section. What would be a good way to deal with
variable-length keys in a hash table on the MIX computer?

x 66. [25 ] (Ole Amble, 1973.) Is it possible to insert keys into an open hash table mak-
ing use also of their numerical or alphabetic order, so that a search with Algorithm L
or Algorithm D is known to be unsuccessful whenever a key smaller than the search
argument is encountered?
67. [M41 ] If Algorithm L inserts N keys with respective hash addresses a1 a2 . . . aN ,
let dj be the displacement of the jth key from its home address aj ; then CN = 1 +
(d1 + d2 + · · ·+ dN )/N . Theorem P tells us that permutation of the a’s has no effect
on the sum d1 + d2 + · · · + dN . However, such permutation might drastically change
the sum d2

1 + d2
2 + · · · + d2

N . For example, the hash sequence 1 2 . . . N−1 N−1
makes d1 d2 . . . dN−1 dN = 0 0 . . . 0 N−1 and


d2

j = (N − 1)2, while its reflection
N−1 N−1 . . . 2 1 leads to much more civilized displacements 0 1 . . . 1 1 for which
d2

j = N − 1.
a) Which rearrangement of a1 a2 . . . aN minimizes


d2

j ?
b) Explain how to modify Algorithm L so that it maintains a least-variance set of

displacements after every insertion.
c) Determine the average value of


d2

j with and without this modification.
68. [M41 ] What is the variance of the average number of probes in a successful search
by Algorithm L? In particular, what is the average of (d1+d2+· · ·+dN )2 in the notation
of exercise 67?
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69. [M25 ] (Andrew Yao.) Prove that all cyclic single hashing schemes in the sense
of exercise 62 satisfy the inequality C′

αM ≥ 1
2 (1 + 1/(1 − α)). [Hint: Show that an

unsuccessful search takes exactly k probes with probability pk ≤ (M −N)/M .]
70. [HM43 ] Prove that the expected number of probes that are needed to insert the
(αM + 1)st item with double hashing is at most the expected number needed to insert
the (αM +


O(logM)/M )th item with uniform probing.

71. [40 ] Experiment with the behavior of Algorithm C when it has been adapted to
external searching as described in the text.

x 72. [M28 ] (Universal hashing.) Imagine a gigantic matrix H that has one column for
every possible key K. The entries of H are numbers between 0 and M−1; the rows of H
represent hash functions. We say that H defines a universal family of hash functions
if any two columns agree in at most R/M rows, where R is the total number of rows.

a) Prove that if H is universal in this sense, and if we select a hash function h by
choosing a row of H at random, then the expected size of the list containing any
given key K in the method of separate chaining (Fig. 38) will be ≤ 1+N/M , after
we have inserted any set of N distinct keys K1, K2, . . . , KN .

b) Suppose each hj in (9) is a randomly chosen mapping from the set of all characters
to the set {0, 1, . . . ,M − 1}. Show that this corresponds to a universal family of
hash functions.

c) Would the result of (b) still be true if hj(0) = 0 for all j, but hj(x) is random for
x ̸= 0?

73. [M26 ] (Carter and Wegman.) Show that part (b) of the previous exercise holds
even when the hj are not completely random functions, but they have either of the
following special forms: (i) Let xj be the binary number (bj(n−1) . . . bj1bj0)2. Then
hj(xj) = (aj(n−1)bj(n−1) + · · · + aj1bj1 + aj0bj0) modM , where each ajk is chosen
randomly modulo M . (ii) Let M be prime and assume that 0 ≤ xj < M . Then
hj(xj) = (ajxj + bj) modM , where aj and bj are chosen randomly modulo M .
74. [M29 ] Let H define a universal family of hash functions. Prove or disprove: Given
any N distinct columns, and any row chosen at random, the expected number of zeros in
those columns is O(1) +O(N/M). [Thus, every list in the method of separate chaining
will have this expected size.]
75. [M26 ] Prove or disprove the following statements about the hash function h of (9),
when the hj are independent random functions:

a) The probability that h(K) = m is 1/M , for all 0 ≤ m < M .
b) If K ̸= K′, the probability that h(K) = m and h(K′) = m′ is 1/M2, for all

0 ≤ m,m′ < M .
c) If K, K′, and K′′ are distinct, the probability that h(K) = m, h(K′) = m′, and

h(K′′) = m′′ is 1/M3, for all 0 ≤ m,m′,m′′ < M .
d) If K, K′, K′′, and K′′′ are distinct, the probability that h(K) = m, h(K′) = m′,

h(K′′) = m′′, and h(K′′′) = m′′′ is 1/M4, for all 0 ≤ m,m′,m′′,m′′′ < M .
x 76. [M21 ] Suggest a way to modify (9) for keys with variable length, preserving the

properties of universal hashing.
77. [M22 ] Let H define a universal family of hash functions from 32-bit keys to 16-bit
keys. (Thus H has 232 columns, and M = 216, in the notation of exercise 72.) A 256-bit
key can be regarded as the concatenation of eight 32-bit parts x1x2x3x4x5x6x7x8; we
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can map it into a 16-bit address with the hash function

h4(h3(h2(h1(x1)h1(x2))h2(h1(x3)h1(x4)))h3(h2(h1(x5)h1(x6))h2(h1(x7)h1(x8)))),
where h1, h2, h3, and h4 are randomly and independently chosen rows of H. (Here, for
example, h1(x1)h1(x2) stands for the 32-bit number obtained by concatenating h1(x1)
with h1(x2).) Prove that the probability is less than 2−14 that two distinct keys hash to
the same address. [This scheme requires substantially fewer random choices than (9).]

x 78. [M26 ] (P. Woelfel.) If 0 ≤ x < 2n, let ha,b(x) = ⌊(ax + b)/2k⌋mod 2n−k. Show
that the set {ha,b | 0 < a < 2n, a odd, and 0 ≤ b < 2k} is a universal family of hash
functions from n-bit keys to (n− k)-bit keys. (These functions are particularly easy to
implement on a binary computer.)

She made a hash of the proper names, to be sure.
— GRANT ALLEN, The Tents of Shem (1889)

HASH, x. There is no definition
for this word —

nobody knows what hash is.
— AMBROSE BIERCE, The Devil’s Dictionary (1906)
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6.5. RETRIEVAL ON SECONDARY KEYS
We have now completed our study of searching for primary keys, namely for
keys that uniquely specify a record in a file. But it is sometimes necessary to
conduct a search based on the values of other fields in the records besides the
primary key; these other fields are often called secondary keys or attributes of
the record. For example, in an enrollment file that contains information about
the students at a university, it may be desirable to search for all sophomores
from Ohio who are not majoring in mathematics or statistics; or to search for
all unmarried French-speaking graduate student women; etc.

In general, we assume that each record contains several attributes, and we
want to search for all records that have certain values of certain attributes. The
specification of the desired records is called a query. Queries are usually restricted
to at most the following three types:
a) A simple query that gives a specific value of a specific attribute; for example,

“MAJOR = MATHEMATICS”, or “RESIDENCE.STATE = OHIO”.
b) A range query that gives a specific range of values for a specific attribute;

for example, “COST < $18.00”, or “21 < AGE ≤ 23”.
c) A Boolean query that consists of the previous types combined with the

operations AND, OR, NOT; for example,
“(CLASS = SOPHOMORE) AND (RESIDENCE.STATE = OHIO)

AND NOT ((MAJOR = MATHEMATICS) OR (MAJOR = STATISTICS))”.

The problem of discovering efficient search techniques for these three types of
queries is already quite difficult, and therefore queries of more complicated types
are usually not considered. For example, a railroad company might have a file
giving the current status of all its freight cars; a query such as “find all empty
refrigerator cars within 500 miles of Seattle” would not be explicitly allowed,
unless “distance from Seattle” were an attribute stored within each record instead
of a complicated function to be deduced from other attributes. And the use of
logical quantifiers, in addition to AND, OR, and NOT, would introduce further
complications, limited only by the imagination of the query-poser; given a file of
baseball statistics, for example, we might ask for the longest consecutive hitting
streak in night games. These examples are complicated, but they can still be
handled by taking one pass through a suitably arranged file. Other queries
are even more difficult — for example, to find all pairs of records that have the
same values on five or more attributes (without specifying which attributes must
match). Such queries may be regarded as general programming tasks that are
beyond the scope of this discussion, although they can often be broken down
into subproblems of the kind considered here.

Before we begin to study the various techniques for secondary key retrieval,
it is important to put the subject in a proper economic context. Although a
vast number of applications fit into the general framework of the three types of
queries outlined above, not many of these applications are really suited to the
sophisticated techniques we shall be studying, and some of them are better done



560 SEARCHING 6.5

by hand than by machine! People climb Mt. Everest “because it is there” and
because tools have been developed that make the climb possible; similarly, when
faced with a mountain of data, people are tempted to use a computer to find the
answer to the most difficult queries they can dream up, in an online real-time
environment, without properly balancing the cost. The desired calculations are
possible, but they’re not right for everyone’s application.

For example, consider the following simple approach to secondary key re-
trieval: After batching a number of queries, we can do a sequential search through
the entire file, retrieving all the relevant records. (“Batching” means that we
accumulate a number of queries before doing anything about them.) This method
is quite satisfactory if the file isn’t too large and if the queries don’t have to be
handled immediately. It can be used even with tape files, and it only ties up
the computer at odd intervals, so it will tend to be very economical in terms
of equipment costs. Moreover, it will even handle computational queries of the
“distance to Seattle” type discussed above.

Another simple way to facilitate secondary key retrieval is to let people
do part of the work, by providing them with suitable printed indexes to the
information. This method is often the most reasonable and economical way to
proceed (provided, of course, that the old paper is recycled whenever a new index
is printed), especially because people tend to notice interesting patterns when
they have convenient access to masses of data.

The applications that are not satisfactorily handled by the simple schemes
given above involve very large files for which quick responses to queries are im-
portant. Such a situation would occur, for example, if the file were continuously
being queried by a number of simultaneous users, or if the queries were being
generated by machine instead of by people. Our goal in this section will be to
see how well we can do secondary key retrieval with conventional computers,
under various assumptions about the file structure. Fortunately, the methods
we will discuss are becoming more and more feasible in practice, as the cost of
computation continues to decrease dramatically.

A lot of good ideas have been developed for dealing with the problem, but (as
the reader will have guessed from all these precautionary remarks) the algorithms
are by no means as good as those available for primary key retrieval. Because of
the wide variety of files and applications, we will not be able to give a complete
discussion of all the possibilities that have been considered, or to analyze the
behavior of each algorithm in typical environments. The remainder of this
section presents the basic approaches that have been proposed, and it is left
to the reader’s imagination to decide what combination of techniques is most
appropriate in each particular case.

Inverted files. The first important class of techniques for secondary key re-
trieval is based on the idea of an inverted file. This does not mean that the
file is turned upside down; it means that the roles of records and attributes are
reversed. Instead of listing the attributes of a given record, we list the records
having a given attribute.
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We encounter inverted files (under other names) quite often in our daily lives.
For example, the inverted file corresponding to a Russian-English dictionary is
an English-Russian dictionary. The inverted file corresponding to this book is
the index that appears at the close of the book. Accountants traditionally use
“double-entry bookkeeping,” where all transactions are entered both in a cash
account and in a customer account, so that the current cash position and the
current customer liability are both readily accessible.

In general, an inverted file usually doesn’t stand by itself; it is to be used
together with the original uninverted file. It provides duplicate, redundant
information in order to speed up secondary key retrieval. The components of
an inverted file are called inverted lists, namely the lists of all records having a
given value of some attribute.

Like all lists, the inverted lists can be represented in many ways within
a computer, and different modes of representation are appropriate at different
times. Some secondary key fields have only two values (for example, “SEX”), and
the corresponding inverted lists are quite long; but other fields typically have a
great many values with few duplications (for example, “PHONENUMBER”).

Imagine that we want to store the information in a telephone directory so
that all entries can be retrieved on the basis of either name, phone number, or
residence address. One solution is simply to make three separate files, oriented
to retrieval on each type of key. Another idea is to combine the files, for example
by making three hash tables that serve as the list heads for the chaining method.
In the latter scheme, each record of the file would be an element of three lists,
and it would therefore contain three link fields; this is the so-called multilist
method illustrated in Fig. 13 of Section 2.2.6 and discussed further below. A
third possibility is to combine the three files into one super file, by analogy with
library card catalogues in which author cards, title cards, and subject cards are
all alphabetized together.

A consideration of the format used in the index to this book leads to
further ideas on inverted list representation. For secondary key fields in which
there are typically five or so entries per attribute value, we can simply make
a short sequential list of the record locations (analogous to page locations in
a book index), following the key value. If related records tend to be clustered
consecutively, a range specification code (for example, pages 559–582) is useful.
If the records in the file tend to be reallocated frequently, it may be better to
use primary keys instead of record locations in the inverted files, so that no
updating needs to be done when the locations change; for example, references
to Bible passages are always given by chapter and verse, and the index to some
books is based on paragraph numbers instead of page numbers.

None of these ideas is especially appropriate for the case of a two-valued
attribute like “SEX”. In such a case only one inverted list is needed, of course,
since the non-males will be female and conversely. If each value relates to about
half the items of the file, the inverted list will be horribly long, but we can
solve the problem rather nicely on a binary computer by using a bit string
representation, with each bit specifying the value of a particular record. Thus
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the bit string 01001011101 . . . might mean that the first record in the file refers
to a male, the second female, the next two male, etc.

Such methods suffice to handle simple queries about specific attribute val-
ues. A slight extension makes it possible to treat range queries, except that a
comparison-based search scheme (Section 6.2) must be used instead of hashing.

For Boolean queries like “(MAJOR = MATHEMATICS) AND (RESIDENCE.STATE
= OHIO)”, we need to intersect two inverted lists. This can be done in several
ways; for example, if both lists are ordered, one pass through each will pick out
all common entries. Alternatively, we could select the shortest list and look up
each of its records, checking the other attributes; but this method works only
for AND’s, not for OR’s, and it is unattractive on external files because it requires
many accesses to records that will not satisfy the query.

The same considerations show that a multilist organization as described
above is inefficient for Boolean queries on an external file, since it implies many
unnecessary accesses. For example, imagine what would happen if the index to
this book were organized in a multilist manner: Each entry of the index would
refer only to the last page on which its particular subject was mentioned; then
on every page there would be a further reference, for each subject on that page,
to the previous occurrence of that subject. In order to find all pages relevant
to “[Analysis of algorithms] and [(External sorting) or (External searching)]”,
we would need to turn many pages. On the other hand, the same query can be
resolved by looking at only two pages of the real index as it actually appears,
doing simple operations on the inverted lists in order to find the small subset of
pages that satisfy the query.

When an inverted list is represented as a bit string, Boolean combina-
tions of simple queries are, of course, easily performed, because computers can
manipulate bit strings at relatively high speed. For mixed queries in which
some attributes are represented as sequential lists of record numbers while other
attributes are represented as bit strings, it is not difficult to convert the sequential
lists into bit strings, then to perform the Boolean operations on these bit strings.

A quantitative example of a hypothetical application may be helpful at this
point. Assume that we have 1,000,000 records of 40 characters each, and that
our file is stored on MIXTEC disks, as described in Section 5.4.9. The file itself
therefore fills two disk units, and the inverted lists will probably fill several
more. Each track contains 5000 characters = 30,000 bits, so an inverted list
for a particular attribute will take up at most 34 tracks. (This maximum
number of tracks occurs when the bitstring representation is the shortest possible
one.) Suppose that we have a rather involved query that refers to a Boolean
combination of 10 inverted lists; in the worst case we will have to read 340 tracks
of information from the inverted file, for a total read time of 340×25 ms = 8.5 sec.
The average latency delay will be about one half of the read time, but by careful
programming we may be able to eliminate the latency. By storing the first track
of each bitstring list in one cylinder, and the second track of each list in the next,
etc., most of the seek time will be eliminated, so we can estimate the maximum
seek time as about 34 × 26 ms ≈ 0.9 sec (or twice this if two independent disk
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units are involved). Finally, if q records satisfy the query, we will need about
q ×


60 ms (seek) + 12.5 ms (latency) + 0.2 ms (read)


extra time to fetch each

one for subsequent processing. Thus an optimistic estimate of the total expected
time to process this rather complicated query is roughly (10 + .073q) seconds.
This may be contrasted with about 210 seconds to read through the entire file
at top speed under the same assumptions without using any inverted lists.

This example shows that space optimization is closely related to time opti-
mization in a disk memory; the time to process the inverted lists is roughly the
time needed to seek and to read them.

The discussion above has more or less assumed that the file is not growing
or shrinking as we query it; what should we do if frequent updates are necessary?
In many applications it is sufficient to batch a number of requests for updates,
and to take care of them in dull moments when no queries need to be answered.
Alternatively, if updating the file has high priority, the method of B-trees (Sec-
tion 6.2.4) is attractive. The entire collection of inverted lists could be made
into one huge B-tree, with special conventions for the leaves so that the branch
nodes contain key values while the leaves contain both keys and lists of pointers
of records. File updates can also be handled by other methods that we shall
discuss below.

Geometric data. A great many applications deal with points, lines, and shapes
in spaces of two or more dimensions. One of the first approaches to distance-
oriented queries was the “post-office tree” proposed in 1972 by Bruce McNutt.
Suppose, for example, that we wish to handle queries like “What is the nearest
city to point x?”, given the value of x. Each node of McNutt’s tree corresponds
to a city y and a “test radius” r; the left subtree of this node corresponds to
all cities z entered subsequently into this part of the tree such that the distance
from y to z is ≤ r + δ, and the right subtree similarly is for distances ≥ r − δ.
Here δ is a given tolerance; cities between r − δ and r + δ away from y must be
entered in both subtrees. Searching in such a tree makes it possible to locate all
cities within distance δ of a given point. (See Fig. 45.)

Las Vegas NV
1800 mi

Wichita Falls TX
1206 mi

Waterbury CT
1026 mi

Davenport IA
808 mi

Sacramento CA
687 mi

Rochester NY
687 mi

Tampa FL
1026 mi

Lexington KY
541 mi

Boise ID
460 mi

Eugene OR
460 mi

Bellingham WA
687 mi

Worcester MA
460 mi

Jacksonville FL
391 mi

Miami FL
687 mi

Fig. 45. The top levels of an example “post-office tree.” To search for all cities near
a given point x, start at the root: If x is within 1800 miles of Las Vegas, go left,
otherwise go to the right; then repeat the process until encountering a terminal node.
The method of tree construction ensures that all cities within 20 miles of x will be
encountered during this search.
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Several experiments based on this idea were conducted by McNutt and
Edward Pring, using the 231 most populous cities in the continental United
States in random order as an example database. They let the test radii shrink in
a regular manner, replacing r by 0.67r when going to the left, and by 0.57r when
going to the right, except that r was left unchanged when taking the second of
two consecutive right branches. The result was that 610 nodes were required in
the tree for δ = 20 miles, and 1600 nodes were required for δ = 35 miles. The
top levels of their smaller tree are shown in Fig. 45. (In the remaining levels of
this tree, Orlando FL appeared below both Jacksonville and Miami. Some cities
occurred quite often; for example, 17 of the nodes were for Brockton MA!)

The rapid file growth as δ increases indicates that post-office trees probably
have limited utility. We can do better by working directly with the coordinates
of each point, regarding the coordinates as attributes or secondary keys; then
we can make Boolean queries based on ranges of the keys. For example, suppose
that the records of the file refer to North American cities, and that the query
asks for all cities with

(21.49◦ ≤ LATITUDE ≤ 37.41◦) AND (70.34◦ ≤ LONGITUDE ≤ 75.72◦).

Reference to a map will show that many cities satisfy this LATITUDE range, and
many satisfy the LONGITUDE range, but hardly any cities lie in both ranges. One
approach to such orthogonal range queries is to partition the set of all possible
LATITUDE and LONGITUDE values rather coarsely, with only a few classes per
attribute (for example, by truncating to the next lower multiple of 5◦), then to
have one inverted list for each combined (LATITUDE, LONGITUDE) class. This is
like having maps with one page for each local region. Using 5◦ intervals, the query
above would refer to eight pages, namely (20◦, 70◦), (25◦, 70◦), . . . , (35◦, 75◦).
The range query needs to be processed for each of these pages, either by going to
a finer partition within the page or by direct reference to the records themselves,
depending on the number of records corresponding to that page. In a sense this
is a tree structure with two-dimensional branching at each internal node.

A substantial elaboration of this approach, called a grid file, was developed
by J. Nievergelt, H. Hinterberger, and K. C. Sevcik [ACM Trans. Database
Systems 9 (1984), 38–71]. If each point x has k coordinates (x1, . . . , xk), they
divide the ith coordinate values into ranges

−∞ = gi0 < gi1 < · · · < giri = +∞ (1)

and locate x by determining indices (j1, . . . , jk) such that

0 ≤ ji < ri, giji ≤ xi < gi(ji+1) for 1 ≤ i ≤ k. (2)

All points that have a given value of (j1, . . . , jk) are called cells. Records for
points in the same cell are stored in the same bucket in an external memory.
Buckets are also allowed to contain points from several adjacent cells, provided
that each bucket corresponds to a k-dimensional rectangular region or “super-
cell.” Various strategies for updating the grid boundary values gij and for
splitting or combining buckets are possible; see, for example, K. Hinrichs, BIT 25
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(1985), 569–592. The characteristics of grid files with random data have been
analyzed by M. Regnier, BIT 25 (1985), 335–357; P. Flajolet and C. Puech,
JACM 33 (1986), 371–407, §4.2.

A simpler way to deal with orthogonal range queries was introduced by J. L.
Bentley and R. A. Finkel, using structures called quadtrees [Acta Informatica 4
(1974), 1–9]. In the two-dimensional case of their construction, every node of
such a tree represents a rectangle and also contains one of the points in that
rectangle; there are four subtrees, corresponding to the four quadrants of the
original rectangle relative to the coordinates of the given point. Similarly, in
three dimensions there is eight-way branching, and the trees are sometimes called
octrees. A k-dimensional quadtree has 2k-way branching.

The mathematical analysis of random quadtrees is quite difficult, but in
1988 the asymptotic form of the expected insertion time for the N -th node in a
random k-dimensional quadtree was determined to be

2
k

ln N + O(1), (3)

by two groups of researchers working independently: See L. Devroye and L. La-
forest, SICOMP 19 (1990), 821–832; P. Flajolet, G. Gonnet, C. Puech, and
J. M. Robson, Algorithmica 10 (1993), 473–500. Notice that when k = 1, this
result agrees with the well-known formula for insertion into a binary search tree,
Eq. 6.2.2–(5). Further work by P. Flajolet, G. Labelle, L. Laforest, and B. Salvy
showed in fact that the average internal path length can be expressed in the
surprisingly elegant form


l≥2


N

l


(−1)l

l
j=3


1− 2k

jk


, (4)

and further analysis of random quadtrees was therefore possible with the help
of hypergeometric functions [see Random Structures & Algorithms 7 (1995),
117–144].

Bentley went on to simplify the quadtree representation even further by
introducing “k-d trees,” which have only two-way branching at each node [CACM
18 (1975), 509–517; IEEE Transactions SE-5 (1979), 333–340]. A 1-d tree is
just an ordinary binary search tree, as in Section 6.2.2; a 2-d tree is similar,
but the nodes on even levels compare x-coordinates and the nodes on odd levels
compare y-coordinates when branching. In general, a k-d tree has nodes with
k coordinates, and the branching on each level is based on only one of the
coordinates; for example, we might branch on coordinate number (l mod k) + 1
on level l. A tie-breaking rule based on a record’s serial number or location
in memory can be used to ensure that no two records agree in any coordinate
position. Randomly grown k-d trees turn out to have exactly the same average
path length and shape distribution as ordinary binary search trees, because the
assumptions underlying their growth are the same as in the one-dimensional case
(see exercise 6.2.2–6).
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If the file is not changing dynamically, we can balance any N -node k-d tree
so that its height is ≈ lg N , by choosing a median value for branching at each
node. Then we can be sure that several fundamental types of queries will be
handled efficiently. For example, Bentley proved that we can identify all records
that have t specified coordinates in O(N1−t/k) steps. We can also find all records
that lie in a given rectangular region in at most O(tN1−1/k + q) steps, if t of the
coordinates are restricted to subranges and there are q such records altogether
[D. T. Lee and C. K. Wong, Acta Informatica 23 (1977), 23–29]. In fact, if the
given region is nearly cubical and q is small, and if the coordinate chosen for
branching at each node has the greatest spread of attribute values, Friedman,
Bentley, and Finkel [ACM Trans. Math. Software 3 (1977), 209–226] showed
that the average time for such a region query will be only O(log N + q). The
same formula applies when searching such k-d trees for the nearest neighbor of
a given point in k-dimensional space.

When k-d trees are random instead of perfectly balanced, the average run-
ning time for partial matches of t specified coordinates increases slightly to
Θ(N1−t/k+f(t/k)); here the function f is defined implicitly by the equation

f(x) + 3− x

x

f(x) + 2− x

1−x = 2, (5)

and it is quite small: We have

0 ≤ f(x) < 0.06329 33881 23738 85718 14011 27797 33590 58170−, (6)

and the maximum occurs when x is near 0.585. [See P. Flajolet and C. Puech,
JACM 33 (1986), 371–407, §3.]

Because of the aesthetic appeal and great significance of geometric algo-
rithms, there has been an enormous growth in techniques for solving higher-
dimensional search problems and related questions of many kinds. Indeed, a
new subfield of mathematics and computer science called Computational Ge-
ometry has developed rapidly since the 1970s. The Handbook of Discrete and
Computational Geometry, edited by J. E. Goodman and J. O’Rourke (Boca
Raton, Florida: CRC Press, 1997), is an excellent reference to the state of the
art in that field as of 1997.

A comprehensive survey of data structures and algorithms for the important
special cases of two- and three-dimensional objects has been prepared by Hanan
Samet in a pair of complementary books, The Design and Analysis of Spatial
Data Structures and Applications of Spatial Data Structures (Addison–Wesley,
1990). Samet points out that the original quadtrees of Bentley and Finkel are
now more properly called “point quadtrees”; the name “quadtree” itself has
become a generic term for any hierarchical decomposition of geometric data.

Compound attributes. It is possible to combine two or more attributes into
one super-attribute. For example, a (CLASS, MAJOR) attribute could be created
by combining the CLASS and MAJOR fields of a university enrollment file. In this
way queries can often be satisfied by taking the union of disjoint, short lists
instead of the intersection of longer lists.
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The idea of attribute combination was developed further by V. Y. Lum
[CACM 13 (1970), 660–665], who suggested ordering the inverted lists of com-
bined attributes lexicographically from left to right, and making multiple copies,
with the individual attributes permuted in a clever way. For example, suppose
that we have three attributes A, B, and C; we can form three compound attributes

(A, B, C), (B, C, A), (C, A, B) (7)

and construct ordered inverted lists for each of these. (Thus in the first list, the
records occur in order of their A values, with all records of the same A value in
order by B and then by C.) This organization makes it possible to satisfy queries
based on any combination of the three attributes; for example, all records having
specified values for A and C will appear consecutively in the third list.

Similarly, from four attributes A, B, C, D, we can form the six combined
attributes

(A, B, C, D), (B, C, D, A), (B, D, A, C), (C, A, D, B), (C, D, A, B), (D, A, B, C), (8)

which suffice to answer all combinations of simple queries relating to the simul-
taneous values of one, two, three, or four of the attributes. There is a general
procedure for constructing


n
k


combined attributes from n attributes, where

k ≤ 1
2 n, such that all records having specified combinations of at most k or

at least n − k of the attribute values will appear consecutively in one of the
combined attribute lists (see exercise 1). Alternatively, we can get by with
fewer combinations when some attributes have a limited number of values. For
example, if D is simply a two-valued attribute, the three combinations

(D, A, B, C), (D, B, C, A), (D, C, A, B) (9)

obtained by placing D in front of (7) will be almost as good as (8) with only half
the redundancy, since queries that do not depend on D can be treated by looking
in just two places in one of the lists.

Binary attributes. It is instructive to consider the special case in which all
attributes are two-valued. In a sense this is the opposite of combining attributes,
since we can represent any value as a binary number and regard the individual
bits of that number as separate attributes. Table 1 shows a typical file involving
“yes-no” attributes; in this case the records stand for selected cookie recipes,
and the attributes specify which ingredients are used. For example, Almond
Lace Wafers are made from butter, flour, milk, nuts, and granulated sugar. If
we think of Table 1 as a matrix of zeros and ones, the transpose of the matrix is
the inverted file, in bitstring form.

The right-hand column of Table 1 is used to indicate special items that occur
only rarely. These can be coded in a more efficient way than to devote an entire
column to each one; and the “Cornstarch” column could be treated similarly.
Dually, we could find a more efficient way to encode the “Flour” column, since
flour occurs in everything except Meringues. For the present, however, let us
sidestep these considerations and simply ignore the “Special ingredients” column.
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Almond Lace Wafers 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 —
Applesauce-Spice Squares 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 Applesauce
Banana-Oatmeal Cookies 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 Bananas
Chocolate Chip Cookies 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 —
Coconut Macaroons 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 —
Cream-Cheese Cookies 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 Cream cheese
Delicious Prune Bars 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 Oranges, prunes
Double-Chocolate Drops 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 —
Dream Bars 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 —
Filled Turnovers 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 —
Finska Kakor 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 Almond extract
Glazed Gingersnaps 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 Vinegar
Hermits 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 Apricots
Jewel Cookies 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 Currant jelly
Jumbles 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 Salad oil
Kris Kringles 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 —
Lebkuchen Rounds 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 Honey
Meringues 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 Candied cherries
Moravian Spice Cookies 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 —
Oatmeal-Date Bars 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0 —
Old-Fashioned Sugar Cookies 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 Sour cream
Peanut-Butter Pinwheels 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 Peanut butter
Petticoat Tails 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 —
Pfeffernuesse 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 Citron, mace, pepper
Scotch Oatmeal Shortbread 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 —
Shortbread Stars 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 —
Springerle 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 —
Spritz Cookies 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 —
Swedish Kringler 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 —
Swiss-Cinnamon Crisps 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 —
Toffee Bars 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 —
Vanilla-Nut Icebox Cookies 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 —

Reference: McCall’s Cook Book (New York: Random House, 1963), Chapter 9.
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Let us define a basic query in a binary attribute file as a request for all records
having 0’s in certain columns, 1’s in other columns, and arbitrary values in the
remaining columns. Using “*” to stand for an arbitrary value, we can represent
any basic query as a sequence of 0’s, 1’s, and *’s. For example, consider a man
who is in the mood for some coconut cookies, but he is allergic to chocolate,
hates anise, and has run out of vanilla extract; he can formulate the query

* 0 * * * * 0 * * 1 * * * * * * * * * * * * * * * * * * * 0. (10)

Table 1 now says that Delicious Prune Bars are just the thing.
Before we consider the general problem of organizing a file for basic queries,

it is important to look at the special case where no 0’s are specified, only 1’s
and *’s. This may be called an inclusive query, because it asks for all records
that include a certain set of attributes, if we assume that 1’s denote attributes
that are present and 0’s denote attributes that are absent. For example, the
recipes in Table 1 that call for both baking powder and baking soda are Glazed
Gingersnaps and Old-Fashioned Sugar Cookies.

In some applications it is sufficient to provide for the special case of inclusive
queries. This occurs, for example, in the case of many manual card-filing systems,
such as “edge-notched cards” or “feature cards.” An edge-notched card system
corresponding to Table 1 would have one card for every recipe, with holes cut
out for each ingredient (see Fig. 46). In order to process an inclusive query, the
file of cards is arranged into a neat deck and needles are put in each column
position corresponding to an attribute that is to be included. After raising the
needles, all cards having the appropriate attributes will drop out.
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Fig. 46. An edge-notched card.

A feature-card system works on the inverse file in a similar way. In this
case there is one card for every attribute, and holes are punched in designated
positions on the surface of the card for every record possessing that attribute.
An ordinary 80-column card can therefore be used to tell which of 12×80 = 960
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records have a given attribute. To process an inclusive query, the feature cards
for the specified attributes are selected and put together; then light will shine
through all positions corresponding to the desired records. This operation is
analogous to the treatment of Boolean queries by intersecting inverted bit strings
as explained above.

Table 2
AN EXAMPLE OF SUPERIMPOSED CODING

Codes for individual flavorings
Almond extract 0100000001 Dates 1000000100
Allspice 0000100001 Ginger 0000110000
Anise seed 0000011000 Honey 0000000011
Applesauce 0010010000 Lemon juice 1000100000
Apricots 1000010000 Lemon peel 0011000000
Bananas 0000100010 Mace 0000010100
Candied cherries 0000101000 Molasses 1001000000
Cardamom 1000000001 Nutmeg 0000010010
Chocolate 0010001000 Nuts 0000100100
Cinnamon 1000000010 Oranges 0100000100
Citron 0100000010 Peanut butter 0000000101
Cloves 0001100000 Pepper 0010000100
Coconut 0001010000 Prunes 0010000010
Coffee 0001000100 Raisins 0101000000
Currant jelly 0010000001 Vanilla extract 0000001001

Superimposed codes
Almond Lace Wafers 0000100100 Lebkuchen Rounds 1011110111
Applesauce-Spice Squares 1111111111 Meringues 1000101100
Banana-Oatmeal Cookies 1000111111 Moravian Spice Cookies 1001110011
Chocolate Chip Cookies 0010101101 Oatmeal-Date Bars 1000100100
Coconut Macaroons 0001111101 Old-Fashioned Sugar Cookies 0000011011
Cream-Cheese Cookies 0010001001 Peanut-Butter Pinwheels 0010001101
Delicious Prune Bars 0111110110 Petticoat Tails 0000001001
Double-Chocolate Drops 0010101100 Pfeffernuesse 1111111111
Dream Bars 0001111101 Scotch Oatmeal Shortbread 0000001001
Filled Turnovers 1011101101 Shortbread Stars 0000000000
Finska Kakor 0100100101 Springerle 0011011000
Glazed Gingersnaps 1001110010 Spritz Cookies 0000001001
Hermits 1101010110 Swedish Kringler 0000000000
Jewel Cookies 0010101101 Swiss-Cinnamon Crisps 1000000010
Jumbles 1000001011 Toffee Bars 0010101101
Kris Kringles 1011100101 Vanilla-Nut Icebox Cookies 0000101101

Superimposed coding. The reason these manual card systems are of special
interest to us is that ingenious schemes have been devised to save space on
edge-notched cards; the same principles can be applied in the representation of
computer files. Superimposed coding is a technique similar to hashing, and it was
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actually invented several years before hashing itself was discovered. The idea is to
map attributes into random k-bit codes in an n-bit field, and to superimpose the
codes for each attribute that is present in a record. An inclusive query for some
set of attributes can be converted into an inclusive query for the corresponding
superimposed bit codes. A few extra records may satisfy this query, but the
number of such “false drops” can be statistically controlled. [See Calvin N.
Mooers, Amer. Chem. Soc. Meeting 112 (September 1947), 14E–15E; American
Documentation 2 (1951), 20–32.]

As an example of superimposed coding, let’s consider Table 1 again, but only
the flavorings instead of the basic ingredients like baking powder, shortening,
eggs, and flour. Table 2 shows what happens if we assign random 2-bit codes in
a 10-bit field to each of the flavoring attributes and superimpose the coding. For
example, the entry for Chocolate Chip Cookies is obtained by superimposing the
codes for chocolate, nuts, and vanilla:

0010001000 | 0000100100 | 0000001001 = 0010101101.

The superimposition of these codes also yields some spurious attributes, in this
case allspice, candied cherries, currant jelly, peanut butter, and pepper; these
will cause false drops to occur on certain queries (and they also suggest the
creation of a new recipe called False Drop Cookies!).

Superimposed coding actually doesn’t work very well in Table 2, because
that table is a small example with lots of attributes present. In fact, Applesauce-
Spice Squares will drop out for every query, since it was obtained by superim-
posing seven codes that cover all ten positions; and Pfeffernuesse is even worse,
obtained by superimposing twelve codes. On the other hand Table 2 works
surprisingly well in some respects; for example, if we try the query “Vanilla
extract”, only the record for Pfeffernuesse comes out as a false drop.

A more appropriate example of superimposed coding occurs if we have, say,
a 32-bit field and a set of

32
3


= 4960 different attributes, where each record is
allowed to possess up to six attributes and each attribute is encoded by specifying
3 of the 32 bits. In this situation, if we assume that each record has six randomly
selected attributes, the probability of a false drop in an inclusive query

on one attribute is .07948358;
on two attributes is .00708659;
on three attributes is .00067094;
on four attributes is .00006786;
on five attributes is .00000728;
on six attributes is .00000082.

(11)

Thus if there are M records that do not actually satisfy a two-attribute query,
about .007M will have a superimposed code that spuriously matches all code bits
of the two specified attributes. (These probabilities are computed in exercise 4.)
The total number of bits needed in the inverted file is only 32 times the number
of records, which is less than half the number of bits needed to specify the
attributes themselves in the original file.
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If carefully selected nonrandom codes are used, it is possible to avoid false
drops entirely in superimposed coding, as shown by W. H. Kautz and R. C.
Singleton, IEEE Trans. IT-10 (1964), 363–377; one of their constructions ap-
pears in exercise 16.

Malcolm C. Harrison [CACM 14 (1971), 777–779] has observed that super-
imposed coding can be used to speed up text searching. Assume that we want
to locate all occurrences of a particular string of characters in a long body of
text, without building an extensive table as in Algorithm 6.3P; and assume, for
example, that the text is divided into individual lines c1c2 . . . c50 of 50 characters
each. Harrison suggests encoding each of the 49 pairs c1c2, c2c3, . . . , c49c50 by
hashing each of them into a number between 0 and 127, say; then the “signature”
of the line c1c2 . . . c50 is the string of 128 bits b0b1 . . . b127, where bi = 1 if and
only if h(cjcj+1) = i for some j.

If now we want to search for all occurrences of the word NEEDLE in a large
text file called HAYSTACK, we simply look for all lines whose signature contains
1-bits in positions h(NE), h(EE), h(ED), h(DL), and h(LE). Assuming that the
hash function is random, the probability that a random line contains all these
bits in its signature is only 0.00341 (see exercise 4); hence the intersection of
five inverted-list bit strings will rapidly identify all the lines containing NEEDLE,
together with a few false drops.

The assumption of randomness is not really justified in this application,
since typical text has so much redundancy; the distribution of adjacent letter
pairs in English words is highly biased. For example, it will probably be very
helpful to discard all pairs cjcj+1 containing a blank character, since blanks are
usually much more common than any other symbol.

Another interesting application of superimposed coding to search problems
has been suggested by Burton H. Bloom [CACM 13 (1970), 422–426]; his method
actually applies to primary key retrieval, although it is most appropriate for us
to discuss it in this section. Imagine a search application with a large database
in which no calculation needs to be done if the search was unsuccessful. For
example, we might want to check somebody’s credit rating or passport number,
and if no record for that person appears in the file we don’t have to investigate
further. Similarly in an application to computerized typesetting, we might have
a simple algorithm that hyphenates most words correctly, but it fails on some
50,000 exceptional words; if we don’t find the word in the exception file we are
free to use the simple algorithm.

In such situations it is possible to maintain a bit table in internal memory
so that most keys not in the file can be recognized as absent without making
any references to the external memory. Here’s how: Let the internal bit table
be b0b1 . . . bM−1, where M is rather large. For each key Kj in the file, compute
k independent hash functions h1(Kj), . . . , hk(Kj), and set the corresponding k
b’s equal to 1. (These k values need not be distinct.) Thus bi = 1 if and only
if hl(Kj) = i for some j and l. Now to determine if a search argument K is
in the external file, first test whether or not bhl(K) = 1 for 1 ≤ l ≤ k; if not,
there is no need to access the external memory, but if so, a conventional search
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will probably find K if k and M have been chosen properly. The chance of a
false drop when there are N records in the file is approximately (1− e−kN/M )k.
In a sense, Bloom’s method treats the entire file as one record, with the primary
keys as the attributes that are present, and with superimposed coding in a huge
M -bit field.

Still another variation of superimposed coding has been developed by Rich-
ard A. Gustafson [Ph.D. thesis (Univ. South Carolina, 1969)]. Suppose that
we have N records and that each record possesses six attributes chosen from
a set of 10,000 possibilities. The records may, for example, stand for technical
articles and the attributes may be keywords describing the article. Let h be a
hash function that maps each attribute into a number between 0 and 15. If a
record has attributes a1, a2, . . . , a6, Gustafson suggests mapping the record into
the 16-bit number b0b1 . . . b15, where bi = 1 if and only if h(aj) = i for some j;
and furthermore if this method results in only k of the b’s equal to 1, for k < 6,
another 6−k 1s are supplied by some random method (not necessarily depending
on the record itself). There are


16
6


= 8008 sixteen-bit codes in which exactly
six 1-bits are present, and with luck about N/8008 records will be mapped into
each value. We can keep 8008 lists of records, directly calculating the address
corresponding to b0b1 . . . b15 using a suitable formula. In fact, if the 1s occur in
positions 0 ≤ p1 < p2 < · · · < p6, the function

p1

1


+


p2

2


+ · · ·+


p6

6


will convert each string b0b1 . . . b15 into a unique number between 0 and 8007,
as we have seen in exercises 1.2.6–56 and 2.2.6–7.

Now if we want to find all records having three particular attributes A1, A2,
A3, we compute h(A1), h(A2), h(A3); assuming that these three values are
distinct, we need only look at the records stored in the


13
3


= 286 lists whose
bit code b0b1 . . . b15 contains 1s in those three positions. In other words, only
286/8008 ≈ 3.5 percent of the records need to be examined in the search.

See the article by C. S. Roberts, Proc. IEEE 67 (1979), 1624–1642, for an
excellent exposition of superimposed coding, together with an application to a
large database of telephone-directory listings. An application to spelling-check
software is discussed by J. K. Mullin and D. J. Margoliash, Software Practice &
Exper. 20 (1990), 625–630.

Combinatorial hashing. The idea underlying Gustafson’s method just de-
scribed is to find some way to map the records into memory locations so that
comparatively few locations are relevant to a particular query. But his method
applies only to inclusive queries when the individual records possess few at-
tributes. Another type of mapping, designed to handle arbitrary basic queries
like (10) consisting of 0’s, 1’s, and *’s, was discovered by Ronald L. Rivest in
1971. [See SICOMP 5 (1976), 19–50.]

Suppose first that we wish to construct a crossword-puzzle dictionary for
all six-letter words of English; a typical query asks for all words of the form
N**D*E, say, and gets the reply {NEEDLE, NIDDLE, NODDLE, NOODLE, NUDDLE}. We
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can solve this problem nicely by keeping 212 lists, putting the word NEEDLE into
list number

h(N) h(E) h(E) h(D) h(L) h(E).
Here h is a hash function taking each letter into a 2-bit value, and we get a 12-bit
list address by putting the six bit-pairs together. Then the query N**D*E can be
answered by looking through just 64 of the 4096 lists.

Similarly let’s suppose that we have 1,000,000 records each containing 10
secondary keys, where each secondary key has a fairly large number of possible
values. We can map the records whose secondary keys are (K1, K2, . . . , K10)
into the 20-bit number

h(K1) h(K2) . . . h(K10), (12)
where h is a hash function taking each secondary key into a 2-bit value, and
(12) stands for the juxtaposition of these ten pairs of bits. This scheme maps
1,000,000 records into 220 = 1,048,576 possible values, and we can consider the
total mapping as a hash function with M = 220; chaining can be used to resolve
collisions. If we want to retrieve all records having specified values of any five
secondary keys, we need to look at only 210 lists, corresponding to the five
unspecified bit pairs in (12); thus only about 1000 =

√
N records need to be

examined on the average. (A similar approach was suggested by M. Arisawa,
J. Inf. Proc. Soc. Japan 12 (1971), 163–167, and by B. Dwyer (unpublished).
Dwyer suggested using a more flexible mapping than (12), namely

h1(K1) + h2(K2) + · · ·+ h10(K10)


mod M,

where M is any convenient number, and the hi are arbitrary hash functions
possibly of the form wiKi for “random” wi.)

Rivest has developed this idea further so that in many cases we have the
following situation. Assume that there are N ≈ 2n records, each having m
secondary keys. Each record is mapped into an n-bit hash address, in such a
way that a query that leaves the values of k keys unspecified corresponds to
approximately Nk/m hash addresses. All the other methods we have discussed
in this section (except Gustafson’s) require order N steps for retrieval, although
the constant of proportionality is small; for large enough N, Rivest’s method
will be faster, and it requires no inverted files.

But we have to define an appropriate mapping before we can apply this
technique. Here is an example with small parameters, when m = 4 and n = 3
and when all secondary keys are binary-valued; we can map 4-bit records into
eight addresses as follows:

∗ 0 0 1 → 0
0 ∗ 0 0 → 1
1 0 ∗ 0 → 2
1 1 0 ∗ → 3

∗ 1 1 0 → 4
1 ∗ 1 1 → 5
0 1 ∗ 1 → 6
0 0 1 ∗ → 7

(13)

An examination of this table reveals that all records corresponding to the query
0 * * * are mapped into locations 0, 1, 4, 6, and 7; and similarly any basic
query with three *’s corresponds to exactly five locations. The basic queries
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with two *’s correspond to three locations each; and the basic queries with one *
correspond to either one or two locations, (8 × 1 + 24 × 2)/32 = 1.75 on the
average. Thus we have

Number of unspecified Number of locations
bits in the query to search

4 8 = 84/4

3 5 ≈ 83/4

2 3 ≈ 82/4

1 1.75 ≈ 81/4

0 1 = 80/4

(14)

Of course this is such a small example, we could handle it more easily by
brute force. But it leads to nontrivial applications, since we can use it also
when m = 4r and n = 3r, mapping 4r-bit records into 23r ≈ N locations by
dividing the secondary keys into r groups of 4 bits each and applying (13) in each
group. The resulting mapping has the desired property: A query that leaves k
of the m bits unspecified will correspond to approximately Nk/m locations. (See
exercise 6.)

A. E. Brouwer [SICOMP 28 (1999), 1970–1971] has found an attractive
way to compress 8 bits to 5, with a mapping analogous to (13). Every 8-bit byte
belongs to exactly one of the following 32 classes:

0∗000∗0∗
1∗000∗0∗
0∗010∗0∗
1∗010∗0∗
0∗10∗1∗0
1∗10∗1∗0
0∗11∗1∗0
1∗11∗1∗0

01∗0∗∗11
11∗0∗∗11
01∗1∗∗11
11∗1∗∗11
0∗1∗000∗
1∗1∗000∗
0∗0∗11∗0
1∗0∗11∗0

00∗11∗∗1
10∗11∗∗1
00∗0∗01∗
10∗0∗01∗
∗01∗01∗1
∗10∗10∗0
∗00∗011∗
∗11∗100∗

∗11∗∗101
∗11∗∗010
∗10∗0∗10
∗10∗1∗01
∗0∗1001∗
∗0∗0100∗
∗0∗011∗1
∗0∗110∗0

(15)

The ∗’s in this design are arranged in such a way that there are 3 in each row
and 12 in each column. Exercise 18 explains how to obtain similar schemes that
will compress records having, say, m = 4r bits into addresses having n = 3r bits.
In practice, buckets of size b would be used, and we would take N ≈ 2nb; the
case b = 1 has been used in the discussion above for simplicity in exposition.

Rivest has also suggested another simple way to handle basic queries. Sup-
pose we have, say, N ≈ 210 records of 30 bits each, where we wish to answer
arbitrary 30-bit basic queries like (10). Then we can simply divide the 30 bits
into three 10-bit fields, and keep three separate hash tables of size M = 210. Each
record is stored thrice, in lists corresponding to its bit configurations in the three
fields. Under suitable conditions, each list will contain about one element. Given
a basic query with k unspecified bits, at least one of the fields will have ⌊k/3⌋ or
fewer bits unspecified; hence we need to look in at most 2⌊k/3⌋ ≈ Nk/30 of the
lists to find all answers to the query. Or we could use any other technique for
handling basic queries in the selected field.
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Generalized tries. Rivest went on to suggest yet another approach, based
on a data structure like the tries in Section 6.3. We can let each internal node
of a generalized binary trie specify which bit of the record it represents. For
example, in the data of Table 1 we could let the root of the trie represent Vanilla
extract; then the left subtrie would correspond to those 16 cookie recipes that
omit Vanilla extract, while the right subtrie would be for the 16 that use it. This
16–16 split nicely bisects the file; and we can handle each subfile in a similar way.
When a subfile becomes suitably small, we represent it by a terminal node.

To process a basic query, we start at the root of the trie. When searching a
generalized trie whose root specifies an attribute where the query has 0 or 1, we
search the left or right subtrie, respectively; and if the query has * in that bit
position, we search both subtries.

Suppose the attributes are not binary, but they are represented in binary
notation. We can build a trie by looking first at the first bit of attribute 1, then
the first bit of attribute 2, . . . , the first bit of attribute m, then the second bit of
attribute 1, etc. Such a structure is called an “m-d trie,” by analogy with m-d
trees (which branch by comparisons instead of by bit inspections). P. Flajolet
and C. Puech have shown that the average time to answer a partial match query
in a random m-d trie of N nodes is Θ(Nk/m) when k/m of the attributes are
unspecified [JACM 33 (1986), 371–407, §4.1]; the variance has been calculated
by W. Schachinger, Random Structures & Algorithms 7 (1995), 81–95.

Similar algorithms can be developed for m-dimensional versions of the digital
search trees and Patricia trees of Section 6.3. These structures, which tend to be
slightly better balanced than m-d tries, have been analyzed by P. Kirschenhofer
and H. Prodinger, Random Structures & Algorithms 5 (1994), 123–134.

*Balanced filing schemes. Another combinatorial approach to information
retrieval, based on balanced incomplete block designs, has been the subject of
considerable investigation. Although the subject is quite interesting from a
mathematical point of view, it has unfortunately not yet proved to be more
useful than the other methods described above. A brief introduction to the
theory will be presented here in order to indicate the flavor of the results, in
hopes that readers might think of good ways to put the ideas to practical use.

A Steiner triple system is an arrangement of v objects into unordered triples
in such a way that every pair of objects occurs in exactly one triple. For example,
when v = 7 there is essentially only one Steiner triple system, namely

Triple Pairs included
{1, 2, 4} {1, 2}, {1, 4}, {2, 4}
{2, 3, 5} {2, 3}, {2, 5}, {3, 5}
{3, 4, 6} {3, 4}, {3, 6}, {4, 6}
{4, 5, 0} {0, 4}, {0, 5}, {4, 5}
{5, 6, 1} {1, 5}, {1, 6}, {5, 6}
{6, 0, 2} {0, 2}, {0, 6}, {2, 6}
{0, 1, 3} {0, 1}, {0, 3}, {1, 3}

(16)
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Since there are 1
2 v(v − 1) pairs of objects and three pairs per triple, there must

be 1
6 v(v−1) triples in all; and since each object must be paired with v−1 others,

each object must appear in exactly 1
2 (v−1) triples. These conditions imply that

a Steiner triple system can’t exist unless 1
6 v(v−1) and 1

2 (v−1) are integers, and
this is equivalent to saying that v is odd and not congruent to 2 modulo 3; thus

v mod 6 = 1 or 3. (17)

Conversely, T. P. Kirkman proved in 1847 that Steiner triple systems do exist for
all v ≥ 1 such that (17) holds. His interesting construction is given in exercise 10.

Steiner triple systems can be used to reduce the redundancy of combined
inverted file indexes. For example, consider again the cookie recipe file of Table 1,
and convert the rightmost column into a 31st attribute that is 1 if any special
ingredients are necessary, 0 otherwise. Assume that we want to answer all
inclusive queries on pairs of attributes, such as “What recipes use both coconut
and raisins?” We could make up an inverted list for each of the

31
2


= 465
possible queries. But it would turn out that this takes a lot of space since
Pfeffernuesse (for example) would appear in

17
2


= 136 of the lists, and a record
with all 31 attributes would appear in every list! A Steiner triple system can be
used to make a slight improvement in this situation. There is a Steiner triple
system on 31 objects, with 155 triples and each pair of objects occurring in
exactly one of the triples. We can associate four lists with each triple {a, b, c},
one list for all records having attributes a, b, c̄ (that is, a and b but not c);
another for a, b̄, c; another for ā, b, c; and another for records having all three
attributes a, b, c. This guarantees that no record will be included in more than
155 of the inverted lists, and it saves space whenever a record has three attributes
that correspond to a triple of the system.

Triple systems are special cases of block designs that have blocks of three or
more objects. For example, there is a way to arrange 31 objects into sextuples
so that every pair of objects appears in exactly one sextuple:

{0, 4, 16, 21, 22, 24}, {1, 5, 17, 22, 23, 25}, . . . , {30, 3, 15, 20, 21, 23} (18)

(This design is formed from the first block by addition mod 31. To verify that
it has the stated property, note that the 30 values (ai − aj) mod 31, for i ̸= j,
are distinct, where (a1, a2, . . . , a6) = (0, 4, 16, 21, 22, 24). To find the sextuple
containing a pair (x, y), choose i and j such that ai − aj ≡ x − y (modulo 31);
now if k = (x−ai) mod 31, we have (ai+k) mod 31 = x and (aj+k) mod 31 = y.)

We can use the design above to store the inverted lists in such a way that
no record can appear more than 31 times. Each sextuple {a, b, c, d, e, f} is
associated with 57 lists, for the various possibilities of records having two or
more of the attributes a, b, c, d, e, f , namely (a, b, c̄, d̄, ē, f̄), (a, b̄, c, d̄, ē, f̄),
. . . , (a, b, c, d, e, f); and the answer to each inclusive 2-attribute query is the
disjoint union of 16 appropriate lists in the appropriate sextuple. For this design,
Pfeffernuesse would be stored in 29 of the 31 blocks, since that record has two
of the six attributes in all but blocks {19, 23, 4, 9, 10, 12} and {13, 17, 29, 3, 4, 6}
if we number the columns from 0 to 30.
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The theory of block designs and related patterns is developed in detail in
Marshall Hall, Jr.’s book Combinatorial Theory (Waltham, Mass.: Blaisdell,
1967). Although such combinatorial configurations are very beautiful, their main
application to information retrieval so far has been to decrease the redundancy
incurred when compound inverted lists are being used; and David K. Chow
[Information and Control 15 (1969), 377–396] has observed that this type of
decrease can be obtained even without using combinatorial designs.

A short history and bibliography. The first published article dealing with a
technique for secondary key retrieval was by L. R. Johnson in CACM 4 (1961),
218–222. The multilist system was developed independently by Noah S. Prywes,
H. J. Gray, W. I. Landauer, D. Lefkowitz, and S. Litwin at about the same
time; see IEEE Trans. on Communication and Electronics 82 (1963), 488–492.
Another rather early publication that influenced later work was by D. R. Davis
and A. D. Lin, CACM 8 (1965), 243–246.

Since then a large literature on the subject grew up rapidly, but much of
it dealt with the user interface and with programming language considerations,
which are not within the scope of this book. In addition to the papers already
cited, the following published articles were found to be most helpful to the
author as this section was first being written in 1972: Jack Minker and Jerome
Sable, Ann. Rev. of Information Science and Technology 2 (1967), 123–160;
Robert E. Bleier, Proc. ACM Nat. Conf. 22 (1967), 41–49; Jerome A. Feldman
and Paul D. Rovner, CACM 12 (1969), 439–449; Burton H. Bloom, Proc. ACM
Nat. Conf. 24 (1969), 83–95; H. S. Heaps and L. H. Thiel, Information Storage
and Retrieval 6 (1970), 137–153; Vincent Y. Lum and Huei Ling, Proc. ACM
Nat. Conf. 26 (1971), 349–356. A good survey of manual card-filing systems
appears in Methods of Information Handling by C. P. Bourne (New York: Wiley,
1963), Chapter 5. Balanced filing schemes were originally developed by C. T.
Abraham, S. P. Ghosh, and D. K. Ray-Chaudhuri in 1965; see the article by
R. C. Bose and Gary G. Koch, SIAM J. Appl. Math. 17 (1969), 1203–1214.

Most of the classical algorithms for multi-attribute data that are known to
be of practical importance have been discussed above; but a few more topics

are planned for the next edition of this book, including the following:
• E. M. McCreight introduced priority search trees [SICOMP 14 (1985), 257–

276], which are specially designed to represent intersections of dynamically
changing families of intervals, and to handle range queries of the form “Find
all records with x0 ≤ x ≤ x1 and y ≤ y1.” (Notice that the lower bound
on y must be −∞, but x can be bounded on both sides.)
• M. L. Fredman has proved several fundamental lower bounds, which show

that a sequence of N intermixed insertions, deletions, and k-dimensional
range queries must take Ω


N(log N)k


operations in the worst case, re-

gardless of the data structure being used. See JACM 28 (1981), 696–705;
SICOMP 10 (1981), 1–10; J. Algorithms 2 (1981), 77–87.

Basic algorithms for pattern matching and approximate pattern matching in text
strings will be discussed in Chapter 9.
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It is interesting to note that the human brain is much better at secondary key
retrieval than computers are; in fact, people find it rather easy to recognize faces
or melodies from only fragmentary information, while computers have barely
been able to do this at all. Therefore it is not unlikely that a completely new
approach to machine design will someday be discovered that solves the problem
of secondary key retrieval once and for all, making this entire section obsolete.

EXERCISES
x 1. [M27 ] Let 0 ≤ k ≤ n/2. Prove that the following construction produces


n
k


permutations of {1, 2, . . . , n} such that every t-element subset of {1, 2, . . . , n} appears
as the first t elements of at least one of the permutations, for t ≤ k or t ≥ n − k :
Consider a path in the plane from (0, 0) to (n, r) where r ≥ n − 2k, in which the ith
step is from (i−1, j) to (i, j+1) or to (i, j−1); the latter possibility is allowed only if
j ≥ 1, so that the path never goes below the x axis. There are exactly


n
k


such paths.

For each path of this kind, a permutation is constructed as follows, using three lists
that are initially empty: For i = 1, 2, . . . , n, if the ith step of the path goes up, put
the number i into list B; if the step goes down, put i into list A and move the currently
largest element of list B into list C. The resulting permutation is equal to the final
contents of list A, then list B, then list C, each list in increasing order.

For example, when n = 4 and k = 2, the six paths and permutations defined by
this procedure are

q�q�q�q�q
q�q
@q�q�q q�q

@q�q
@q q�q�q

@q�q q�q�q
@q
@q q�q�q�q

@q
|1 2 3 4| 2|3 4|1 2 4∥1 3 3|1 4|2 3 4∥1 2 4|1 2|3

(Vertical lines show the division between lists A, B, and C. These six permutations
correspond to the compound attributes in (8).)

Hint: Represent each t-element subset S by a path that goes from (0, 0) to
(n, n−2t), whose ith step runs from (i−1, j) to (i, j+1) if i /∈ S and to (i, j−1) if
i ∈ S. Convert every such path into an appropriate path having the special form
stated above.

2. [M25 ] (Sakti P. Ghosh.) Find the minimum possible length l of a list r1r2 . . . rl

of references to records, such that the set of all responses to any of the inclusive queries
**1, *1*, 1**, *11, 1*1, 11*, 111 on three binary-valued secondary keys will appear in
consecutive locations ri . . . rj .

3. [19 ] In Table 2, what inclusive queries will cause (a) Old-Fashioned Sugar Cookies,
(b) Oatmeal-Date Bars, to be obtained among the false drops?

4. [M30 ] Find exact formulas for the probabilities in (11), assuming that each record
has r distinct attributes chosen randomly from among the


n
k


k-bit codes in an n-bit

field and that the query involves q distinct but otherwise random attributes. (Don’t
be alarmed if the formulas do not simplify.)

5. [40 ] Experiment with various ways to avoid the redundancy of text when using
Harrison’s technique for substring searching.

x 6. [M20 ] The total number of m-bit basic queries with t bits specified is s =


m
t


2t.

If a combinatorial hashing function like that in (13) converts these queries into l1, l2,
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. . . , ls locations, respectively, L(t) = (l1 + l2 + · · · + ls)/s is the average number of
locations per query. [For example, in (13) we have L(3) = 1.75.]

Consider now a composite hash function on an (m1 + m2)-bit field, formed by
mapping the first m1 bits with one hash function and the remaining m2 with another,
where L1(t) and L2(t) are the corresponding average numbers of locations per query.
Find a formula that expresses L(t), for the composite function, in terms of L1 and L2.

7. [M24 ] (R. L. Rivest.) Find the functions L(t), as defined in the previous exercise,
for the following combinatorial hash functions:

(a) m = 3, n = 2 (b) m = 4, n = 2
0 0 ∗ → 0 0 0 ∗ ∗ → 0
1 ∗ 0 → 1 ∗ 1 ∗ 0 → 1
∗ 1 1 → 2 ∗ 1 1 1 → 2
1 0 1 → 3 1 0 1 ∗ → 2
0 1 0 → 3 ∗ 1 0 1 → 3

1 0 0 ∗ → 3

8. [M32 ] (R. L. Rivest.) Consider the set Qt,m of all 2t


m
t


basic m-bit queries

like (10) in which there are exactly t specified bits. Given a set S of m-bit records,
let ft(S) denote the number of queries in Qt,m whose answer contains a member of S;
and let ft(s,m) be the minimum ft(S) over all such sets S having s elements, for
0 ≤ s ≤ 2m. By convention, ft(0, 0) = 0 and ft(1, 0) = δt0.

a) Prove that, for all t ≥ 1 and m ≥ 1, and for 0 ≤ s ≤ 2m,

ft(s,m) = ft(⌈s/2⌉,m− 1) + ft−1(⌈s/2⌉,m− 1) + ft−1(⌊s/2⌋,m− 1).

b) Consider any combinatorial hash function h from the 2m possible records to
2n lists, with each list corresponding to 2m−n records. If each of the queries in
Qt,m is equally likely, the average number of lists that need to be examined per
query is 1/2t


m
t


times

Q∈Qt,m

(lists examined for Q) =


lists S

(queries of Qt,m relevant to S) ≥ 2nft(2m−n,m).

Show that h is optimal, in the sense that this lower bound is achieved, when each
of the lists is a “subcube”; in other words, show that equality holds in the case
when each list corresponds to a set of records that satisfies some basic query with
exactly n specified bits.

9. [M20 ] Prove that when v = 3n, the set of all triples of the form

{(a1 . . . ak−1 0 b1 . . . bn−k)3, (a1 . . . ak−1 1 c1 . . . cn−k)3, (a1 . . . ak−1 2 d1 . . . dn−k)3},

1 ≤ k ≤ n, forms a Steiner triple system, where the a’s, b’s, c’s, and d’s range over all
combinations of 0s, 1s, and 2s such that bj + cj + dj ≡ 0 (modulo 3) for 1 ≤ j ≤ n− k.
10. [M32 ] (Thomas P. Kirkman, Cambridge and Dublin Math. Journal 2 (1847),
191–204.) Let us say that a Kirkman triple system of order v is an arrangement of
v + 1 objects {x0, x1, . . . , xv} into triples such that every pair {xi, xj} for i ̸= j occurs
in exactly one triple, except that the v pairs {xi, x(i+1) mod v} do not ever occur in the
same triple, for 0 ≤ i < v. For example,

{x0, x2, x4}, {x1, x3, x4}

is a Kirkman triple system of order 4.
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a) Prove that a Kirkman triple system can exist only when v mod 6 = 0 or 4.
b) Given a Steiner triple system S on v objects {x1, . . . , xv}, prove that the following

construction yields another Steiner system S′ on 2v + 1 objects and a Kirkman
triple system K′ of order 2v − 2: The triples of S′ are those of S plus
i) {xi, yj , yk} where j + k ≡ i (modulo v) and j < k, 1 ≤ i, j, k ≤ v;
ii) {xi, yj , z} where 2j ≡ i (modulo v), 1 ≤ i, j ≤ v.
The triples of K′ are those of S′ minus all those containing y1 and/or yv.

c) Given a Kirkman triple system K on {x0, x1, . . . , xv}, where v = 2u, prove that
the following construction yields a Steiner triple system S′ on 2v + 1 objects and
a Kirkman triple system K′ of order 2v − 2: The triples of S′ are those of K plus

i) {xi, x(i+1) mod v, yi+1}, 0 ≤ i < v;
ii) {xi, yj , yk}, j+ k ≡ 2i+ 1 (modulo v−1), 1≤ j < k− 1≤ v− 2, 1≤ i≤ v− 2;

iii) {xi, yj , yv}, 2j ≡ 2i+ 1 (modulo v−1), 1 ≤ j ≤ v − 1, 1 ≤ i ≤ v − 2;
iv) {x0, y2j , y2j+1}, {xv−1, y2j−1, y2j}, {xv, yj , yv−j}, for 1 ≤ j < u;
v) {xv, yu, yv}.

The triples of K′ are those of S′ minus all those containing y1 and/or yv−1.
d) Use the preceding results to prove that Kirkman triple systems of order v exist for

all v ≥ 0 of the form 6k or 6k+ 4, and Steiner triple systems on v objects exist for
all v ≥ 1 of the form 6k + 1 or 6k + 3.

11. [M25 ] The text describes the use of Steiner triple systems in connection with
inclusive queries; in order to extend this to all basic queries it is natural to define
the following concept. A complemented triple system of order v is an arrangement of
2v objects {x1, . . . , xv, x̄1, . . . , x̄v} into triples such that every pair of objects occurs
together in exactly one triple, except that complementary pairs {xi, x̄i} never occur
together. For example,

{x1, x2, x3}, {x1, x̄2, x̄3}, {x̄1, x2, x̄3}, {x̄1, x̄2, x3}

is a complemented triple system of order three.
Prove that complemented triple systems of order v exist for all v ≥ 0 not of the

form 3k + 2.
12. [M23 ] Continuing exercise 11, construct a complemented quadruple system of
order 7.
13. [M25 ] Construct quadruple systems with v = 4n elements, analogous to the triple
system of exercise 9.
14. [28 ] Discuss the problem of deleting nodes from quadtrees, k-d trees, and post-
office trees like Fig. 45.
15. [HM30 ] (P. Elias.) Given a large collection of m-bit records, suppose we want to
find a record closest to a given search argument, in the sense that it agrees in the most
bits. Devise an algorithm for solving this problem efficiently, assuming that an m-bit
t-error-correcting code of 2n elements is given, and that each record has been hashed
onto one of 2n lists corresponding to the nearest codeword.

x 16. [25 ] (W. H. Kautz and R. C. Singleton.) Show that a Steiner triple system of
order v can be used to construct v(v − 1)/6 codewords of v bits each such that no
codeword is contained in the superposition of any two others.
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x 17. [M30 ] Consider the following way to reduce (2n+ 1)-bit keys a−n . . . a0 . . . an to
(n+ 1)-bit bucket addresses b0 . . . bn:

b0 ← a0;
if bk−1 = 0 then bk ← a−k else bk ← ak, for 1 ≤ k ≤ n.

a) Describe the keys that appear in bucket b0 . . . bn.
b) What is the largest number of buckets that need to be examined, in a basic query

that has t bits specified?
x 18. [M35 ] (Associative block designs.) A set of m-tuples like (13), with exactly m−n
∗’s in each of 2n rows, is called an ABD(m,n) if every column contains the same
number of ∗’s and if every pair of rows has a “mismatch” (0 versus 1) in some column.
Every m-bit binary number will then match exactly one row. For example, (13) is an
ABD(4, 3).

a) Prove that an ABD(m,n) is impossible unless m is a divisor of 2n−1n and n2 ≥
2m(1− 2−n).

b) A row of an ABD is said to have odd parity if it contains an odd number of 1s.
Show that, for every choice of m − n columns in an ABD(m,n), the number of
odd-parity rows with ∗’s in these columns equals the number of even-parity rows.
In particular, each pattern of asterisks must occur in an even number of rows.

c) Find an ABD(4, 3) that cannot be obtained from (13) by permuting and/or com-
plementing columns.

d) Construct an ABD(16, 9).
e) Construct an ABD(16, 10). Start with the ABD(16, 9) of part (d), instead of the

ABD(8, 5) of (15).
19. [M22 ] Analyze the ABD(8, 5) of (15), as (13) has been analyzed in (14): How
many of the 32 locations must be searched for an average query with k bits unspecified?
How many must be searched in the worst case?
20. [M47 ] Find all ABD(m,n) when n = 5 or n = 6.
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A new Section 6.6 devoted to “persistent data structures” is planned for the next
edition of the present book. Persistent structures are able to represent changing

information in such a way that the past history can be reconstructed efficiently. In other
words, we might do many insertions and deletions, but we can still conduct searches
as if the updates after a given time had not been made. Relevant early references to
this topic include the following papers:
• J. K. Mullin, Comp. J. 24 (1981), 367–373;
• M. H. Overmars, Lecture Notes in Comp. Sci. 156 (1983), Chapter 9;
• E. W. Myers, ACM Symp. Principles of Prog. Lang. 11 (1984), 66–75;
• B. Chazelle, Information and Control 63 (1985), 77–99;
• D. Dobkin and J. I. Munro, J. Algorithms 6 (1985), 455–465;
• R. Cole, J. Algorithms 7 (1986), 202–220;
• D. Field, Information Processing Letters 24 (1987), 95–96;
• C. W. Fraser and E. W. Myers, ACM Trans. Prog. Lang. and Systems 9 (1987),

277–295;
• J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, J. Comp. Syst. Sci. 38

(1989), 86–124;
• R. B. Dannenberg, Software Practice & Experience 20 (1990), 109–132;
• J. R. Driscoll, D. D. K. Sleator, and R. E. Tarjan, JACM 41 (1994), 943–959.

Instruction tables [programs] will have to be made up
by mathematicians with computing experience

and perhaps a certain puzzle solving ability.
There will probably be a great deal of work of this kind to be done,

for every known process has got to be
translated into instruction table form at some stage. . . .

This process of constructing instruction tables should be very fascinating.
There need be no real danger of it ever becoming a drudge,

for any processes that are quite mechanical
may be turned over to the machine itself.

— ALAN M. TURING (1945)



ANSWERS TO EXERCISES

“I have answered three questions, and that is enough,”
Said his father, “don’t give yourself airs!

“Do you think I can listen all day to such stuff?
Be off, or I’ll kick you down stairs!”

— LEWIS CARROLL, Alice’s Adventures Under Ground (1864)

NOTES ON THE EXERCISES
1. An average problem for a mathematically inclined reader.
3. See W. J. LeVeque, Topics in Number Theory 2 (Reading, Mass.: Addison–Wesley,

1956), Chapter 3; P. Ribenboim, 13 Lectures on Fermat’s Last Theorem (New York:
Springer-Verlag, 1979); A. Wiles, Annals of Mathematics (2) 141 (1995), 443–551.

SECTION 5
1. Let p(1) . . . p(N) and q(1) . . . q(N) be different permutations satisfying the condi-

tions, and let i be minimal with p(i) ̸= q(i). Then p(i) = q(j) for some j > i, and
q(i) = p(k) for some k > i. Since Kp(i) ≤ Kp(k) = Kq(i) ≤ Kq(j) = Kp(i) we have
Kp(i) = Kq(i); hence by stability p(i) < p(k) = q(i) < q(j) = p(i), a contradiction.

2. Yes, if the sorting operations were all stable. (If they were not stable we cannot
say.) Alice and Chris certainly have the same result; and so does Bill, since the
stability shows that equal major keys in his result are accompanied by minor keys
in nondecreasing order.

Formally, assume that Bill obtains Rp(1) . . . Rp(N) = R′
1 . . . R

′
N after sorting the

minor keys, then R′
q(1) . . . R

′
q(N) = Rp(q(1)) . . . Rp(q(N)) after sorting the major keys; we

want to show that

(Kp(q(i)), kp(q(i))) ≤ (Kp(q(i+1)), kp(q(i+1)))
for 1 ≤ i < N. If Kp(q(i)) ̸= Kp(q(i+1)), we have Kp(q(i)) < Kp(q(i+1)); and if Kp(q(i)) =
Kp(q(i+1)), then K′

q(i) = K′
q(i+1), hence q(i) < q(i + 1), hence k′q(i) ≤ k′q(i+1); that is,

kp(q(i)) ≤ kp(q(i+1)).
3. We can always bring all records with equal keys together, preserving their relative

order, treating these groups of records as a unit in further operations; hence we may
assume that all keys are distinct. Let a < b < c < a; then we can arrange things
so that the first three keys are abc, bca, or cab. Now if N − 1 distinct keys can be
sorted in three ways, so can N ; for if K1 < · · · < KN−1 > KN we always have either
Ki−1 < KN < Ki for some i, or KN < K1.

584



5 ANSWERS TO EXERCISES 585

4. First compare words without case distinction, then use case to break ties. More
precisely, replace each word α by the pair (α′, α) where α′ is obtained from α by
mapping A → a, . . . , Z → z; then sort the pairs lexicographically. This procedure
gives, for example, tex < Tex < TeX < TEX < text.

Dictionaries must also deal with accented letters, prefixes, suffixes, and abbrevia-
tions; for example,

a < A < Å < a- < a. < -a < A- < A. < aa < a.a.
< āa < āā < AA < A.A. < AAA < · · · < zz < Zz. < ZZ < zzz < ZZZ.

In this more general situation we obtain α′ by mapping ā → a, Å → a, etc., and
dropping the hyphens and periods.

5. Let ρ(0) = 0 and ρ((1α)2) = 1ρ(|α|)α; here (1α)2 is the ordinary binary represen-
tation of a positive integer, and |α| is the length of the string α. We have ρ(1) = 10,
ρ(2) = 1100, ρ(3) = 1101, ρ(4) = 1110000, . . . , ρ(1009) = 111101001111110001, . . . ,
ρ(65536) = 15024, . . . , ρ(265536) = 16065560, etc. The length of ρ(n) is

|ρ(n)| = λ(n) + λ(λ(n)) + λ(λ(λ(n))) + · · ·+ lg∗ n+ 1,

where λ(0) = 0, λ(n) = ⌊lgn⌋ for n ≥ 1, and lg∗ n is the least integer m ≥ 0 such that
λ[m](n) = 0. [This construction is due to V. I. Levenshtein, Problemy Kibernetiki 20
(1968), 173–179; see also D. E. Knuth in The Mathematical Gardner, edited by D. A.
Klarner (Belmont, California: Wadsworth International, 1981), 310–325.]

6. Overflow is possible, and it can lead to a false equality indication. He should have
written, ‘LDA A; CMPA B’ and tested the comparison indicator. (The inability to make
full-word comparisons by subtraction is a problem on essentially all computers; it is
the chief reason for including CMPA, . . . , CMPX in MIX’s repertoire.)

7. COMPARE STJ 9F
1H LDX A,1

CMPX B,1
JNE 9F

DEC1 1
J1P 1B

9H JMP *

8. Solution 1, based on the identity min(a, b) = 1
2 (a+ b− |a− b|):

SOL1 LDA A
SRAX 5
DIV =2=
STA A1 a = 2a1 + a2
STX A2 |a2| ≤ 1
LDA B
SRAX 5
DIV =2=
STA B1 b = 2b1 + b2
STX B2 |b2| ≤ 1
LDA A1
SUB B1 no overflow possible
STA AB1 a1 − b1
LDA A2
SUB B2
STA AB2 a2 − b2

SRAX 1
ADD AB1
ENTX 1
SLAX 5
MUL AB2
STX AB3 (a2 − b2) sign(a− b)
LDA A2
ADD B2
SUB AB3
SRAX 5
DIV =2=
ADD A1
ADD B1 no overflow possible
SUB AB1(1:5)
STA C
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Solution 2, based on the fact that indexing can cause interchanges in a tricky way:
SOL2 LDA A

STA C
STA TA
LDA B
STA TB

Now duplicate the following code k times, where 2k > 1010:
LDA TA
SRAX 5
DIV =2=
STX TEMP
LD1 TEMP
STA TA
LDA TB
SRAX 5
DIV =2=
STX TEMP
LD2 TEMP
STA TB
INC1 0,2
INC1 0,2
INC1 0,2
LD3 TMIN,1
LDA 0,3
STA C

(This scans the binary representations of a and b from right to left, preserving their
signs.) The program concludes with a table:

HLT
CON C -1 -1
CON B 0 -1
CON B +1 -1
CON A -1 0

TMIN CON C 0 0
CON B 1 0
CON A -1 1
CON A 0 1
CON C 1 1

9.


j


r+j−1

j


(−1)j


N

r+j


xr+j, by the method of inclusion and exclusion (exercise

1.3.3–26). This can also be written r


N
r

  x

0 tr−1(1− t)N−r dt, a beta distribution.
10. Sort the tape contents, then count. (Some sorting methods make it convenient to
drop records whose keys appear more than once as the sorting progresses.)
11. Assign each person an identification number, which must appear on all forms
concerning that individual. Sort the information forms and the tax forms separately,
with this identification number as the key. Denote the sorted tax forms by R1, . . . , RN,
with keys K1 < · · · < KN. (There should be no two tax forms with equal keys.) Add
a new (N + 1)st record whose key is ∞, and set i ← 1. Then, for each record in the
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information file, check if it has been reported, as follows: Let K denote the key on the
information form being processed.

a) If K > Ki, increase i by 1 and repeat this step.
b) If K < Ki, or if K = Ki and the information is not reflected on tax form Ri,

signal an error.
Try to do all this processing without wasting the taxpayers’ money.
12. One way is to attach the key (j, i) to the entry ai,j and to sort using lexicographic
order, then omit the keys. (A similar idea can be used to obtain any desired reordering
of information, when a simple formula for the reordering can be given.)

In the special case considered in this problem, the method of “balanced two-way
merge sorting” treats the keys in such a simple manner that it is unnecessary to write
any keys explicitly on the tapes. Given an n × n matrix, we may proceed as follows:
First put odd-numbered rows on tape 1, even-numbered rows on tape 2, etc., obtaining

Tape 1: a11 a12 . . . a1n a31 a32 . . . a3n a51 a52 . . . a5n . . .
Tape 2: a21 a22 . . . a2n a41 a42 . . . a4n a61 a62 . . . a6n . . .

Then rewind these tapes, and process them synchronously, to obtain
Tape 3: a11 a21 a12 a22 . . . a1n a2n a51 a61 a52 a62 . . . a5n a6n . . .
Tape 4: a31 a41 a32 a42 . . . a3n a4n a71 a81 a72 a82 . . . a7n a8n . . .

Rewind these tapes, and process them synchronously, to obtain
Tape 1: a11 a21 a31 a41 a12 . . . a42 . . . a4n a9,1 . . .
Tape 2: a51 a61 a71 a81 a52 . . . a82 . . . a8n a13,1 . . .

And so on, until the desired transpose is obtained after ⌈lgn⌉+ 1 passes.
13. One way is to attach random distinct key values, sort on those keys, then discard
the keys. (See exercise 12; a similar method for obtaining a random sample was
discussed in Section 3.4.2.) Another technique, involving about the same amount of
work but apparently not straining the accuracy of the random number generator as
much, is to attach a random integer in the range 0 ≤ Ki ≤ N − i to Ri, then rearrange
using the technique of exercise 5.1.1–5.
14. With a character-conversion table, you can design a lexicographic comparison rou-
tine that simulates the order used on the other machine. Alternatively, you could create
artificial keys, different from the actual characters but giving the desired ordering. The
latter method has the advantage that it needs to be done only once; but it takes more
space and requires conversion of the entire key. The former method can often determine
the result of a comparison by converting only one or two letters of the keys; during
later stages of sorting, the comparison will be between nearly equal keys, however,
and the former method may find it advantageous to check for equality of letters before
converting them.
15. For this problem, just run through the file once keeping 50 or so individual counts.
But if “city” were substituted for “state,” and if the total number of cities were quite
large, it would be a good idea to sort on the city name.
16. As in exercise 15, it depends on the size of the problem. If the total number of
cross-reference entries fits into high-speed memory, the best approach is probably to
use a symbol table algorithm (Chapter 6) with each identifier associated with the head
of a linked list of references. For larger problems, create a file of records, one record
for each cross-reference citation to be put in the index, and sort it.
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17. Carry along with each card a “shadow key” that, sorted lexicographically in the
usual simple way, will define the desired ordering. This key is to be supplied by library
personnel and attached to the catalog data when it first enters the system, although
it is not visible to normal users. A possible key uses the following two-letter codes to
separate words from each other:

␣0 end of key;
␣1 end of cross-reference card;
␣2 end of surname;
␣3 hyphen of multiple surname;
␣4 end of author name;
␣5 end of place name;
␣6 end of subject heading;
␣7 end of book title;
␣8 space between words.

The given example would come out as follows (showing only the first 25 characters):
ACCADEMIA␣8NAZIONALE␣8DEI
ACHTZEHNHUNDERTZWOLF␣8EIN
BIBLIOTHEQUE␣8D␣8HISTOIRE
BIBLIOTHEQUE␣8DES␣8CURIOS
BROWN␣2J␣8CROSBY␣4␣0
BROWN␣2JOHN␣4␣0
BROWN␣2JOHN␣4MATHEMATICIA
BROWN␣2JOHN␣4OF␣8BOSTON␣0
BROWN␣2JOHN␣41715␣0
BROWN␣2JOHN␣41715␣6␣0
BROWN␣2JOHN␣41761␣0
BROWN␣2JOHN␣41810␣0
BROWN␣3WILLIAMS␣2REGINALD
BROWN␣8AMERICA␣7␣0
BROWN␣8AND␣8DALLISONS␣8NE
BROWNJOHN␣2ALAN␣4␣0
DEN␣2VLADIMIR␣8EDUARDOVIC
DEN␣7␣0
DEN␣8LIEBEN␣8LANGEN␣8TAG␣
DIX␣2MORGAN␣41827␣0
DIX␣8HUIT␣8CENT␣8DOUZE␣8O
DIX␣8NEUVIEME␣8SIECLE␣8FR
EIGHTEEN␣8FORTY␣8SEVEN␣8I
EIGHTEEN␣8TWELVE␣8OVERTUR
I␣8AM␣8A␣8MATHEMATICIAN␣7
I␣8B␣8M␣8JOURNAL␣8OF␣8RES

I␣8HA␣8EHAD␣7␣0
IA␣8A␣8LOVE␣8STORY␣7␣0
INTERNATIONAL␣8BUSINESS␣8
KHUWARIZMI␣2MUHAMMAD␣8IBN
LABOR␣7A␣8MAGAZINE␣8FOR␣8
LABOR␣8RESEARCH␣8ASSOCIAT
LABOUR␣1␣0
MACCALLS␣8COOKBOOK␣7␣0
MACCARTHY␣2JOHN␣41927␣0
MACHINE␣8INDEPENDENT␣8COM
MACMAHON␣2PERCY␣8ALEXANDE
MISTRESS␣8DALLOWAY␣7␣0
MISTRESS␣8OF␣8MISTRESSES␣
ROYAL␣8SOCIETY␣8OF␣8LONDO
SAINT␣8PETERSBURGER␣8ZEIT
SAINT␣8SAENS␣2CAMILLE␣418
SAINTE␣8MARIE␣2GASTON␣8P␣
SEMINUMERICAL␣8ALGORITHMS
UNCLE␣8TOMS␣8CABIN␣7␣0
UNITED␣8STATES␣8BUREAU␣8O
VANDERMONDE␣2ALEXANDER␣8T
VANVALKENBURG␣2MAC␣8ELWYN
VONNEUMANN␣2JOHN␣41903␣0
WHOLE␣8ART␣8OF␣8LEGERDEMA
WHOS␣8AFRAID␣8OF␣8VIRGINI
WIJNGAARDEN␣2ADRIAAN␣8VAN

This auxiliary key should be followed by the card data, so that unequal cards having
the same auxiliary key (e.g., Sir John = John) are distinguished properly. Notice that
“Saint-Saëns” is a hyphenated name but not a compound name. The birth year of
al-Khuwārizmı̄ should be given as, say, ␣40779 with a leading zero. (This scheme will
work until the year 9999, after which the world will face a huge software crisis.)

Careful study of this example reveals how to deal with many other unusual types
of order that are needed in human-computer interaction.
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18. For example, we can make two files containing values of (u6 + v6 + w6) modm
and (z6 − x6 − y6) modm for u ≤ v ≤ w, x ≤ y ≤ z, where m is the word size of our
computer. Sort these and look for duplicates, then subject the duplicates to further
tests. (Some congruences modulo small primes might also be used to place further
restrictions on u, v, w, x, y, z.)
19. In general, to find all pairs of numbers {xi, xj} with xi + xj = c, where c is given:
Sort the file so that x1 < x2 < · · · < xN. Set i ← 1, j ← N, and then repeat the
following operation until j ≤ i:

If xi + xj = c, output {xi, xj}, set i← i+ 1, j ← j − 1;
If xi + xj < c, set i← i+ 1;
If xi + xj > c, set j ← j − 1.

Finally if j = i and 2xi = c, output {xi, xi}. This process is like the method of
exercise 18: We are essentially making two sorted files, one containing x1, . . . , xN and
the other containing c−xN , . . . , c−x1, and checking for duplicates. But the second file
doesn’t need to be explicitly formed in this case. Another approach, suggested by Jiang
Ling, is to sort on a key such as (x > c/2⇒ x, x ≤ c/2⇒ c− x).

A similar algorithm can be used to find max{xi +xj | xi +xj ≤ c}; or to find, say,
min{xi + yj | xi + yj > t} given t and two sorted files x1 ≤ · · · ≤ xm, y1 ≤ · · · ≤ yn.
20. Some of the alternatives are: (a) For each of the 499,500 pairs i, j, with 1 ≤ i <
j ≤ 1000, set y1 ← xi ⊕ xj , y2 ← y1 & (y1 − 1), y3 ← y2 & (y2 − 1); then print (xi, xj)
if and only if y3 = 0. Here ⊕ denotes “exclusive or” and & denotes “bitwise and”.
(b) Create a file with 31,000 entries, forming 31 entries from each original word xi by
including xi and the 30 words that differ from xi in one position. Sort this file and
look for duplicates. (c) Do a test analogous to (a) on

i) all pairs of words that agree in their first 10 bits;
ii) all pairs of words that agree in their middle 10 bits, but not the first 10;

iii) all pairs of words that agree in their last 10 bits, but neither the first nor middle 10.
This involves three sorts of the data, using a specified 10-bit key each time. The
expected number of pairs in each of the three cases is at most 499500/210, which is less
than 500, if the original words are randomly distributed.
21. First prepare a file containing all five-letter English words. (Be sure to consider
adding suffixes such as -ED, -ER, -ERS, -S to shorter words.) Now take each five-
letter word α and sort its letters into ascending order, obtaining the sorted five-letter
sequence α′. Finally sort all pairs (α′, α) to bring all anagrams together.

Experiments by Kim D. Gibson in 1967 showed that the second longest set of
commonly known five-letter anagrams is LEAST, SLATE, STALE, STEAL, TAELS, TALES,
TEALS. But if he had been able to use larger dictionaries, he would have been able to
catapult this set into first place, by adding the words ALETS (steel shoulderplates), ASTEL
(a splinter), ATLES (intends), LAETS (people who rank between slaves and freemen),
LASET (an ermine), LATES (a Nile perch), LEATS (watercourses), SALET (a mediæval
helmet), SETAL (pertaining to setae), SLEAT (to incite), STELA (a column), and TESLA
(a unit of magnetic flux density). Together with the old spellings SATEL, TASEL, and
TASLE for “settle” and “teasel,” we obtain 22 mutually permutable words, none of which
needs to be spelled with an uppercase letter. And with a bit more daring we might
add the Old English tæsl, German altes, and Madame de Staël! The set {LAPSE, LEAPS,
PALES, PEALS, PLEAS, SALEP, SEPAL} can also be extended to at least 14 words when we
turn to unabridged dictionaries. [See H. E. Dudeney, Strand 65 (1923), 208, 312, and
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his 300 Best Word Puzzles, edited by Martin Gardner (1968), Puzzles 190 and 194;
Ross Eckler, Making the Alphabet Dance (St. Martin’s Griffin, 1997), Fig. 46c.]

The first and last sets of three or more five-letter English anagrams are {ALBAS,
BALAS, BALSA, BASAL} and {STRUT, STURT, TRUST}, if proper names are not allowed. How-
ever, the proper names Alban, Balan, Laban, and Nabal lead to an earlier set {ALBAN,
BALAN, BANAL, LABAN, NABAL, NABLA} if that restriction is dropped. The most striking
example of longer anagram words in common English is perhaps the amazingly math-
ematical set {ALERTING, ALTERING, INTEGRAL, RELATING, TRIANGLE}.

A faster way to proceed is to compute f(α) = (h(a1)+h(a2)+ · · ·+h(a5)) modm,
where a1, . . . , a5 are numerical codes for the individual letters in α, and (h(1), h(2), . . . )
are 26 randomly selected constants; here m is, say, 2⌊2 lg N⌋ when there are N words.
Sorting the file (f(α), α) with two passes of Algorithm 5.2.5R will bring anagrams
together; afterwards when f(α) = f(β) we must make sure that we have a true anagram
with α′ = β ′. The value f(α) can be calculated more rapidly than α′, and this method
avoids the determination of α′ for most of the words α in the file.

Note: A similar technique can be used when we want to bring together all sets of
records that have equal multiword keys (a1, . . . , an). Suppose that we don’t care about
the order of the file, except that records with equal keys are to be brought together; it
is sometimes faster to sort on the one-word key (a1x

n−1 + a2x
n−2 + · · ·+ an) modm,

where x is any fixed value, instead of sorting on the original multiword key.
22. Find isomorphic invariants of the graphs (functions that take equal values on
isomorphic directed graphs) and sort on these invariants, to separate “obviously noni-
somorphic” graphs from each other. Examples of isomorphic invariants: (a) Represent
vertex vi by (ai, bi), where ai is its in-degree and bi is its out-degree; then sort the
pairs (ai, bi) into lexicographic order. The resulting file is an isomorphic invariant.
(b) Represent an arc from vi to vj by (ai, bi, aj , bj), and sort these quadruples into
lexicographic order. (c) Separate the directed graph into connected components (see
Algorithm 2.3.3E), determine invariants of each component, and sort the components
into order of their invariants in some way. See also the discussion in exercise 21.

After sorting the directed graphs on their invariants, it will still be necessary to
make secondary tests to see whether directed graphs with identical invariants are in fact
isomorphic. The invariants are helpful for these tests too. In the case of free trees it is
possible to find “characteristic” or “canonical” invariants that completely characterize
the tree, so that secondary testing is unnecessary [see J. Hopcroft and R. E. Tarjan, in
Complexity of Computer Computations (New York: Plenum, 1972), 140–142].
23. One way is to form a file containing all three-person cliques, then transform it into
a file containing all four-person cliques, etc.; if there are no large cliques, this method
will be quite satisfactory. (On the other hand, if there is a clique of size n, there are at
least


n
k


cliques of size k; so this method can blow up even when n is only 25 or so.)

Given a file that lists all (k − 1)-person cliques, in the form (a1, . . . , ak−1) where
a1 < · · · < ak−1, we can find the k-person cliques by (i) creating a new file containing
the entries (b, c, a1, . . . , ak−2) for each pair of (k − 1)-person cliques of the respective
forms (a1, . . . , ak−2, b), (a1, . . . , ak−2, c) with b < c; (ii) sorting this file on its first
two components; (iii) for each entry (b, c, a1, . . . , ak−2) in this new file that matches
a pair (b, c) of acquaintances in the originally given file, output the k-person clique
(a1, . . . , ak−2, b, c).
24. (Solution by Norman Hardy, c. 1967.) Make another copy of the input file; sort
one copy on the first components and the other on the second. Passing over these
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files in sequence now allows us to create a new file containing all pairs (xi, xi+2) for
1 ≤ i ≤ N−2, and to identify (xN−1, xN ). The pairs (N−1, xN−1) and (N, xN ) should
be written on still another file.

The process continues inductively. Assume that file F contains all pairs (xi, xi+t)
for 1 ≤ i ≤ N − t, in random order, and that file G contains all pairs (i, xi) for
N − t < i ≤ N in order of the second components. Let H be a copy of file F, and
sort H by first components, F by second. Now go through F, G, and H, creating two
new files F ′ and G′, as follows. If the current records of files F, G, H are, respectively
(x, x′), (y, y′), (z, z′), then:

i) If x′ = z, output (x, z′) to F ′ and advance files F and H.
ii) If x′ = y′, output (y−t, x) to G′ and advance files F and G.

iii) If x′ > y′, advance file G.
iv) If x′ > z, advance file H.

When file F is exhausted, sort G′ by second components and merge G with it; then
replace t by 2t, F by F ′, G by G′.

Thus t takes the values 2, 4, 8, . . . ; and for fixed t we do O(logN) passes over the
data to sort it. Hence the total number of passes is O((logN)2). Eventually t ≥ N, so
F is empty; then we simply sort G on its first components.
25. (An idea due to D. Shanks.) Prepare two files, one containing amn mod p and the
other containing ba−n mod p for 0 ≤ n < m. Sort these files and find a common entry.

Note: This reduces the worst-case running time from Θ(p) to Θ(
√
p log p). Signifi-

cant further improvements are often possible; for example, we can easily determine if n
is even or odd, in log p steps, by testing whether b(p−1)/2 mod p = 1 or (p−1). In general
if f is any divisor of p− 1 and d is any divisor of gcd(f, n), we can similarly determine
(n/d) mod f by looking up the value of b(p−1)/f in a table of length f/d. If p − 1 has
the prime factors q1 ≤ q2 ≤ · · · ≤ qt and if qt is small, we can therefore compute n
rapidly by finding the digits from right to left in its mixed-radix representation, for
radices q1, . . . , qt. (This idea is due to R. L. Silver, 1964; see also S. C. Pohlig and
M. Hellman, IEEE Transactions IT-24 (1978), 106–110.)

John M. Pollard discovered an elegant way to compute discrete logs with about
O(
√
p ) operations mod p, requiring very little memory, based on the theory of random

mappings. See Math. Comp. 32 (1978), 918–924, where he also suggests another
method based on numbers nj = rj mod p that have only small prime factors.

Asymptotically faster methods are discussed in exercise 4.5.4–46.

SECTION 5.1.1
1. 2 0 5 2 2 3 0 0 0; 2 7 3 5 4 1 8 6.
2. b1 = (m− 1) mod n; bj+1 = (bj +m− 1) mod (n− j).
3. aj = an+1−j (the “reflected” permutation). This idea was used by O. Terquem

[Journ. de Math. 3 (1838), 559–560] to prove that the average number of inversions in
a random permutation is 1

2


n
2

.

4. C1. Set x0 ← 0. (It is possible to let xj share memory with bj in what follows,
for 1 ≤ j ≤ n.)

C2. For k = n, n−1, . . . , 1 (in this order) do the following: Set j ← 0; then set
j ← xj exactly bk times; then set xk ← xj and xj ← k.

C3. Set j ← 0.
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C4. For k = 1, 2, . . . , n (in this order), do the following: Set ak ← xj ; then set
j ← xj .

To save memory space, see exercise 5.2–12.

5. Let α be a string [m1, n1] . . . [mk, nk] of ordered pairs of nonnegative integers; we
write |α| = k, the length of α. Let ϵ denote the empty (length 0) string. Consider the
binary operation ◦ defined recursively on pairs of such strings as follows:

ϵ ◦ α = α ◦ ϵ = α;

([m,n]α) ◦ ([m′, n′]β) =


[m,n](α ◦ ([m′−m,n′]β)), if m ≤ m′,
[m′, n′](([m−m′−1, n]α) ◦ β), if m > m′.

It follows that the computation time required to evaluate α ◦ β is proportional to
|α ◦ β| = |α| + |β|. Furthermore, we can prove that ◦ is associative and that [b1, 1] ◦
[b2, 2]◦ · · · ◦ [bn, n] = [0, a1][0, a2] . . . [0, an]. The expression on the left can be evaluated
in ⌈lgn⌉ passes, each pass combining pairs of strings, for a total of O(n logn) steps.

Example: Starting from (2), we want to evaluate [2, 1] ◦ [3, 2] ◦ [6, 3] ◦ [4, 4] ◦ [0, 5] ◦
[2, 6]◦ [2, 7]◦ [1, 8]◦ [0, 9]. The first pass reduces this to [2, 1][1, 2]◦ [4, 4][1, 3]◦ [0, 5][2, 6]◦
[1, 8][0, 7]◦ [0, 9]. The second pass reduces it to [2, 1][1, 2][1, 4][1, 3]◦ [0, 5][1, 8][0, 6][0, 7]◦
[0, 9]. The third pass yields [0, 5][1, 1][0, 8][0, 2][0, 6][0, 4][0, 7][0, 3] ◦ [0, 9]. The fourth
pass yields (1).

Motivation: A string such as [4, 4][1, 3] stands for “␣␣␣␣4␣3␣∞”, where “␣” denotes
a blank; the operation α◦β inserts the blanks and nonblanks of β into the blanks of α.
Note that, together with exercise 2, we obtain an algorithm for the Josephus problem
that is O(n logn) instead of O(mn), partially answering a question raised in exercise
1.3.2–22.

Another O(n logn) solution to this problem, using a random-access memory, fol-
lows from the use of balanced trees in a straightforward manner.

6. Start with b1 = b2 = · · · = bn = 0. For k = ⌊lgn⌋, ⌊lgn⌋−1, . . . , 0 do the
following: Set xs ← 0 for 0 ≤ s ≤ n/2k+1; then for j = 1, 2, . . . , n do the following:
Set r ← ⌊aj/2k⌋mod 2, s← ⌊aj/2k+1⌋ (these are essentially bit extractions); if r = 0,
set baj ← baj + xs, and if r = 1 set xs ← xs + 1.

Another solution appears in exercise 5.2.4–21.

7. Bj < j and Cj ≤ n− j, since aj has j−1 elements to its left and n− j elements to
its right. To reconstruct a1 a2 . . . an from B1 B2 . . . Bn, start with the element 1; then
for k = 2, . . . , n add one to each element ≥ k − Bk and append k − Bk at the right.
(See Method 2 in Section 1.2.5). A similar procedure works for the C’s. Alternatively,
we could use the result of the following exercise. [The c inversion table was discussed
by Rodrigues, J. de Math. 4 (1839), 236–240. The C inversion table was used by Rothe
in 1800; see also Netto’s Lehrbuch der Combinatorik (1901), §5.]

8. b′ = C, c′ = B, B′ = c, C′ = b, since each inversion (ai, aj) of a1 . . . an corresponds
to the inversion (j, i) of a′1 . . . a′n. Some further relations: (a) cj = j − 1 if and only if
(bi > bj for all i < j); (b) bj = n−j if and only if (ci > cj for all i > j); (c) bj = 0 if and
only if (ci−i < cj−j for all i > j); (d) cj = 0 if and only if (bi +i < bj +j for all i < j);
(e) bi ≤ bi+1 if and only if a′i < a′i+1, if and only if ci ≥ ci+1; (f) aj = j + Cj − Bj ;
a′j = j + bj − cj .

9. b = C = b′ is equivalent to a = a′.
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10.
√

10. (One way to coordinatize the truncated octahedron lets the respective
vectors (1, 0, 0), (0, 1, 0), 1

2 (1, 1,
√

2 ), 1
2 (1,−1,

√
2 ), 1

2 (−1, 1,
√

2 ), 1
2 (−1,−1,

√
2 ) stand

for adjacent interchanges of the respective pairs 21, 43, 41, 31, 42, 32. The sum of
these vectors gives (1, 1, 2

√
2 ) as the difference between vertices 4321 and 1234.)

A more symmetric solution is to represent vertex π in four dimensions by
{eu − ev | (u, v) is an inversion of π},

where e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1). Thus, 1 2 3 4↔
(0, 0, 0, 0); 1 2 4 3 ↔ (0, 0,−1, 1); . . . ; 4 3 2 1 ↔ (−3,−1, 1, 3). All points lie on the
three-dimensional subspace {(w, x, y, z) | w+x+y+z = 0}; the distance between adja-
cent vertices is

√
2. Equivalently (see answer 8(f)) we may represent π = a1 a2 a3 a4 by

the vector (a′1, a′2, a′3, a′4), where a′1 a′2 a′3 a′4 is the inverse permutation. (This 4-D repre-
sentation of the truncated octahedron with permutations as coordinates was discussed
together with its n-dimensional generalization by C. Howard Hinton in The Fourth
Dimension (London, 1904), Chapter 10. Further properties were found many years later
by Guilbaud and Rosenstiehl, who called Fig. 1 the “permutahedron”; see exercise 12.)

Replicas of the truncated octahedron will fill three-dimensional space in what has
been called the simplest possible way [see H. Steinhaus, Mathematical Snapshots (Ox-
ford, 1960), 200–203; C. S. Smith, Scientific American 190, 1 (January 1954), 58–64].
Book V of Pappus’s Collection (c. A.D. 300) mentions the truncated octahedron as
one of 13 special solid figures studied by Archimedes. Illustrations of the Archimedean
solids — the nonprism polyhedra that have symmetries taking any vertex into any other,
and whose faces are regular polygons but not all identical — can be found, for example,
in books by W. W. Rouse Ball, Mathematical Recreations and Essays, revised by
H. S. M. Coxeter (Macmillan, 1939), Chapter 5; H. Martyn Cundy and A. P. Rollett,
Mathematical Models (Oxford, 1952), 94–109.
11. (a) Obvious. (b) Construct a directed graph with vertices {1, 2, . . . , n} and arcs
x→ y if either x > y and (x, y) ∈ E or x < y and (y, x) ∈ E. If there are no oriented
cycles, this directed graph can be topologically sorted, and the resulting linear order is
the desired permutation. If there is an oriented cycle, the shortest has length 3, since
there are none of length 1 or 2 and since a longer cycle a1 → a2 → a3 → a4 → · · · → a1
can be shortened (either a1 → a3 or a3 → a1). But an oriented cycle of length 3
contains two arcs of either E or E, and proves that E or E is not transitive after all.
12. [G. T. Guilbaud and P. Rosenstiehl, Math. et Sciences Humaines 4 (1963), 9–33.]
Suppose that (a, b) ∈ E, (b, c) ∈ E, (a, c) /∈ E. Then for some k ≥ 1 we have
a = x0 > x1 > · · · > xk = c, where (xi, xi+1) ∈ E(π1) ∪ E(π2) for 0 ≤ i < k.
Consider a counterexample of this type where k is minimal. Since (a, b) /∈ E(π1) and
(b, c) /∈ E(π1), we have (a, c) /∈ E(π1), and similarly (a, c) /∈ E(π2); hence k > 1. But
if x1 > b, then (x1, b) ∈ E contradicts the minimality of k, while (x1, b) ∈ E implies
that (a, b) ∈ E. Similarly, if x1 < b, both (b, x1) ∈ E and (b, x1) ∈ E are impossible.
13. For any fixed choice of b1, . . . , bn−m, bn−m+2, . . . , bn in the inversion table, the
total


j bj will assume each possible residue modulo m exactly once as bn−m+1 runs

through its possible values 0, 1, . . . , m− 1.
14. The hinted construction takes pairs of distinct-part partitions into each other,
except in the two cases j = k = pk and j = k = pk − 1. In the exceptional cases, n is
(2j − 1) + · · · + j = (3j2 − j)/2 and (2j) + · · · + (j + 1) = (3j2 + j)/2, respectively,
and there is a unique unpaired partition with j parts. [Comptes Rendus Acad. Sci.
92 (Paris, 1881), 448–450. Euler’s original proof, in Novi Comment. Acad. Sci. Pet. 5
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(1754), 75–83, was also very interesting. He showed by simple manipulations that the
infinite product equals s1, if we define sn as the power series 1 − z2n−1 − z3n−1sn+1,
for n ≥ 1. Finite versions of Euler’s infinite sum are discussed by Knuth and Paterson
in Fibonacci Quarterly 16 (1978), 198–212.]
15. Transpose the dot diagram, to go from the p’s to the P ’s. The generating function
for the P ’s is easily obtained, since we first choose any number of 1s (generating function
1/(1−z)), then independently choose any number of 2s (generating function 1/(1−z2)),
. . . , finally any number of n’s.
16. The coefficient of znqm in the first identity is the number of partitions of m into
at most n parts. In the second identity it is the number of partitions of m into n
distinct nonnegative parts, namely sums of the form m = p1 + p2 + · · · + pn, where
p1 > p2 > · · · > pn ≥ 0. This is the same as m −


n
2


= q1 + q2 + · · · + qn, where
q1 ≥ q2 ≥ · · · ≥ qn ≥ 0, under the correspondence qi = pi − n + i. [Commentarii
Academiæ Scientiarum Petropolitanæ 13 (1741), 64–93.]

Notes: The second identity is the limit as n→∞ of the q-nomial theorem, exercise
1.2.6–58. The first identity, similarly, is the limit as r → ∞ of the dual form of that
theorem, proved in the answer to that exercise.

Let n!q =
n

k=1(1 + q + · · · + qk−1), and let expq(z) =
∞

n=0 z
n/n!q. The first

identity tells us that expq(z) is equal to 1/
∞

k=0(1 − qkz(1 − q)) when |q| < 1; the
second tells us that it equals

∞
k=0(1 + q−kz(1 − q−1)) when |q| > 1. The resulting

formal power series identity expq(z) expq−1 (−z) = 1 is equivalent to the formula
n

k=0

(−1)kqk(k−1)/2

(1− q) . . . (1− qk) (1− q) . . . (1− qn−k) = δn0, integer n ≥ 0,

which is a consequence of the q-nomial theorem with x = −1.
17. 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

1 1 0 1 1 2 0 1 1 0 2 1 1 0 1 2
1 0 1 0 0 1 1 0 0 1 2 0 0 1 0 2
1 0 1 1 0 1 1 1 0 1 2 1 0 1 1 2
1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 2
2 0 1 2 0 2 1 2 0 1 2 2 0 1 2 3

18. Let q = 1 − p. The sum


Pr(α) over all instances α of inversions may be
evaluated by summing on k, where 0 ≤ k < n is the exact number of leftmost
bit positions in which there is equality between i and j as well as between Xi and
Xj , in an inversion Xi ⊕ i > Xj ⊕ j for i < j. In this way we obtain the formula

0≤k<n 2k(p2 + q2)k(p22n−k−12n−k−1 + 2pq2n−k−1(2n−k−1 − 1)); summing and sim-
plifying yields 2n−1(p(2− p)(2n − (p2 + q2)n)/(2− p2 − q2) + (p2 + q2)n − 1).
19. The number of inversions is


0<i<j<n(⌊mj/n⌋ − ⌊mi/n⌋ − ⌊m(j − i)/n⌋) =

0<i<j<n[mj mod n<mimod n] =


0<r<n⌊mr/n⌋(r− (n− r)− (n− r− 1)), which
can be transformed to 1

4 (n− 1)(n− 2)− 1
4nσ(m,n, 0). [Crelle 198 (1957), 162–166.]

20. See J. J. Sylvester, Amer. J. Math. 5 (1882), 251–330, 6 (1883), 334–336, §57–§68;
E. M. Wright, J. London Math. Soc. 40 (1965), 55–57; and J. Zolnowsky, Discrete
Math. 9 (1974), 293–298.

Jacobi’s identity can be proved rapidly as follows. Since
n

k=1

(1− ukvk−1) = (−1)nu(n+1
2 )v(n2)

n
k=1

(1− u−kv1−k) ,
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the q-nomial theorem of exercise 1.2.6–58 with q = uv tells us that
n

k=1

(1− ukvk−1)(1− uk−1vk) = (−1)nu(n+1
2 )v(n2)

n
k=−n+1

(1− uk−1vk)

= (−1)nu(n+1
2 )v(n2)

j

2n
j


uv

(uv)(
j
2)(−u−nv1−n)j

=


j

 2n
n+ j


uv

(−1)ju(j2)v(j+1
2 ).

Multiply both sides by
n

k=1(1− ukvk) =
n

k=1(1− qk) and note that, for fixed j, we
have

 2n
n+j


q

n
k=1(1− qk) = 1 +O(qn+1−|j|). Jacobi’s identity follows as n→∞.

21. Interpret Cj as the number of elements on the stack after the jth output. (See
exercise 2.3.3–19 for characterizations of the b and B tables of stack permutations.)
22. (a) Arrange the numbers {1, 2, . . . , n} in a circle as on the face of a clock, and point
at 1. Then for j = n, n − 1, . . . , 1 (in this order), move the pointer counterclockwise
hj + 1 steps, remove the number pointed to from the circle, and call it aj .

(b) Each i is counted as often as the sequence ai ai+1 . . . an wraps around; this
is the number of times that aj > aj+1 for j ≥ i. Therefore each j with aj > aj+1
corresponds to the indices 1, . . . , j being counted once. [Guo-Niu Han, Advances in
Math. 105 (1994), 28–29; an equivalent result had been obtained by Rawlings, in the
context of the next exercise.]
23. Suppose, for example, that n = 5 and a1 a2 a3 a4 a5 = 3 1 4 2 5. The number of
missed shots before each death must then be 2 + 5k1, 2 + 4k2, 1 + 3k3, 1 + 2k2, k5,
for some nonnegative integers kj . Note that the dual permutation 1 4 2 5 3 has h-table
0 1 1 2 2 in the notation of the previous exercise. In general, the probability of obtaining
a1 a2 . . . an will be

k1,...,kn≥0

(qhn+nk1
1 p1)(qhn−1+(n−1)k2

2 p2) . . . (qh1+kn
n pn)

= 1− q1

1− qn
1

1− q2

1− qn−1
2

. . .
1− qn

1− q1
n

qhn
1 q

hn−1
2 . . . qh1

n ,

where pj = 1 − qj is the probability of fatality after j − 1 deaths, and h1 h2 . . . hn

corresponds to the dual of a1 a2 . . . an. In particular, when p1 = · · · = pn = p =
1− q, the probability is qh1+···+hn/Gn(q). The least likely order is therefore n . . . 2 1.
[J. Treadway and D. Rawlings, Math. Mag. 67 (1994), 345–354; Rawlings generalized
the process to multiset permutations in Int. J. Math. & Math. Sci. 15 (1992), 291–312.]
24. Let a0 = 0, and say that a generalized descent occurs at j < n if aj > t(aj+1).
Inserting n between aj−1 and aj causes a new generalized descent if and only if aj−1 ≤
t(aj) < n. Suppose this occurs when j has the values j1 > j2 > · · · > jk > 0; let the
other values of j be jn > jn−1 > · · · > jk+1. Then jn = n, and it can be shown that
the generalized index increases by n−k when n is inserted just before ajk . [The special
case in which t(j) = j + d for some d ≥ 0 is due to D. Rawlings, J. Combinatorial
Theory A31 (1981), 175–183; he generalized this special case to multiset permutations
in Linear and Multilinear Algebra 10 (1981), 253–260.]

This exercise defines n! different statistics on permutations, each of which has
the generating function Gn(z) that appears in (7) and (8). We can define many
more such statistics by generalizing Russian roulette as follows: After j − 1 deaths,
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the person who begins the next round of shooting is fj(a1, . . . , aj−1), where fj is an
arbitrary function taking values in {1, . . . , n}\{a1, . . . , aj−1}. [See Guo-Niu Han, Calcul
Denertien (Thesis, Univ. Strasbourg, 1992), Part 1.3, §7.]
25. (a) If a1 < an, h(α) has exactly as many inversions as α, because the elements of
αj now invert xj instead of an. But if a1 > an, h(α) has n−1 fewer inversions, because
xj loses its inversion of an and of each element in αj . Therefore if we set xn = an and
recursively let x1 . . . xn−1 = f(h(α)), the permutation f(α) = x1 . . . xn has the desired
properties. We have f(1 9 8 2 6 3 7 4 5) = 9 1 2 6 3 8 7 4 5, and f [−1](1 9 8 2 6 3 7 4 5) =
1 9 2 6 8 7 3 4 5.

(b) The key point is that inv(α) = inv(α−) and ind(α−) = ind(f(α)−), when α−

is the inverse of α. Therefore if α1 = α−, α2 = f(α1), α3 = α−
2 , α4 = f [−1](α3), and

α5 = α−
4 , we have

inv(α5) = inv(α4) = ind(α3) = ind(α−
2 ) = ind(α−

1 ) = ind(α);
ind(α5) = ind(α−

4 ) = ind(α−
3 ) = ind(α2) = inv(α1) = inv(α).

[Math. Nachrichten 83 (1978), 143–159.]
26. (Solution by Doron Zeilberger.) The average of inv(α) ind(α) is

1
n!


α


1≤j<k≤n


1≤l<n

[aj >ak ] l [al >al+1 ] ,

which is a polynomial in n of degree ≤ 4. Evaluating this sum for 1 ≤ n ≤ 5 gives the
respective values 0, 1

2 , 6
2 , 21

2 , 55
2 ; so the polynomial must be 1

8n(n− 1) + 1
16n

2(n− 1)2.
Subtracting mean(gn)2 and dividing by var(gn) gives the answer 9/(2n+ 5) for n ≥ 2,
by (12) and (13).
27. We have inv(a1 a2 . . . an) = inv(qn . . . q2 q1), when qn . . . q2 q1 is regarded as a
permutation of a multiset (see Section 5.1.2). It follows that

Hn(w, z)
(1− z) . . . (1− zn) =


a1...an

winv(a1...an) zind(a1...an)


p1≥···≥pn≥0

zp1+···+pn

=


q1,q2,...,qn≥0

winv(qn...q2 q1)zq1+q2+···+qn

=


k0+k1+k2+···=n


n

k0, k1, k2, . . .


w
zk1+2k2+···

= n!w [un]


k0,k1,k2,...

∞
j=0

(zju)kj

kj !w

= n!w [un]
∞

j=0

expw(zju)

= n!w [un]
∞

j=0

∞
k=0

1
1− zjwku(1− w) ,

using the notation of answer 16 and the result of exercise 5.1.2–16. Thus we have the
elegant identity

j,k≥0

1
1− wjzku

=

n≥0

Hn(w, z)un

(1− w)(1− w2) . . . (1− wn)(1− z)(1− z2) . . . (1− zn) ,
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which was established for the generating function Hn(w, z) =


α w
ind(α−)zind(α) by

D. P. Roselle in Proc. Amer. Math. Soc. 45 (1974), 144–150. Exercise 25 shows that
the same bivariate generating function counts indexes and inversions. The proof given
here is due to Garsia and Gessel [Advances in Math. 31 (1979), 288–305], who went on
to obtain considerably more general results.

Setting m =∞ in exercise 4.7–27 leads to the recurrence

Hn(w, z) =
n

k=1


n

k


w
zn−k

k−1
j=1

(1− zn−j)

Hn−k(w, z).

28. Interchanging two adjacent elements changes the total displacement by 0 or ±2;
hence td(a1 a2 . . . an) ≤ 2 inv(a1 a2 . . . an).

We can also prove that td(a1 a2 . . . an) ≥ inv(a1 a2 . . . an). Suppose j is the
smallest element out of place, and let ak = j. Let l be maximum with l < k and
al ≥ k. Interchanging al with ak reduces the inversions by 2(k− l)−1, and reduces the
total displacement by 2(k−l). Therefore if m repetitions of this algorithm are needed to
sort a given permutation a1 a2 . . . an, we have td(a1 a2 . . . an) = inv(a1 a2 . . . an) +m.

The average total displacement of a random permutation is (n2−1)/3; see exercise
5.2.1–7. The generating function for total displacement does not appear to have
a simple form. References: C. Spearman, British J. Psychology 2 (1906), 89–108;
P. Diaconis and R. L. Graham, J. Royal Stat. Soc. B39 (1977), 262–268.
29. We can obtain π as a product of inv(π) transpositions τj , where τj interchanges j
and j + 1. For example, the path 1234 → 1324 → 1342 → 3142 in Fig. 1 corresponds
to τ2, then τ3, then τ1; hence 3 1 4 2 = τ1τ3τ2. Therefore ππ′ is obtainable from π′ by
making inv(π) transpositions, each of which changes the number of inversions by ±1.
It follows that inv(ππ′) ≤ inv(π) + inv(π′). If equality holds, each transposition adds
a new inversion, hence E(ππ′) ⊇ E(π′).

Conversely, if E(ππ′) ⊇ E(π′), we want to show that some sequence of |E(ππ′)| −
|E(π′)| = inv(ππ′)−inv(π′) transpositions will transform π′ to ππ′. Such transpositions
define π, so this will prove that inv(π) ≤ inv(ππ′) − inv(π′); hence equality must
hold. Suppose, for example, that π′ = 3 1 4 5 9 2 6 8 7 and that E(ππ′) ⊇ E(π′). If
E(ππ′) does not contain (4, 1) or (5, 4) or (9, 5) or (6, 2) or (8, 6), then ππ′ must be
equal to π′. Otherwise E(ππ′) contains one of them, say (9, 5); then E(ππ′) contains
E(τ4π

′) = E(3 1 4 9 5 2 6 8 7). In this way we can prove the result by induction on
|E(ππ′)| − |E(π′)|.

SECTION 5.1.2
1. False, because of a reasonably important technicality. If you said “true,” you

probably didn’t know the definition of M1 ∪M2 given in Section 4.6.3, which has the
property that M1 ∪M2 is a set whenever M1 and M2 are sets. Actually, α β is a
permutation of the multiset M1 ⊎M2.

2. b c a d d a d a d b.
3. Certainly not, since we may have α = β. (The unique factorization theorem shows

that there aren’t too many possibilities, however.)
4. (d) (b c d) (b b c a d) (b a b c d) (d).
5. The number of occurrences of the pair . . . xx . . . is equal to the number of x

x

columns, minus 0 or 1. When x is the smallest element, the numbers of occurrences
are equal if and only if x is not first in the permutation.
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6. Counting the associated number of two-line arrays is easy:


m
k


n
k


.

7. Using part (a) of Theorem B, a derivation like that of (20) gives
A− 1

A− k −m− 1

 
B

m

 
C

k

 
B + k

B − l

 
C − k
l


;

A− 1
A− k −m

 
B

m

 
C

k

 
B + k − 1
B − l − 1

 
C − k
l


;

A− 1
A− k −m

 
B

m

 
C

k

 
B + k − 1
B − l

 
C − k
l


.

8. The complete factorization into primes is (d) (b c d) (b) (a d b c) (a b) (b c d) (d),
which is unique since no adjacent pairs commute. So there are eight solutions, with
α = ϵ, (d), (d) (b c d), . . . .
10. False, but true in interesting cases. Given any linear ordering of the primes,
there is at least one factorization of the stated form, since whenever the condition is
violated we can make an interchange that reduces the number of “inversions” in the
factorization. So the condition fails only because some permutations have more than
one such factorization.

Let ρ ∼ σ mean that ρ commutes with σ. The following condition is necessary
and sufficient for the uniqueness of the factorization as stated:

ρ ∼ σ ∼ τ and ρ ≺ σ ≺ τ implies ρ ∼ τ.

Proof. If ρ ∼ σ ∼ τ and ρ ≺ σ ≺ τ and ρ ̸∼ τ , we would have two factorizations
σ τ ρ = τ ρ σ; hence the condition is necessary. Conversely, to show that it is sufficient
for uniqueness, let ρ1 · · · ρn = σ1 · · · σn be two distinct factorizations satisfying the
condition. We may assume that σ1 ≺ ρ1, and hence σ1 = ρk for some smallest k > 1;
furthermore σ1 ∼ ρj for 1 ≤ j < k. Since ρk−1 ∼ σ1 = ρk, we have ρk−1 ≺ σ1; hence
k > 2. Let j be such that σ1 ≺ ρj and ρi ≺ σ1 for j < i < k. Then ρj+1 ∼ σ1 ∼ ρj

and ρj+1 ≺ σ1 ≺ ρj implies that ρj+1 ∼ ρj ; hence ρj ≺ ρj+1, a contradiction.
Therefore if we are given an ordering relation on a set S of primes, satisfying the

condition above, and if we know that all prime factors of a permutation π belongs to S,
we can conclude that π has a unique factorization of the stated type. Such a condition
holds, for example, when S is the set of cycles in (29).

But the set of all primes cannot be so ordered. For if we have, say, (a b) ≺ (d e),
then we are forced to define

(a b) ≺ (d e) ≻ (b c) ≺ (e a) ≻ (c d) ≺ (a b) ≻ (d e),

a contradiction. (See also the following exercise.)
11. We wish to show that, if p(1) . . . p(t) is a permutation of {1, . . . , t}, the permutation
xp(1) . . . xp(t) is topologically sorted if and only if we have σp(1) · · · σp(t) = σ1 · · · σt and
p(i) < p(j) whenever σp(i) = σp(j) for i < j. We also want to show that, if xp(1) . . . xp(t)
and xq(1) . . . xq(t) are distinct topological sortings, we have σp(j) ̸= σq(j) for some j.
The first property follows by observing that xp(1) can be first in a topological sort if and
only if σp(1) commutes with (yet is distinct from) σp(1)−1, . . . , σ1; and this condition
implies that σp(2) · · · σp(t) = σ1 · · · σp(1)−1 σp(1)+1 · · · σt, so induction can be
used. The second property follows because if j is minimal with p(j) ̸= q(j), we have,
say, p(j) < q(j) and xp(j) ̸≺ xq(j) by definition of topological sorting; hence σp(j) has
no letters in common with σq(j).



5.1.2 ANSWERS TO EXERCISES 599

To get an arbitrary partial ordering, let the cycle σk consist of all ordered pairs
(i, j) such that xi ≺ xj and either i = k or j = k; these ordered pairs are to appear
in some arbitrary order as individual elements of the cycle. Thus the cycles for the
partial ordering x1 ≺ x2, x3 ≺ x4, x1 ≺ x4 would be σ1 = ((1, 2)(1, 4)), σ2 = ((1, 2)),
σ3 = ((3, 4)), σ4 = ((1, 4)(3, 4)).

12. No other cycles can be formed, since, for example, the original permutation con-
tains no a

c columns. If (a b c d) occurs s times, then (a b) must occur A − r − s
times, since there are A− r columns a

b , and only two kinds of cycles contribute to such
columns.

13. In the two-line notation, first place A − t columns of the form d
a , then put the

other t a’s in the second line, then place the b’s, and finally the remaining letters.

14. Since the elements below any given letter in the two-line notation for π− are in
nondecreasing order, we do not always have (π−)− = π; but it is true that ((π−)−)− =
π−. In fact, the identity

(α β)− = ((α− β−)−)−

holds for all α and β. (See exercise 5–2.)
Given a multiset whose distinct letters are x1 < · · · < xm, we can characterize its

self-inverse permutations by observing that they each have a unique prime factorization
of the form β1 · · · βm, where βj has zero or more prime factors (xj) · · · (xj) (xjxk1 )
· · · (xjxkt), j < k1 ≤ · · · ≤ kt. For example, (a) (a b) (a b) (b c) (c) is a self-inverse
permutation. The number of self-inverse permutations of {m · a, n · b} is therefore
min(m,n) + 1; and the corresponding number for {l · a, m · b, n · c} is the number of
solutions of the inequalities x + y ≤ l, x + z ≤ m, y + z ≤ n in nonnegative integers
x, y, z. The number of self-inverse permutations of a set is considered in Section 5.1.4.

The number of permutations of {n1 · x1, . . . , nm · xm} having nij occurrences of
xi
xj

in their two-line notation is


i ni!/


i,j nij !, the same as the number having nij

occurrences of xj
xi

in the two-line notation. Hence there ought to be a better way to
define the inverse of a multiset permutation. For example, if the prime factorization
of π is σ1 σ2 · · · σt as in Theorem C, we can define π− = σ−

t · · · σ−
2 σ−

1 , where
(x1 . . . xn)− = (xn . . . x1).

Dominique Foata and Guo-Niu Han have observed that it would be even more
desirable to define inverses in such a way that π and π− have the same number of
inversions, because the generating function for inversions given the numbers nij is

i ni!z/


i,j nij !z times a power of z; see exercise 16. However, there does not seem
to be any natural way to define an involution having that property.

15. See Theorem 2.3.4.2D and Lemma 2.3.4.2E. Removing one arc of the directed
graph must leave an oriented tree.

16. If x1 < x2 < · · · , the inversion table entries for the xj ’s must have the form
bj1 ≤ · · · ≤ bjnj where bjnj (the number of inversions of the rightmost xj) is at
most nj+1 + nj+2 + · · · . So the generating function for the jth part of the inversion
table is the generating function for partitions into at most nj parts, no part exceeding
nj+1 +nj+2 + · · · . The generating function for partitions into at most m parts, no part
exceeding n, is the z-nomial coefficient


m+n

m


z; this is readily proved by induction, and

it can also be proved by means of an ingenious construction due to F. Franklin [Amer. J.
Math. 5 (1882), 268–269; see also Pólya and Alexanderson, Elemente der Mathematik
26 (1971), 102–109]. Multiplying the generating functions for j = 1, 2, . . . gives the
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desired formula for inversions of multiset permutations, which MacMahon published in
Proc. London Math. Soc. (2) 15 (1916), 314–321.
17. Let hn(z) = (n!z)/n!; then the desired probability generating function is

g(z) = hn(z)/hn1 (z)hn2 (z) · · · .

The mean of hn(z) is 1
2


n
2

, by Eq. 5.1.1–(12), so the mean of g is

1
2


n

2


−

n1

2


−

n2

2


− · · ·


= 1

4(n2 − n2
1 − n2

2 − · · · ) = 1
2

i<j

ninj .

The variance is, similarly,
1

72 (n(n− 1)(2n+ 5)− n1(n1 − 1)(2n1 + 5)− · · · )
= 1

36 (n3 − n3
1 − n3

2 − · · · ) + 1
24 (n2 − n2

1 − n2
2 − · · · ).

18. Yes; the construction of exercise 5.1.1–25 can be extended in a straightforward
way. Alternatively we can generalize the proof following 5.1.1–(14), by constructing
a one-to-one correspondence between m-tuples (q1, . . . , qm) where qj is a multiset
containing nj nonnegative integers, on the one hand, and ordered pairs of n-tuples
((a1, . . . , an), (p1, . . . , pn)) on the other hand, where a1 . . . an is a permutation of
{n1 · 1, . . . , nm ·m}, and p1 ≥ · · · ≥ pn ≥ 0. This correspondence is defined as before,
giving all elements of qj the subscript j; it satisfies the condition

Σ(q1) + · · ·+Σ(qm) = ind(a1 . . . an) + (p1 + · · ·+ pn)

where Σ(qj) denotes the sum of the elements of qj . [For a further generalization of the
technique used in this proof and in the derivation of Eq. 5.1.3–(8), see D. E. Knuth,
Math. Comp. 24 (1970), 955–961. See also the comprehensive treatment by Richard P.
Stanley in Memoirs Amer. Math. Soc. 119 (1972).]
19. (a) Let S = {σ | σ is prime, σ is a left factor of π}. If S has k elements, the left
factors λ of π such that µ(λ) ̸= 0 are precisely the 2k intercalations of the subsets of S
(see the proof of Theorem C); hence


µ(λ) =


σ∈S(1 + µ(σ)) = 0, since µ(σ) = −1

and S is nonempty. (b) Clearly ϵ(i1 . . . in) = µ(π) = 0 if ij = ik for some j ̸= k.
Otherwise ϵ(i1 . . . in) = (−1)r where i1 . . . in has r inversions; this is (−1)s, where
i1 . . . in has s even cycles; and this is (−1)n+t where i1 . . . in has t cycles.
20. (a) Obvious, by definition of intercalation. (b) By definition,

det(bij) =


1≤i1,...,im≤m

ϵ(i1 . . . im) b1i1 . . . bmim .

Setting bij = δij − aijxj and applying exercise 19(b), we obtain
n≥0


1≤i1,...,in≤m

xi1 . . . xinµ(xi1 . . . xin)ν(xi1 . . . xin),

since µ(π) is usually zero.
(c) Use exercise 19(a) to show that D G = 1 when we regard the products of x’s

as permutations of noncommutative variables, using the natural algebraic convention
(α+ β) π = α π + β π.

A succinct rendition of this combinatorial proof and similar proofs of other impor-
tant theorems has been given by D. Zeilberger, Discrete Math. 56 (1985), 61–72.
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21.
m

k=1


nk+···+nk−d
nk


, if we let nk = 0 for k ≤ 0, since there are


nm+···+nm−d

nm


ways

to insert the m’s into such a permutation of {n1 · 1, . . . , nm−1 · (m− 1)}.
22. (a) The left-right reversal of l(π) is in P0(0p1n1 . . . tnt), for some p; but instead of
reversing l(π), we will give it a two-line form by placing 0 last instead of first in the top
line. The number p of 0s in l(π) and r(π) is the number of columns j

k in the two-line
form of π for which j ≤ t < k; this is also the number of columns with k ≤ t < j.
We can easily reconstruct π from the two-line forms of l(π) and r(π), because each
column j

k with j, k ≤ t occurs in l(π), each column with t < j, k occurs in r(π), and the
remaining columns are obtained by merging j

0 or 0
k of l(π) with 0

k or j
0 of r(π) from

left to right.
(b) Let π be a permutation of the stated form, and let σ be any permutation of

P0(0n0 1n1 . . .mnm). Construct λ as follows: Delete the first n0 entries of σ; then replace
the 0s by x’s, subscripted with the first n0 entries of π; replace the other elements by y’s,
subscripted with the remaining nonzero entries of π. Also construct ρ as follows: Delete
the 0s of σ, and replace the nj occurrences of j with xj or yj according as the columns
j
k of π have k = 0 or k ̸= 0, from left to right. For example, if π = (00000011111222233333

23131302310102032010)
and σ = (00000011111222233333

32313201103201300201), we have λ = x2y2y3x3y1y1x1y2y3x3x1y2x3y1 and ρ =
y3y2y3x1x3x2y1y1y3y2y1x3x2x1. Conversely, we can reconstruct π and σ from λ and ρ.

(c) We have w(π) = w(l(π))w(r(π)) in the construction of (a), because column j
k

of π either becomes j
k of weight wj/wk in l(π) or r(π), or it is factored into columns

j
0 and 0

k having weights zj/z0 and z0/zk. If l(π) has pj columns 0
j and qj columns j

0 ,
its weight is

t
j=1(zqj

j w
nj−qj
j /z

pj

j w
nj−pj

j ) =
t

j=1(wj/zj)pj−qj . Now
t

j=1(wj/zj)−qj

is the complex conjugate of
t

j=1(wj/zj)qj ; so the sum of weights over all elements of
P0(0p1n1 . . . tnt) simplifies to

p! (n1 + · · ·+ nt − p)!
n1! . . . nt!

 
p1+···+pt=p


n1

p1


. . .


nt

pt


w1

z1

p1
. . .


wt

zt

pt

2.
Similar remarks apply to r(π). The stated sum is positive because the term for p = 0
is nonzero.
23. We can assume that the original strand was sorted. Let t = 2, m = 4, w1 =
w3 = z1 = z2 = +1, w2 = w4 = z3 = z4 = −1 in part (c) of the previous exercise.
Then w(π) = (−1)d, where d is the number of columns j

k with j ̸= k. [See Gillis
and Zeilberger, European J. Comb. 4 (1983), 221–223. This result was first proved
in a completely different way by Askey, Ismail, and Koornwinder, J. Comb. Theory
A25 (1978), 277–287, who found intriguing connections between multiset permutations
and integrals of products of the Laguerre polynomials Lα

n(x) =
n

k=0


n+α
n−k


(−x)k/k!.]

The analogous result for a five-letter alphabet is false, because the 5! permutations of
{1, 2, 3, 4, 5} include 1 + 10 + 45 with an even number of differences, 0 + 20 + 44 with
an odd number.
24. (a) Transposing w

y
x
z twice restores w

y
x
z . Given sort( x1

y1
...
...

xn
yn

) = ( x′′
1

y′′
1

...

...
x′′
n

y′′
n

), unsort
it by finding the leftmost x in the top row and transposing it to the left. This brings
out the proper y. (The value of sort( x′

2
y′

2

...

...
x′
n

y′
n

) is also uniquely determined.)
(b) We are essentially expressing the two-line notation of π in the form

π = sort

y1

x11

. . .

. . .

x1n1

y1

y2

x21

. . .

. . .

x2n2

y2

. . .

. . .

yt

xt1

. . .

. . .

xtnt

yt


,
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and part (a) provides us with precisely the tools we need. [When R preserves certain
statistics of the two-line notation, this construction provides combinatorial proofs of
interesting theorems. See Guo-Niu Han, Advances in Math. 105 (1994), 26–41.]

SECTION 5.1.3
1. We must only show that this value makes (11) valid for x = k, when k ≥ 1.

Using (7), the formula becomes

kn =
k

r=0


n

r − 1


k + n− r

n


=


0≤j≤r≤k

(−1)j(r − j)n

n+ 1
j


n+ k − r

n


=

k
s=0

sn
k−s
j=0

(−1)j

n+ 1
j


n+ k − s− j

n


.

For s < k, the sum on j can be extended to the range 0 ≤ j ≤ n+ 1, and it is zero (the
(n+ 1)st difference of an nth-degree polynomial in j).

2. (a) The number of sequences a1a2 . . . an containing each of the elements (1,2, . . . , q)
at least once is


n
q


q!, by exercise 1.2.6–64; the number of such sequences satisfying

the analog of (10), for m = q, is


n−k
n−q


, since we must choose n − q of the possible =

signs. (b) Add the results of (a) for q = n−m and q = n−m+ 1.

3.


n

xn

n!


k


n

k


(−1)k = 2

e−2x + 1 = 1
x


(−4x)
e−4x − 1 −

(−2x)
e−2x − 1


by (20), hence the

result is (−1)n+1Bn+12n+1(2n+1−1)/(n+1). Alternatively, the identity 2/(e−2x +1) =
1+tanh x lets us express the answer as (−1)(n−1)/2Tn when n is odd, where Tn denotes
the tangent number defined by the formula

tan z = T1z + T3z
3/3! + T5z

5/5! + · · · .

When n > 0 is even, the sum obviously vanishes, by (7). Incidentally, (18) now yields
the curious Stirling number identity


k


n
k


k!/(−2)k = 2Bn+1(1− 2n+1)/(n+ 1).

4. (−1)n+m


n
m


. (Consider the coefficient of zm+1 in (18).)

5.


p
k


≡ (k + 1)p − kp ≡ (k + 1)− k ≡ 1 (modulo p) for 0 ≤ k < p, by formula (13),

exercise 1.2.6–10, and Theorem 1.2.4F.
6. Summing first on k is not allowed, because the terms are nonzero for arbitrarily

large j and k, and the sum of the absolute values is infinite.
For a simpler example of the fallacy, let ajk = (k − j) [|j − k| = 1]. Then
j≥0


k≥0

ajk


=

j≥0

(δj0) = +1, while

k≥0


j≥0

ajk


=

k≥0

(−δk0) = −1.

7. Yes. [F. N. David and D. E. Barton, Combinatorial Chance (1962), 150–154; see
also the answer to exercise 25.]

8. [Combinatory Analysis 1 (1915), 190.] By inclusion and exclusion. For example,
1/(l1 + l2)! l3! (l4 + l5 + l6)! is the probability that x1 < · · · < xl1+l2 , xl1+l2+1 < · · · <
xl1+l2+l3 , and xl1+l2+l3+1 < · · · < xl1+l2+l3+l4+l5+l6 .

A simple O(n2) algorithm to count the number of permutations of {1, . . . , n}
having respective run lengths (l1, . . . , lk) has been given by N. G. de Bruijn, Nieuw
Archief voor Wiskunde (3) 18 (1970), 61–65.
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9. pkm = qkm − qk(m+1) in (23). Since


k,m qkmz
mxk = x

1−x
g(x, z) and g(x, 0) = 1,

we have

h(z, x) =


hk(z)xk = x

1− xg(x, z)(1− z−1) + x

1− xz
−1 = (1− z−1)x

e(x−1)z − x
+ z−1x

1− x .

Thus h1(z) = ez − (ez − 1)/z; h2(z) = (e2z − zez) + ez − (e2z − 1)/z.
10. Let Mn = L1+· · ·+Ln be the mean; then


Mnx

n = h′(1, x), where the derivative
is taken with respect to z, and this is x/(ex−1 − x) − x/(1 − x) = M(x), say. By the
residue theorem

1
2πi


M(z)z−n−1 dz = Mn − 2(n+ 1

3 ) + 1 + z−n
1

z1 − 1 + z−n
1

z1 − 1 ,

if we integrate around a circle of radius r where |z1| < r < |z2|. (Note the double pole at
z = 1.) Furthermore, the absolute value of this integral is less than


|M(z)| r−n−1 dz =

O(r−n). Integrating over larger and larger circles gives the convergent series Mn =
2n− 1

3 +


k≥1 2ℜ(1/zn
k (1− zk)).

To find the variance, we have h′′(1, x) = −2h′(1, x)− 2x(x− 1)ex−1/(ex−1 − x)2.
An argument similar to that used for the mean, this time with a triple pole, shows
that the coefficients of h′′(1, x) are asymptotically 4n2 + 4

3n− 2Mn plus smaller terms;
this leads to the asymptotic formula 2

3n+ 2
9 (plus exponentially smaller terms) for the

variance.
11. Pkn =


t1≥1,...,tk−1≥1D(t1, . . . , tk−1, n, 1), where D(l1, l2, . . . , lk) is MacMahon’s

determinant of exercise 8. Evaluating this determinant by its first row, we find Pkn =
c0P(k−1)n + c1P(k−2)n + · · ·+ ck−2P1n−Ek(n), where cj and Ek are defined as follows:

cj = (−1)j


t1,...,tj+1≥1

1
(t1 + · · ·+ tj+1)! = (−1)j


m≥0


m

j

 1
(m+ 1)!

= (−1)j


r,m≥0

 −1
j − r


m+ 1
r

 1
(m+ 1)! = −1 + e

 1
0! −

1
1! + · · ·+ (−1)j 1

j!


;

E1(n) = 1/(n+ 1)!− 1/n! ; E2(n) = [n> 0]/(n+ 1)! ;

Ek(n) = (−1)k

m≥0


m

k − 3

 [n> 0]
(n+ 2 +m)! , k ≥ 3.

Let P0n = 0, C(z) =

cjz

j = (e1−z − 1)/(1− z), and let

E(z, x) =

n,k

Ek+1(n)znxk = ez2x2 − ex(1−x+zx)(z+x−1)− ez+x(1−z)2(1−x)2

exz(z+x−1)(1−x)2 .

The recurrence relation we have derived is equivalent to the formula C(x)H(z, x) =
H(z, x)/x + E(z, x); hence H(z, x) = E(z, x)x(1 − x)/(xe1−x − 1). Expanding this
power series gives H1(z) = h1(z) (see exercise 9); H2(z) = eh1(z) + 1− ez.

[Note: The generating functions for the first three runs were derived by Knuth,
CACM 6 (1963), 685–688. Barton and Mallows, Ann. Math. Statistics 36 (1965), 249,
stated the formula 1 −Hn+1(z) = (1 −Hn(z))/(1 − z) − Lnh1(z) for n ≥ 1, together
with (25). Another way to attack this problem is illustrated in exercise 23. Because
adjacent runs are not independent, there is no simple relation between the problem
solved here and the simpler (probably more useful) result of exercise 9.]
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12. [Combinatory Analysis 1 (1915), 209–211.] The number of ways to put the multiset
into t distinguishable boxes is

Nt =

t+ n1 − 1

n1


t+ n2 − 1

n2


· · ·


t+ nm − 1

nm


,

since there are


t+n1−1
n1


ways to place the 1s, etc. If we require that no box be empty,

the method of inclusion and exclusion tells us that the number of ways is

Mt = Nt −

t

1


Nt−1 +


t

2


Nt−2 − · · · .

Let Pk be the number of permutations having k runs; if we put k − 1 vertical lines
between the runs, and t−k additional vertical lines in any of the n−k remaining places,
we get one of the Mt ways to divide the multiset into t nonempty distinguishable parts.
Hence

Mt = Pt +

n− t+ 1

1


Pt−1 +


n− t+ 2

2


Pt−2 + · · · .

Equating the two values of Mt allows us to determine P1, P2, . . . successively in terms
of N1, N2, . . . . (A more direct proof would be desirable.)
13. 1 + 1

2 13× 3 = 20.5.
14. By Foata’s correspondence the given permutation corresponds to

(3 1) (1) · · · (4) =


1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
3 1 1 2 3 4 3 2 1 1 3 4 2 2 4 4


;

by (33) this corresponds to
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
2 4 4 3 3 3 1 1 4 4 2 1 2 1 2 3


,

which corresponds to 2 3 4 2 3 4 1 4 2 1 4 3 2 1 3 1 with 9 runs.
15. The number of alternating runs is 1 plus the number of j such that 1 < j < n and
we have either aj−1 < aj > aj+1 (a “peak”) or aj−1 > aj < aj+1 (a “valley”). For
fixed j, the probability is 2

3 ; hence the average, for n ≥ 2, is simply 1 + 2
3 (n− 2).

16. Each permutation of {1, 2, . . . , n−1}, having k alternating runs, yields k permu-
tations with k such runs, 2 with k+ 1, and n− k− 2 with k+ 2, when the new element
n is inserted in all possible places. Hence

n

k


= k


n− 1
k


+ 2


n− 1
k − 1


+ (n− k)


n− 1
k − 2


.

It is convenient to let ⟩
1

k


⟨ = δk0, G1(z) = 1. Then

Gn(z) = z

n
((1− z2)G′

n−1(z) + (2 + (n− 2)z)Gn−1(z)).

Differentiation leads to the recurrence

xn = 1
n

((n− 2)xn−1 + 2n− 2)

for xn = G′
n(1), and this has the solution xn = 2

3n−
1
3 for n ≥ 2. Another differentiation

leads to the recurrence
yn = 1

n
((n− 4)yn−1 + 8

3n
2 − 26

3 n+ 6)

for yn = G′′
n(1). Set yn = αn2 +βn+γ and solve for α, β, γ to get yn = 4

9n
2 − 14

15n+ 11
90

for n ≥ 4. Hence var(gn) = 1
90 (16n− 29), n ≥ 4.
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These formulas for the mean and variance are due to J. Bienaymé, who stated
them without proof [Bull. Soc. Math. de France 2 (1874), 153–154; Comptes Rendus
Acad. Sci. 81 (Paris, 1875), 417–423, see also Bertrand’s remarks on p. 458]. The
recurrence relation for ⟩⟨n

k
⟩⟨ is due to D. André [Comptes Rendus Acad. Sci. 97 (Paris,

1883), 1356–1358; Annales Scientifiques de l’École Normale Supérieure (3) 1 (1884),
121–134]. André noted that Gn(−1) = 0 for n ≥ 4; thus, the number of permutations
with an even number of alternating runs is n!/2. He also proved the formula for the
mean, and determined the number of permutations that have the maximum number of
alternating runs (see exercise 5.1.4–23). It can be shown that

Gn(z) =
 1 + z

2

n−1
(1 + w)n+1gn

 1− w
1 + w


, w =


1− z
1 + z

, n ≥ 2,

where gn(z) is the generating function (18) for ascending runs. [See David and Barton,
Combinatorial Chance (London: Griffin, 1962), 157–162.]
17.


n+1
2k−1


;


n
2k−2


end with 0,


n

2k−1


end with 1.
18. (a) Let the given sequence be an inversion table as in Section 5.1.1. If it has
k descents, the inverse of the corresponding permutation has k descents (see answer
5.1.1–8(e)); hence the answer is


n
k


. (b) This quantity satisfies f(n, k) = kf(n−1, k) +

(n−k+1)f(n−1, k−1), so it must be


n
k−1

. [See D. Dumont, Duke Math. J. 41 (1974),

313–315.]
19. (a)


n
k


, by the correspondence of Theorem 5.1.2B. (b) There are (n− k)! ways to

put n−k further nonattacking rooks on the entire board; hence the answer is 1/(n−k)!
times


j≥0 anj


j
k


, where anj =


n
j


by part (a). This comes to { n

n−k
}, by exercise 2.

A direct proof of this result, due to E. A. Bender, associates each partition of
{1, 2, . . . , n} into k nonempty disjoint subsets with an arrangement of n − k rooks:
Let the partition be {1, 2, . . . , n} = {a11, a12, . . . , a1n1} ∪ · · · ∪ {ak1, . . . , aknk}, where
aij < ai(j+1) for 1 ≤ j < ni, 1 ≤ i ≤ k. The corresponding arrangement puts rooks in
column aij of row ai(j+1), for 1 ≤ j ≤ ni, 1 ≤ i ≤ k. For example, the configuration
illustrated in Fig. 4 corresponds to the partition {1, 3, 8} ∪ {2} ∪ {4, 6} ∪ {5} ∪ {7}.

[Duke Math. J. 13 (1946), 259–268. Sections 2.3 and 2.4 of Richard Stanley’s
Enumerative Combinatorics 1 (1986) discuss rook placement in general.]
20. The number of readings is the number of runs in the inverse permutation. The
first run corresponds to the first reading, etc.
21. It has n+ 1− k runs and requires n+ 1− j readings.
22. [J. Combinatorial Theory 1 (1966), 350–374.] If rs < n, some reading will pick
up t > r elements, ai1 = j + 1, . . . , ait = j + t, where i1 < · · · < it. We cannot have
am > am+1 for all m in the range ik ≤ m < ik+1, so the permutation contains at least
t− 1 places with am < am+1; it therefore has at most n− t+ 1 runs.

On the other hand, consider the permutation αr . . . α2 α1, where block αj contains
the numbers ≡ j (modulo r), in decreasing order; for example, when n = 9 and r = 4,
this permutation is 8 4 7 3 6 2 9 5 1. If n ≥ 2r− 1, this permutation has r− 1 ascents, so
it has n + 1 − r runs. Moreover, it requires exactly n + 1 − ⌈n/r⌉ readings, if r > 1.
We can rearrange the elements of {kr+ 1, . . . , kr+ r} arbitrarily without changing the
number of runs, thereby reducing the number of readings to any desired value ≥ ⌈n/r⌉.

Now suppose rs ≥ n and r+s ≤ n+1 and r, s ≥ 1. By exercises 20 and 21 we can
assume that r ≤ s, since the reflection of the inverse of a permutation with n + 1 − r
runs and s readings has n + 1 − s runs and r readings. Then the construction in the
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preceding paragraph handles all cases except those where s > n+ 1−⌈n/r⌉ and r ≥ 2.
To complete the proof we may use a permutation of the form

2k+1 2k−1 . . . 1 n+2−r n+1−r . . . 2k+2 2k . . . 2 n+3−r . . . n−1 n,

which has n+ 1− r runs and n+ 1− r − k readings, for 0 ≤ k ≤ 1
2 (n− r).

23. [SIAM Review 3 (1967), 121–122.] Assume that the infinite permutation consists
of independent samples from the uniform distribution. Let fk(x) dx be the probability
that the kth long run begins with x; and let g(u, x) dx be the probability that a long
run begins with x, when the preceding long run begins with u. Then f1(x) = 1,
fk+1(x) =

 1
0 fk(u)g(u, x) du. We have g(u, x) =


m≥1 gm(u, x), where

gm(u, x) = Pr(u < X1 < · · · < Xm > x or u > X1 > · · · > Xm < x)
= Pr(u < X1 < · · · < Xm) + Pr(u > X1 > · · · > Xm)
− Pr(u < X1 < · · · < Xm < x)− Pr(u > X1 > · · · > Xm > x)

= (um + (1− u)m − |u− x|m)/m! ;

hence g(u, x) = eu+e1−u−1−e|u−x|, and we find f2(x) = 2e−1−ex−e1−x. One can show
that fk(x) approaches the limiting value (2 cos(x− 1

2 )−sin 1
2−cos 1

2 )/(3 sin 1
2−cos 1

2 ). The
average length of a run starting with x is ex + e1−x− 1; hence the length Lk of the kth
long run is

 1
0 fk(x)(ex+e1−x−1) dx; L1 = 2e−3 ≈ 2.43656; L2 = 3e2−8e+2 ≈ 2.42091.

See Section 5.4.1 for similar results.
24. Arguing as before, the result is

1 +


0≤k<n

2k(p2 + q2)k(p2 + 2pq(2n−k−1 − 1 + q2((2pq)n−k−1 − 1)/(2pq − 1)));

carrying out the sum and simplifying yields

2n(p2 + q2)n(p(p− q)/(p2 + q2− pq)− 1
2 ) + (2pq)npq3/(p2 + q2)(p2 + q2− pq)

+ q2/(p2 + q2) + 2n−1.

25. Let Vj = (U1 + · · · + Uj) mod 1; then V1, . . . , Vn are independent uniform ran-
dom numbers in [0 . . 1), forming a permutation that has k descents if and only if
⌊U1 + · · ·+ Un⌋ = k. Hence the answer is


n
k


/n!, a property first noticed by S. Tanny

[Duke Math. J. 40 (1973), 717–722]; see also W. Meyer and R. von Randow, Math.
Annalen 193 (1971), 315–321.
26. For example, ϑ5(1− z)−1 = (z + 26z2 + 66z3 + 26z4 + z5)/(1− z)6.
27. The following rule defines a one-to-one correspondence that takes a permutation
a1 a2 . . . an with k descents into an n-node increasing forest with k + 1 leaves: The
first root is a1, and its descendants are the forest corresponding to a2 . . . ak, where k is
minimal such that ak+1 < a1 or k = n. [R. P. Stanley, Enumerative Combinatorics 1
(Wadsworth, 1986), Proposition 1.3.16.]
28. The poles of L(z) are the values of T (1/e), where T (z) is the (multivalued) tree
function defined by T (z) = zeT (z). Thus for m > 0 we have the convergent series

zm = −σm +

n≥0

1
σn

m


k

(−1)k

n

k

 (lnσm)n+1−k

(n+ 1− k)! , σm = −1− (2m+ 1)πi

[Corless, Gonnet, Hare, Jeffrey, and Knuth, Advances in Computational Mathematics 5
(1996), 329–359, formula (4.18)]; in particular, we have zm = (2m+ 1

2 )πi+ ln(2πem) +
( 1

4 −
i

2π
ln(2πem))/m+O((logm)2/m2).
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Let P (z) =
∞

m=0(z/(z − zm) + z/(z − z̄m)). It follows that P (x) − P (−x) =∞
m=0 4ℜ(xzm/(x2−z2

m)) =
∞

m=1 O((x logm)/(x2 +m2)) =
x

m=1 O((x log x)/x2)+∞
m=x+1 O((x logm)/m2) = O(log x) for x > 1. But we know that L(x) + P (x) = cx

for some c; hence 2cx = L(x)−L(−x)+O(log x), and by letting x→∞ in (25) we find
c = −1/2. Hence L1 =

∞
m=0 2r−1

m cos θm− 1/2. (This result is due to Svante Janson.)
29. (a) If a1 . . . an has 2k alternating runs and k peaks, (n+1−a1) . . . (n+ 1− an) has
k − 1 peaks. (b, c) See L. W. Shapiro, W.-J. Woan, and S. Getu, SIAM J. Algebraic
and Discrete Methods 4 (1983), 459–466.

SECTION 5.1.4

1. 1 2 3 8
4 5 7
6 9

1 3 5 8
2 4 9
6 7

;


1 3 4 5 7 8 9
5 9 2 4 8 1 7


.

2. When pi is inserted into column t, let the element in column t − 1 be pj . Then
(qj , pj) is in class t−1, qj < qi, and pj < pi; so, by induction, indices i1, . . . , it exist
with the property. Conversely, if qj < qi and pj < pi and if (qj , pj) is in class t−1, then
column t− 1 contains an element < pi when pi is inserted, so (qi, pi) is in class ≥ t.

3. The columns are the bumping sequences (9) when pi is inserted. Lines 1 and 2
reflect the operations on row 1, see (14). If we remove columns in which line 2 has ∞
entries, lines 0 and 2 constitute the bumped array, as in (15). The stated method for
going from line k to line k + 1 is just the class-determination algorithm of the text.

4. (a) Use a case analysis, by induction on the size of the tableau, considering first
the effect on row 1 and then the effect on the sequence of elements bumped from
row 1. (b) Admissible interchanges can simulate the operations of Algorithm I, with
the tableau represented as a canonical permutation before and after the algorithm. For
example, we can transform

17 11 4 13 14 2 6 10 15 1 3 5 9 12 16 8 into 17 11 13 4 10 14 2 6 9 15 1 3 5 8 12 16

by a sequence of admissible interchanges (see (4) and (5)).
5. Admissible interchanges are symmetrical between left and right, and the canonical

permutation for P obviously goes into PT when the insertion order is reversed.
6. Let there be t classes in all; exactly k of them have an odd number of elements,

since the elements of a class have the form

(pik , pi1 ), (pik−1 , pi2 ), . . . , (pi1 , pik ).

(See (18) and (22).) The bumped two-line array has exactly t− k fixed points, because
of the way it is constructed; hence by induction the tableau minus its first row has t−k
columns of odd length. So the t elements in the first row lead to k odd-length columns
in the whole tableau.

7. The number of columns, namely the length of row 1, is the number of classes
(exercise 2). The number of rows is the number of columns of PT, so exercise 5 (or
Theorem D) completes the proof.

8. With more than n2 elements, the corresponding P tableau must either have more
than n rows or more than n columns. But there are n × n tableaux. [This result was
originally proved in Compositio Math. 2 (1935), 463–470.]
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9. Such permutations are in 1–1 correspondence with pairs of tableaux of shape
(n, n, . . . , n); so by (34) the answer is

n2!∆(2n−1, 2n−2, . . . , n)
(2n− 1)! (2n− 2)! . . . n!

2

=


n2!
(2n− 1)(2n− 2)2 . . . nn(n− 1)n−1 . . . 11

2

.

The existence of such a simple formula for this problem is truly amazing. We can also
count the number of permutations of {1, 2, . . . ,mn} with no increasing subsequences
longer than m, no decreasing subsequences longer than n.
10. We prove inductively that, at step S3, P(r−1)s and Pr(s−1) are both less than
P(r+1)s and Pr(s+1).
11. We also need to know, of course, the element that was originally P11. Then it is
possible to restore things using an algorithm remarkably similar to Algorithm S.

12.

n1+1

2


+

n2+2

2


+ · · ·+


nm+m

2


−

m+1

3


, the total distance traveled.

The minimum is the sum of the first n terms of the sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4,
5, 5, 5, 5, 5, . . . of exercise 1.2.4–41; this sum is approximately


8/9n3/2. (Nearly

all tableaux on n elements come reasonably close to this lower bound, according to
exercise 29, so the average number of times is Θ(n3/2).)
13. Assume that the elements permuted are {1, 2, . . . , n}, so that ai = 1; and assume
that aj = 2. Case 1: j < i. Then 1 bumps 2, so row 1 of the tableau corresponding to
a1 . . . ai−1 ai+1 . . . an is row 1 of PS ; and the bumped permutation is the former bumped
permutation except for its smallest element, 2, so we may use induction on n. Case 2:
j > i. Apply Case 1 to PT, in view of exercise 5 and the fact that (PT )S = (PS)T .
15. As in (37), the example permutation corresponds to the tableau

1 2 5 9 11
3 6 7 ;
4 8 10

hence the number is f(l,m, n) = (l + m + n)! (l − m + 1)(l − n + 2)(m − n + 1)/
(l + 2)! (m+ 1)! (n)!, provided, of course, that l ≥ m ≥ n.
16. By Theorem H, 80080.
17. Since g is antisymmetric in the x’s, it is zero when xi = xj , so it is divisible by
xi − xj for all i < j. Hence g(x1, . . . , xn; y) = h(x1, . . . , xn; y)∆(x1, . . . , xn). Here h
must be homogeneous in x1, . . . , xn, y, of total degree 1, and symmetric in x1, . . . , xn;
so h(x1, . . . , xn; y) = a(x1 + · · ·+ xn) + by for some a, b depending only on n. We can
evaluate a by setting y = 0; we can evaluate b by taking the partial derivative with
respect to y and then setting y = 0. We have

∂

∂y
∆(x1, . . . , xi+y, . . . , xn)|y=0 = ∂

∂xi
∆(x1, . . . , xn) = ∆(x1, . . . , xn)


j ̸=i

1
xi − xj

.

Finally,


i


j ̸=i

(xi/(xi − xj)) =


i


j<i

(xi/(xi − xj) + xj/(xj − xi)) =

n

2


.

18. It must be ∆(x1, . . . , xn) · (b0 + b1y+ · · ·+ bmy
m), where each bk is a homogeneous

symmetric polynomial of degree m− k in the x’s. We have

∂k

k! ∂yk
∆(x1, . . . , xi+y, . . . , xn)|y=0 = ∆(x1, . . . , xn)


1
k

l=1(xi − xjl)
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summed over all


n−1
k


choices of distinct indices j1, . . . , jk ̸= i. Now, in the expression

bk =

xm

i /k
l=1(xi−xjl), we may combine those groups of k+1 terms having a given

set of indices {i, j1, . . . , jk}; for example, when k = 2, we group sets of three terms of
the form am/(a − b)(a − c) + bm/(b − a)(b − c) + cm/(c − a)(c − b). The sum of every
such group is [zm−k] 1/(1− xiz)(1− xj1z) . . . (1− xjkz), by exercise 1.2.3–33. We find
therefore that

bk =


j


n− j

k + 1− j

 
s(p1, . . . , pj),

where s(p1, . . . , pj) is the monomial symmetric function consisting of all distinct terms
having the form xp1

i1
. . . x

pj

ij
, for distinct indices i1, . . . , ij ∈ {1, . . . , n}; and the inner

sum is over all partitions of m − k into exactly j parts, namely p1 ≥ · · · ≥ pj ≥ 1,
p1 + · · ·+ pj = m− k. (This result was obtained jointly with E. A. Bender in 1969.)

When m = 2 the answer is

s(2) + (n− 1)s(1)y +


n
3

y2∆(x1, . . . , xn); for m = 3

we get

s(3) + ((n− 1)s(2) + s(1, 1))y +


n−1

2

s(1)y2 +


n
4

y3∆(x1, . . . , xn); etc.

Another expression gives bk as the coefficient of zm in
n

k + 1


zk −


n− 1
k + 1


e1z

k+1 +

n− 2
k + 1


e2z

k+2 − · · ·


(1− e1z + e2z
2 − · · · ),

where el =


1≤i1<···<il≤n xi1 . . . xil is an elementary symmetric function. Multiplying
by yk and summing on k gives the answer as the coefficient of zm in

1
yz

 (1 + z(y − x1)) . . . (1 + z(y − xn))
(1− zx1) . . . (1− zxn) − 1


∆(x1, . . . , xn).

19. Let the shape of the transposed tableau be (n′
1, n

′
2, . . . , n

′
r); the answer is

1
2f(n1, n2, . . . , nm)

 (n2
i −


n′2

j )
n(n− 1) + 1


,

where n =

ni =


n′

j . (This formula can be expressed in a less symmetrical form
using the relation


ini = 1

2 (n+

n′2

j ).)
Note: W. Feit [Proc. Amer. Math. Soc. 4 (1953), 740–744] showed that the number

of ways to place the integers {1, 2, . . . , n} into an array that is the “difference” of two
tableau shapes (n1, . . . , nm) \ (l1, . . . , lm), where 0 ≤ lj ≤ nj and n =


(nj − lj), is

n! det(1/((nj − j)− (li − i))!).
20. The fallacious argument in the discussion following Theorem H is actually valid
for this case (the corresponding probabilities are independent).

Note: If we consider all n! ways to label the nodes, the labelings considered here
are those having no “inversions.” Inversions in permutations are the same as inversions
in tree labelings, in the special case when the tree is simply a path. See A. Björner and
M. L. Wachs, J. Combinatorial Theory A52 (1989), 165–187.
21. [Michigan Math. J. 1 (1952), 81–88.] Let g(n1, . . . , nm) = (n1 + · · · + nm)!
∆(n1, . . . , nm)/n1! . . . nm!σ(n1, . . . , nm), where σ(x1, . . . , xm) =


1≤i<j≤m(xi + xj).

To prove that g(n1, . . . , nm) is the number of ways to fill the shifted tableau, we
must prove that g(n1, . . . , nm) = g(n1−1, . . . , nm) + · · ·+ g(n1, . . . , nm−1). The iden-
tity corresponding to exercise 17 is x1∆(x1 + y, . . . , xn)/σ(x1 + y, . . . , xn) + · · · +
xn∆(x1, . . . , xn + y)/σ(x1, . . . , xn + y) = (x1 + · · · + xn)∆(x1, . . . , xn)/σ(x1, . . . , xn),
independent of y; for if we calculate the derivative as in exercise 17, we find that
2xixj/(x2

j − x2
i ) + 2xjxi/(x2

i − x2
j ) = 0.
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22. Assume that m = N, by adding 0s to the shape if necessary; if m > N and nm > 0,
the number of ways is clearly zero. When m = N the answer is

det



n1 +m− 1
m− 1

 
n2 +m− 2
m− 1


· · ·


nm

m− 1


...

...
...

n1 +m− 1
0

 
n2 +m− 2

0


· · ·


nm

0


 .

Proof. We may assume that nm = 0, for if nm > 0, the first nm columns of the array
must be filled with i in row i, and we may consider the remaining shape (n1−nm, . . . ,
nm−nm). By induction on m, the number of ways is


n2≤k1≤n1···

nm≤km−1≤nm−1

det



k1 +m− 2
m− 2

 
k2 +m− 3
m− 2


· · ·


km−1

m− 2


...

...
...

k1 +m− 2
0

 
k2 +m− 3

0


· · ·


km−1

0


 ,

where nj − kj represents the number of m’s in row j. The sum on each kj may be
carried out independently, giving

det





n1+m−1
m−1


−

n2+m−2
m−1

 
n2+m−2
m−1


−

n3+m−3
m−1


···

nm−1+1
m−1


−

nm

m−1


...

...
...

n1+m−1
1


−

n2+m−2

1

 
n2+m−2

1


−

n3+m−3

1


···

nm−1+1
1


−

nm

1




,

which is the desired answer since nm = 0. The answer can be converted into a
Vandermonde determinant by row operations, giving ∆(n1+m−1, n2+m−2, . . . , nm)/
(m−1)! (m−2)! . . . 0!. [The answer to this exercise, in connection with an equivalent
problem in group theory, appears in D. E. Littlewood’s Theory of Group Characters
(Oxford, 1940), 189.]
23. [Comptes Rendus Acad. Sci. 88 (Paris, 1879), 965–967; Journal de Math. (3) 7
(1881), 167–184.] (This is a special case of exercise 5.1.3–8, with all runs of length 2
except that the final run might have length 1.) When n ≥ 2, element n must appear in
one of the rightmost positions of a row; once it has been placed in the rightmost box
on row k from the bottom, we have


n−1
2k−1


E2k−1En−2k ways to complete the job. Let

h(z) =

n≥1

E2n−1z
2n−1/(2n− 1)! = 1

2 (g(z)− g(−z));

then

h(z)g(z) =


k,n≥1


n

2k − 1


E2k−1En−2k+1z

n/n! =


n≥0

En+1z
n/n!


− 1 = g′(z)− 1.

Replace z by −z and add, obtaining h(z)2 = h′(z) − 1; hence h(z) = tan z. Setting
k(z) = g(z) − h(z), we have h(z)k(z) = k′(z); hence k(z) = sec z and g(z) =
sec z + tan z = tan( 1

2z + 1
4π). The coefficients En are called Euler numbers; with

odd index, E2n−1 is the tangent number T2n−1 = (−1)n−14n(4n − 1)B2n/(2n). Tables
of these numbers appear in Math. Comp. 21 (1967), 663–688; the sequence begins
(E0, E1, E2, . . . ) = (1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, . . . ). The easiest way to compute
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Euler numbers is probably to form the triangular array
1

0 1
1 1 0

0 1 2 2
5 5 4 2 0

0 5 10 14 16 16
61 61 56 46 32 16 0

in which partial sums are alternately formed from left to right and right to left [L. Seidel,
Sitzungsberichte math.-phys. Classe Akademie Wissen. München 7 (1877), 157–187].
25. In general, if unk is the number of permutations on {1, 2, . . . , n} having no cycles
of length > k,


unkz

n/n! = exp(z + z2/2 + · · ·+ zk/k); this is proved by multiplying
exp(z)× · · · × exp(zk/k), obtaining

n

zn

 
j1+2j2+···+kjk=n

1
1j1j1! 2j2j2! . . .


;

see also exercise 1.3.3–21. Similarly, exp(


s∈S z
s/s) is the corresponding generating

function for permutations whose cycle lengths are all members of a given set S.
26. The integral from 0 to ∞ is n(t+1)/4Γ ((t+ 1)/2)/2(t+3)/2, by the gamma function
integral (exercise 1.2.5–20, t = 2x2/

√
n ). So, from −∞ to ∞, we get 0 when t is odd,

otherwise n(t+1)/4√π t!/2(3t+1)/2(t/2)!.
27. (a) If ri < ri+1 and ci < ci+1, the condition i < Qrici+1 < i + 1 is impossible.
If ri ≥ ri+1 and ci ≥ ci+1, we certainly cannot have i + 1 ≤ Qrici+1 ≤ i. (b) Prove,
by induction on the number of rows in the tableau for a1 . . . ai, that ai < ai+1 implies
ci < ci+1, and ai > ai+1 implies ci ≥ ci+1. (Consider row 1 and the “bumped”
sequences.) (c) This follows from Theorem D(c).
28. This result is due to A. M. Vershik and S. V. Kerov, Dokl. Akad. Nauk SSSR
233 (1977), 1024–1028; see also B. F. Logan and L. A. Shepp, Advances in Math. 26
(1977), 206–222. [J. Baik, P. Deift, and K. Johansson, J. Amer. Math. Soc. 12 (1999),
1119–1178, showed that the standard deviation is Θ(n1/6); moreover, the probability
that the length is less than 2

√
n+ tn1/6 approaches exp(−

∞
t

(x− t)u2(x) dx), where
u′′(x) = 2u3(x) + xu(x) and u(x) is asymptotic to the Airy function Ai(x) as x→∞.]
29.


n
l


/l! is the average number of increasing subsequences of length l. (By exercises

8 and 29, the probability is O(1/
√
n ) that the largest increasing sequence has length

≥ e
√
n or ≤

√
n/e.) [J. D. Dixon, Discrete Math. 12 (1975), 139–142.]

30. [Discrete Math. 2 (1972), 73–94; a simplified proof has been given by Marc van
Leeuwen, Electronic J. Combinatorics 3, 2 (1996), paper #R15.]
31. xn = a⌊n/2⌋ where a0 = 1, a1 = 2, an = 2an−1 + (2n − 2)an−2;


anz

n/n! =
exp(2z+z2) = (


tnz

n/n!)2; xn ≈ exp( 1
4n lnn− 1

4n+
√
n− 1

2 −
1
2 ln 2) for n even. [See

E. Lucas, Théorie des Nombres (1891), 217–223.]
32. Let mn =

∞
−∞ tne−(t−1)2/2dt/

√
2π. Then m0 = m1 = 1, and mn+1−mn = nmn−1

if we integrate by parts. So mn = tn by (40).
33. True; it is det m

i,j=1


ai
j−1

. [Mitchell, in Amer. J. Math. 4 (1881), 341–344, showed

that it is the number of terms in the expansion of a certain symmetric function, now
called a Schur function. Indeed, if 0 < a1 < · · · < am, it is the number of terms in
Sn1n2...nm(x1, x2, . . . , xm) where n1 = am−m, n2 = am−1− (m−1), . . . , nm = a1−1.
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This Schur function is the sum over all generalized tableaux of shape (n1, . . . , nm)
with elements in {1, . . . ,m} of the products of xj for all j in the tableau, where a
generalized tableau is like an ordinary tableau except that equal elements are allowed
in the rows. In this definition we allow the parameters nk to be zero. For example,
S210(x1, x2, x3) = x2

1x2 +x2
1x3 +x1x

2
2 +x1x2x3 +x1x2x3 +x1x

2
3 +x2

2x3 +x2x
2
3, because

of the generalized tableaux 11
2 , 11

3 , 12
2 , 12

3 , 13
2 , 13

3 , 22
3 , 23

3 . The number of such tableaux is
∆(1, 3, 5)/∆(1, 2, 3) = 8. By extending Algorithms I and D to generalized tableaux
[Pacific J. Math. 34 (1970), 709–727], we can obtain combinatorial proofs of the
remarkable identities

λ

Sλ(x1, . . . , xm)Sλ(y1, . . . , yn) =
m

i=1

n
j=1

1
1− xiyj

,


λ

Sλ(x1, . . . , xm)SλT (y1, . . . , yn) =
m

i=1

n
j=1

(1 + xiyj);

here the sum is over all possible shapes λ, and λT denotes the transposed shape. These
identities were first discovered by D. E. Littlewood, Proc. London Math. Soc. (2) 40
(1936), 40–70, Theorem V.]

Notes: It follows, for example, that any product of consecutive binomial coef-
ficients


a
k


a+1

k


. . .


a+l
k


is divisible by


k
k


k+1

k


. . .


k+l
k


, since the ratio is ∆(a + l,

. . . , a + 1, a, k − 1, . . . , 1, 0)/∆(k + l, . . . , 1, 0). The value of ∆(k, . . . , 1, 0) = k! . . . 2! 1!
is sometimes called a “superfactorial.”
34. The length of a hook is also the length of any zigzag path from the hook’s bottom
left cell (i, j) to its top right cell (i′, j′). We prove a stronger result: If there is a hook
of length a+ b, then there is either a hook of length a or a hook of length b. Consider
the cells (i, j) = (i1, j1), (i2, j2), . . . , (ia+b, ja+b) = (i′, j′) that hug the bottom of the
shape. If ja+1 = ja, the cell (ia, j1) has a hook of length a; otherwise (ia+b, ja+1)
has a hook of length b. [Reference: Japanese J. Math. 17 (1940), 165–184, 411–423.
Nakayama was the first to consider hooks in the study of permutation groups, and he
came close to discovering Theorem H.]
35. The execution of steps G3–G5 decreases exactly hij elements of the p array by 1
when qij is increased, because the algorithm follows a zigzag path from pn′

j
j to pini .

The next execution of those steps either starts with a larger value of j or stays above
or equal to the preceding zigzag. Therefore the q array is filled from left to right and
bottom to top; to reverse the process we proceed from right to left and top to bottom:

H1. [Initialize.] Set pij ← 0 for 1 ≤ j ≤ ni and 1 ≤ i ≤ n′
1. Then set i ← 1 and

j ← n1.
H2. [Find nonzero cell.] If qij > 0, go on to step H3. Otherwise if i < n′

j , increase
i by 1 and repeat this step. Otherwise if j > 1, decrease j by 1, set i ← 1,
and repeat this step. Otherwise stop (the q array is now zero).

H3. [Decrease q, prepare for zigzag.] Decrease qij by 1 and set l← i, k ← ni.
H4. [Increase p.] Increase plk by 1.
H5. [Move down or left.] If l < n′

k and plk > p(l+1)k, increase l by 1 and return
to H4. Otherwise if k > j, decrease k by 1 and return to H4. Otherwise
return to H2.

The first zigzag path for a given column j ends by incrementing pn′
j

j , because p1j ≤
· · · ≤ pn′

j
j implies that pn′

j
j > 0. Each subsequent path for column j stays below or
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equal to the previous one, so it also ends at pn′
j

j . The inequalities encountered on the
way show that this algorithm inverts the other. [J. Combinatorial Theory A21 (1976),
216–221.]
36. (a) The stated coefficient of zm is the number of solutions to m =


hijqij , so we

can apply the result of the previous exercise. (b) If a1, . . . , ak are any positive integers,
we can prove by induction on k that

[zm] 1/(1− z)(1− za1 ) . . . (1− zak ) =

m

k


/a1 . . . ak +O(mk−1) .

The number of partitions of m with at most n parts is therefore


m
n−1

/n! + O(mn−2)

for fixed n, by exercise 5.1.1–15. This is also the asymptotic number of partitions
m = p1 + · · ·+ pn with distinct parts p1 > · · · > pn > 0 (see exercise 5.1.1–16). So the
number of reverse plane partitions is asymptotically N


m

n−1

/n!+O(mn−2) when there

are N tableaux of a given n-cell shape. By part (a) this is also


m
n−1

/hij +O(mn−2).

[Studies in Applied Math. 50 (1971), 167–188, 259–279.]
37. Plane partitions in a rectangle are equivalent to reverse plane partitions, so the
hook lengths tell us the generating function 1/r

i=1
c

j=1(1 − zi+j−1) in an r × c

rectangle. Letting r, c → ∞ yields the elegant answer 1/(1 − z)(1 − z2)2(1 − z3)3 . . . .
[MacMahon’s original derivation in Philosophical Transactions A211 (1912), 75–110,
345–373, was extremely complicated. The first reasonably simple proof was found by
Leonard Carlitz, Acta Arithmetica 13 (1967), 29–47.]
38. (a) The probability is 1/n when k = l = 1; otherwise it is

nP (I \ {i0}, J) + nP (I, J \ {j0})
ndi0j0

=
(di0b + daj0 )/(ndi0b . . . dik−1b daj0 . . . dajl−1 )

di0b + daj0
,

by induction on k + l.
(b) Summing over all I and J gives

n−1(1 + d−1
1b ) . . . (1 + d−1

(a−1)b) (1 + d−1
a1 ) . . . (1 + d−1

a(b−1)) ,

which is easily seen to equal f(T \ {(a, b)})/f(T ).
(c) The sum over all corners yields 1, because every path ends at a corner.

Therefore

f(T \ {(a, b)}) = f(T ), and this proves Theorem H by induction on n.

Furthermore, if we put n into the corner cell at the end of the random path and repeat
the process on the remaining n− 1 cells, we get each tableau with probability 1/f(T ).
[Advances in Math. 31 (1979), 104–109.]
39. (a) Q11 . . . Q1n will be b1 . . . bn, the inversion table of the original permutation
P11 . . . P1n. (See Section 5.1.1.)

(b) Q11 . . . Qn1 is the negated inversion table (−C1) . . . (−Cn) of exercise 5.1.1–7.
(c) This condition is clearly preserved by step P3.
(d) ( 1 4

2 3 )→ (( 1 3
2 4 ), ( 0

0
−1
0 )); ( 4 3

1 2 )→ (( 1 2
3 4 ), ( 0

0
−1
0 )). This example shows that we

cannot run step P3 backwards without looking at the array P .

(e)

12 10 8 14 15 11
9 13 7 1
6 4 5
16 3
2

.
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(f) The following algorithm is correct, but not obviously so.
Q1. [Loop on (i, j).] Perform steps Q2 and Q3 for all cells (i, j) of the array in

lexicographic order (that is, from top to bottom, and from left to right in
each row); then stop.

Q2. [Adjust Q.] Find the “first candidate” (r, s) by the rule below. Then set
Qi(k+1) ← Qik − 1 for j ≤ k < s.

Q3. [Unfix P at (i, j).] Set K ← Prs. Then do the following operations until
(r, s) = (i, j): If P(r−1)s > Pr(s−1), set Prs ← P(r−1)s and r ← r−1; otherwise
set Prs ← Pr(s−1) and s← s− 1. Finally set Pij ← K.

In step Q2, cell (r, s) is a candidate when s ≥ j and Qis ≤ 0 and r = i−Qis. Let T
be the oriented tree of the hint. One of the basic invariants of Algorithm Q is that there
will be a path from (r, s) to (i, j) in T whenever (r, s) is a candidate in step Q2. The
reverse of that path can be encoded by a sequence of letters D, Q, and R, meaning that
we start at (i, j), then go down (D) or to the right (R) or quit (Q). The first candidate
is the one whose code is lexicographically first in alphabetic order; intuitively, it is the
candidate with the “leftmost and bottommost” path.

For example, the candidates when (i, j) = (1, 1) in the example of part (e) are
(3, 1), (4, 2), (2, 3), (2, 4), and (1, 6). Their respective codes are DDQ, DDDRQ, RDRQ,
RDRRQ, and RRRRRQ; so the first is (4, 2).

Algorithm P is a slightly simplified version of a construction stated without proof in
Funkts. Analiz i Ego Priloz. 26, 3 (1992), 80–82. The proof of correctness is nontrivial;
a proof was given by J.-C. Novelli, I. Pak, and A. V. Stoyanovskii in Disc. Math. and
Theoretical Comp. Sci. 1 (1997), 53–67.
40. An equivalent process was analyzed by H. Rost, Zeitschrift für Wahrscheinlichkeits-
theorie und verwandte Gebiete 58 (1981), 41–53. See also Dan Romik, The Surprising
Mathematics of Longest Increasing Subsequences (2014), Chapter 4.
41. (Solution by R. W. Floyd.) A deletion-insertion operation essentially moves only ai.
In a sequence of such operations, unmoved elements retain their relative order. There-
fore if π can be sorted with k deletion-insertions, it has an increasing subsequence
of length n − k; and conversely. Hence dis(π) = n − (length of longest increasing
subsequence of π) = n− (length of row 1 in Theorem A).

M. L. Fredman has proved that the minimum number of comparisons needed to
compute this length is n lgn− n lg lgn+O(n) [Discrete Math. 11 (1975), 29–35].
42. Construct a multigraph that has vertices {0R, 1L, 1R, . . . , nL, nR, (n + 1)L} and
edges kR −−− (k + 1)L for 0 ≤ k ≤ n; also include the edges 0R −−− 7R, 7L −−− 1L,
1R −−− 2L, 2R −−− 4L, 4R −−− 5L, 5R −−− 3L, 3R −−− 6R, 6L −−− 8L, which define the
“bonds” of Lobelia fervens. Exactly two edges touch each vertex, so the connected
components are cycles: (0R 1L 7L 6R 3R 4L 2R 3L 5R 6L 8L 7R)(1R 2L)(4R 5L). Any flip
operation changes the number of cycles by −1, 0, or +1. Therefore we need at least five
flips to reach the eight cycles (0R 1L)(1R 2L) . . . (7R 8L). [J. Kececioglu and D. Sankoff,
Algorithmica 13 (1995), 180–210.]

The first flip must break the bond 6L−−−8L, because we get no new cycle when we
break two bonds that have the same left-to-right orientation in the linear arrangement.
This leaves five possibilities after one flip, namely gR

7 g6g
R
3 g

R
5 g

R
4 g

R
2 g

R
1 , gR

7 g1g2g4g5g3g6,
gR

7 g1g2g6g
R
3 g

R
5 g

R
4 , gR

7 g1g2g4g5g6g
R
3 , and g6g

R
3 g

R
5 g

R
4 g

R
2 g

R
1 g7; four more flips suffice to sort

all but the second of these.
Incidentally, there are 27 · 7! = 645120 different possible arrangements of g1 . . . g7,

and 179904 of them are at distance ≤ 5 from tobacco order.
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[An efficient algorithm to find the best way to sort any signed permutation by
reversals was first developed by S. Hannenhalli and P. Pevzner, JACM 46 (1999),
1–27. Improvements that solve the problem in O(n1.5√logn) time were subsequently
found by H. Kaplan and E. Verbin, J. Comp. Syst. Sci. 70 (2005), 321–341; E. Tannier,
A. Bergeron, and M.-F. Sagot, Discrete Applied Math. 155 (2007), 881–888.]
43. Denote an arrangement like gR

7 g1g2g4g5g3g
R
6 by the signed permutation 7124536. If

there is a negated element, say k is present but not k − 1, one flip will create the 2-cycle
((k−1)R kL). Similarly, if k is present but not k + 1, a single flip creates (kR (k+1)L).
And if all flips of that special kind remove all negated elements, a single flip creates two
2-cycles. If no negated elements are present and the permutation isn’t sorted, some
flip will preserve the number of cycles. Hence we can sort in ≤ n flips if the given
permutation has a negated element, ≤ n+ 1 otherwise.

When n is even, the permutation n (n−1) . . . 1 requires n+ 1 flips, because it has
one cycle after the first flip. When n > 3 is odd, the permutation 2 1 3n (n−1) . . . 4
requires n+ 1 by a similar argument.
44. Let ck be the number of cycles of length 2k in the multigraph of the previous
answers. An upper bound on the average value of ck can be found as follows: The total
number of potential 2k-cycles is 2k(n+1)k/(2k), because we can choose a sequence of k
distinct edges from {0R−−−1L, . . . , nR−−−(n+1)L} in (n+1)k ways and orient them in
2k ways; this counts each cycle 2k times, including impossible cases like (1R 2L 2R 3L)
or (1R 2L 3L 2R 3R 4L) or (1R 2L 6R 7L 4L 3R 2R 3L 6L 5R). When k ≤ n, every possible
2k-cycle occurs in exactly 2n−k(n − k)! signed permutations. For example, consider
the case k = 5, n = 9, and the cycle (0R 1L 9L 8R 7R 8L 1R 2L 5L 4R). This cycle
occurs in the multigraph if and only if the signed permutation begins with 4 and
contains the substrings 9187 and 25 or their reverses; we obtain all solutions by finding
all signed permutations of {1, 2, 3, 6} and replacing 1 by 9187, 2 by 25. Therefore
E ck ≤ 1/(2k) 2k(n + 1)k2n−k(n − k)!/2nn! = 1

2 (1/k + 1/(n + 1 − k)). It follows that
E c =

n
k=1 E ck + E cn+1 < Hn + 1. Since n + 1 − c is a lower bound on the number

of flips, we need ≥ n+ 1− E c > n−Hn of them.
[This proof uses ideas of V. Bafna and P. Pevzner, SICOMP 25 (1996), 272–289,

who studied the more difficult problem of sorting unsigned permutations by reversals.
In that problem, an interesting permutation that can be written as the product of
non-disjoint cycles (1 2 3)(3 4 5)(5 6 7) . . . , ending with either (n−1 n) or (n−2 n−1 n)
depending on whether n is even or odd, turns out to be the hardest to sort.]

SECTION 5.2
1. Yes; i and j may run through the set of values 1 ≤ j < i ≤ N in any order,

possibly in parallel and/or as records are being read in.
2. The sorting is stable in the sense defined at the beginning of this chapter, because

the algorithm is essentially sorting by lexicographic order on the distinct key-pairs
(K1, 1), (K2, 2), . . . , (KN , N). (If we think of each key as extended on the right by its
location in the file, no equal keys are present, and the sorting is stable.)

3. It would sort, but not in a stable manner; if Kj = Ki and j < i, Rj will come after
Ri in the final ordering. This change would also make Program C run more slowly.

4. ENT1 N 1
LD2 COUNT,1 N
LDA INPUT,1 N

STA OUTPUT+1,2 N
DEC1 1 N
J1P *-4 N
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5. The running time is decreased by A+ 1−N −B units, and this is almost always
an improvement.

6. u = 0, v = 9.
After D1, COUNT = 0 0 0 0 0 0 0 0 0 0
After D2, COUNT = 2 2 1 0 1 3 3 2 1 1
After D4, COUNT = 2 4 5 5 6 9 12 14 15 16

During D5, COUNT = 2 3 5 5 5 8 9 12 15 16 j = 8
OUTPUT = -- -- -- 1G -- 4A -- -- 5L 6A 6T 6I 7O 7N -- --

After D5, OUTPUT = 0C 0O 1N 1G 2R 4A 5T 5U 5L 6A 6T 6I 7O 7N 8S 9.

7. Yes; note that COUNT[Kj] is decreased in step D6, and j decreases.
8. It would sort, but not in a stable manner (see exercise 7).
9. Let M = v − u; assume that |u| and |v| fit in two bytes. LOC(Rj) ≡ INPUT + j;

LOC(COUNT[j]) ≡ COUNT + j; LOC(Sj) ≡ OUTPUT + j; rI1 ≡ i; rI2 ≡ j; rI3 ≡ i − v or
rI3 ≡ Kj .

M EQU V-U
KEY EQU 0:2 (Satellite information is in bytes 3:5)
1H ENN3 M 1 D1. Clear COUNTs.

STZ COUNT+V,3 M + 1 COUNT[v − k]← 0.
INC3 1 M + 1
J3NP *-2 M + 1 u ≤ i ≤ v.

2H ENT2 N 1 D2. Loop on j.
3H LD3 INPUT,2(KEY) N D3. Increase COUNT[Kj].

LDA COUNT,3 N
INCA 1 N
STA COUNT,3 N
DEC2 1 N
J2P 3B N N ≥ j > 0.
ENN3 M-1 1 D4. Accumulate.
LDA COUNT+U 1 rA← COUNT[i− 1].

4H ADD COUNT+V,3 M COUNT[i− 1] + COUNT[i]
STA COUNT+V,3 M → COUNT[i].
INC3 1 M
J3NP 4B M u ≤ i ≤ v.

5H ENT2 N 1 D5. Loop on j.
6H LD3 INPUT,2(KEY) N D6. Output Rj .

LD1 COUNT,3 N i← COUNT[Kj].
LDA INPUT,2 N rA← Rj .
STA OUTPUT,1 N Si ← rA.
DEC1 1 N
ST1 COUNT,3 N COUNT[Kj]← i− 1.
DEC2 1 N
J2P 6B N N ≥ j > 0.

The running time is (10M + 22N + 10)u.
10. In order to avoid using N extra “tag” bits [see Section 1.3.3 and Cybernetics 1
(1965), 95], yet keep the running time essentially proportional to N, we may use the
following algorithm based on the cycle structure of the permutation:

P1. [Loop on i.] Do step P2 for 1 ≤ i ≤ N ; then terminate the algorithm.
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P2. [Is p(i) = i?] Do steps P3 through P5, if p(i) ̸= i.
P3. [Begin cycle.] Set t← Ri, j ← i.
P4. [Fix Rj .] Set k ← p(j), Rj ← Rk, p(j) ← j, j ← k. If p(j) ̸= i, repeat this

step.
P5. [End cycle.] Set Rj ← t, p(j)← j.

This algorithm changes p(i), since the sorting application lets us assume that p(i) is
stored in memory. On the other hand, there are applications such as matrix transpo-
sition where p(i) is a function of i that is to be computed (not tabulated) in order to
save memory space. In such a case we can use the following method, performing steps
B1 through B3 for 1 ≤ i ≤ N.

B1. Set k ← p(i).
B2. If k > i, set k ← p(k) and repeat this step.
B3. If k < i, do nothing; but if k = i (this means that i is smallest in its cycle),

we permute the cycle containing i as follows: Set t← Ri; then while p(k) ̸= i
repeatedly set Rk ← Rp(k) and k ← p(k); finally set Rk ← t.

This algorithm is similar to the procedure of J. Boothroyd [Comp. J. 10 (1967),
310], but it requires less data movement; some refinements have been suggested by
I. D. G. MacLeod [Australian Comp. J. 2 (1970), 16–19]. For random permutations
the analysis in exercise 1.3.3–14 shows that step B2 is performed (N + 1)HN −N steps
on the average. See also the references in the answer to exercise 1.3.3–12. Similar
algorithms can be designed to replace (Rp(1), . . . , Rp(N)) by (R1, . . . , RN ), for example
if the rearrangement in exercise 4 were to be done with OUTPUT = INPUT.
11. Let rI1 ≡ i; rI2 ≡ j; rI3 ≡ k; rX ≡ t.

1H ENT1 N 1 P1. Loop on i.
2H CMP1 P,1 N P2. Is p(i) = i?

JE 8F N Jump if p(i) = i.
3H LDX INPUT,1 A−B P3. Begin cycle. t← Ri.

ENT2 0,1 A−B j ← i.
4H LD3 P,2 N −A P4. Fix Rj . k ← p(j).

LDA INPUT,3 N −A
STA INPUT,2 N −A Rj ← Rk.
ST2 P,2 N −A p(j)← j.
ENT2 0,3 N −A j ← k.
CMP1 P,2 N −A
JNE 4B N −A Repeat if p(j) ̸= i.

5H STX INPUT,2 A−B P5. End cycle. Rj ← t.
ST2 P,2 A−B p(j)← j.

8H DEC1 1 N
J1P 2B N N ≥ i ≥ 1.

The running time is (17N − 5A − 7B + 1)u, where A is the number of cycles in
the permutation p(1) . . . p(N) and B is the number of fixed points (1-cycles). We have

A = (min 1, aveHN , maxN, dev

HN−H(2)

N ) and B = (min 0, ave 1, maxN, dev 1),

for N ≥ 2, by Eqs. 1.3.3–(21) and 1.3.3–(28).
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12. The obvious way is to run through the list, replacing the link of the kth element
by the number k, and then to rearrange the elements in a second pass. The following
more direct method, due to M. D. MacLaren, is shorter and faster if the records are
not too long. (Assume for convenience that 0 ≤ LINK(P) ≤ N, for 1 ≤ P ≤ N, where
Λ ≡ 0.)

M1. [Initialize.] Set P← HEAD, k ← 1.
M2. [Done?] If P = Λ (or equivalently if k = N + 1), the algorithm terminates.
M3. [Ensure P ≥ k.] If P < k, set P← LINK(P) and repeat this step.
M4. [Exchange.] Interchange Rk and R[P]. (Assume that LINK(k) and LINK(P)

are also interchanged in this process.) Then set Q← LINK(k), LINK(k)← P,
P← Q, k ← k + 1, and return to step M2.

A proof that MacLaren’s method is valid can be based on an inductive verification of
the following property that holds at the beginning of step M2: The entries that are
≥ k in the sequence P, LINK(P), LINK(LINK(P)), . . . , Λ are a1, a2, . . . , aN+1−k, where
R1 ≤ · · · ≤ Rk−1 ≤ Ra1 ≤ · · · ≤ RaN+1−k is the desired final order of the records.
Furthermore LINK(j) ≥ j for 1 ≤ j < k, so that LINK(j) = Λ implies j ≥ k.

It is quite interesting to analyze MacLaren’s algorithm; one of its remarkable prop-
erties is that it can be run backwards, reconstructing the original set of links from the
final values of LINK(1) . . . LINK(N). Each of the N ! possible output configurations with
j ≤ LINK(j) ≤ N corresponds to exactly one of the N ! possible input configurations.
If A is the number of times P ← LINK(P) in step M3, then N − A is the number of j
such that LINK(j) = j at the conclusion of the algorithm; this occurs if and only if j
was largest in its cycle; hence N − A is the number of cycles in the permutation, and
A = (min 0, ave N −HN , max N−1).

References: M. D. MacLaren, JACM 13 (1966), 404–411; D. Gries and J. F. Prins,
Science of Computer Programming 8 (1987), 139–145.
13. D5′. Set r ← N.

D6′. If r = 0, stop. Otherwise, if COUNT[Kr] < r set r ← r − 1 and repeat this
step; if COUNT[Kr] = r, decrease both COUNT[Kr] and r by 1 and repeat this
step. Otherwise set R← Rr, j ← COUNT[Kr], COUNT[Kr]← j − 1.

D7′. Set S ← Rj , k ← COUNT[Kj], COUNT[Kj]← k − 1, Rj ← R, R← S, j ← k.
Then if j ̸= r repeat this step; if j = r set Rj ← R, r ← r − 1, and go back
to D6′.

To prove that this procedure is valid, observe that at the beginning of step D6′ all
records Rj such that j > r that are not in their final resting place must move to the
left; when r = 0 there can’t be any such records since somebody must move right. The
algorithm is elegant but not stable for equal keys. It is intimately related to Foata’s
construction in Theorem 5.1.2B.

SECTION 5.2.1
1. Yes; equal elements are never moved across each other.
2. Yes. But the running time would be slower when equal elements are present, and

the sorting would be just the opposite of stable.
3. The following eight-liner is conjectured to be the shortest MIX sorting routine,

although it is not recommended for speed. We assume that the numbers appear in
locations 1, . . . , N (that is, INPUT EQU 0); otherwise another line of code is necessary.
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2H LDA 0,1 B
CMPA 1,1 B
JLE 1F B
MOVE 1,1 A
STA 0,1 A

START ENT1 N A+ 1
1H DEC1 1 B + 1

J1P 2B B + 1
Note: To estimate the running time of this program, note that A is the number of

inversions. The quantity B is a reasonably simple function of the inversion table, and
(assuming distinct inputs in random order) it has the generating function

zN−1(1 + z)(1 + z2 + z2+1)
× (1 + z3 + z3+2 + z3+2+1) . . . (1 + zN−1 + z2N−3 + · · ·+ zN(N−1)/2)/N ! .

The mean value of B is N − 1 +
N

k=1(k− 1)(2k− 1)/6 = (N − 1)(4N2 +N + 36)/36;
hence the average running time of this program is roughly 7

9N
3u.

4. Consider the inversion table B1 . . . BN of the given input permutation, in the sense
of exercise 5.1.1–7. Then A is one less than the number of Bj ’s that are equal to j− 1,
and B is the sum of the Bj ’s. Hence both B−A and B are maximized when the input
permutation is N. . . 2 1; they both are minimized when the input is 1 2 . . . N . The
minimum achievable time therefore occurs for A = 0 and B = 0, namely (10N − 9)u;
the maximum occurs for A = N − 1 and B =


N
2

, namely (4.5N2 + 2.5N − 6)u.

5. The generating function is z10N−9 times the generating function for 9B − 3A. By
considering the inversion table as in the previous exercise, remembering that individual
entries of the inversion table are independent of each other, the desired generating
function is z10N−9

1<j≤N ((1 + z9 + · · ·+ z9j−18 + z9j−12)/j). The variance comes to
2.25N3 + 3.375N2 − 32.625N + 36HN − 9H(2)

N .
6. Treat the input area as a circular list, with position N adjacent to position 1. Take

new elements to be inserted from either the left or the right of the current segment
of unsorted elements, according as the previously inserted element fell to the right or
left of the center of the sorted elements, respectively. Afterwards it will usually be
necessary to “rotate” the area, moving each record k places around the circle for some
fixed k; this can be done efficiently as in exercise 1.3.3–34.

7. The average value of |aj − j| is
1
n

(|1− j|+ |2− j|+ · · ·+ |n− j|) = 1
n


j

2


+

n− j + 1

2


;

summing on j gives 1
n

(


n+1
3


+


n+1
3

) = 1

3 (n2 − 1). Incidentally, the variance of the
stated sum can be shown to equal [n> 1](2n2 + 7)(n+ 1)/45.

8. No; for example, consider the keys 2 1 1 1 1 1 1 1 1 1 1.
9. For Table 3, A = 3 + 0 + 2 + 1 = 6, B = 3 + 1 + 4 + 21 = 29; in Table 4,
A = 4 + 2 + 2 + 0 = 8, B = 4 + 3 + 8 + 10 = 25; hence the running time of Program D
comes to 786u and 734u, respectively. Although the number of moves has been cut from
41 to 25, the running time is not competitive with Program S since the bookkeeping
time for four passes is wasted when N = 16. When sorting 16 items we will be better
off using only two passes; a two-pass Program D begins to beat Program S at about
N = 13, although they are fairly equal for awhile (and for such small N the length of
the program is perhaps significant).
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10. Insert ‘INC1 INPUT; ST1 0F(0:2)’ between lines 07 and 08, and change lines 10–17
to:

0H CMPA INPUT+N-H,1 NT − S
JGE 7F NT − S

3H ENT2 N-H,1 NT − S − C
4H LDX INPUT,2 B
5H STX INPUT+H,2 B

DEC2 0,4 B
J2NP 6F B
CMPA INPUT,2 B −A
JL 4B B −A

6H STA INPUT+H,2 NT − S − C
For a net increase of four instructions, this saves 3(C − T ) units of time, where C is
the number of times Kj ≥ Kj−h. In Tables 3 and 4 the time saved is approximately 87
and 88, respectively; empirically the value of C/(NT − S) seems to be about 0.4 when
hs+1/hs ≈ 2 and about 0.3 when hs+1/hs ≈ 3, so the improvement is worth while. (On
the other hand, the analogous change to Program S is usually insignificant, since only
O(logN) time is saved in that case unless the input is known to be pretty well ordered.)

11.

12. Changing ?- to
-

?always changes the number of inversions by ±1, depending on
whether the change is above or below the diagonal.
13. Put the weight |i− j| on the segment from (i, j−1) to (i, j).
14. (a) Interchange i and j in the sum for A2n and add the two sums. (b) Taking half
of this result, we see that

A2n =


0≤i≤j

(j − i)

i+ j

i

2n− i− j
n− j


=


i,k≥0

k
2i+ k

i

2n− 2i− k
n− i− k


;

hence

A2nz

n =


k≥0 kz
kα2k/(1− 4z) = z/(1− 4z)2, where α = (1−

√
1− 4z )/2z.

The proof above was suggested to the author by Leonard Carlitz. Another proof
can be based on interplay between horizontal and vertical weights (see exercise 13),
and still another by the identity in the answer to exercise 5.2.2–16 with f(k) = k; but
no simple combinatorial derivation of the formula An = ⌊n/2⌋2n−2 is apparent.
15. For n > 0,

ĝn(z) = zngn−1(z);

gn(z) =
n

k=1

ĝk(z)gn−k(z);

ĥn(z) = ĝn(z) + z−n ĝn(z);

hn(z) =
n

k=1

ĥk(z)hn−k(z).

Letting G(w, z) =


n gn(z)wn, we find that wzG(w, z)G(wz, z) = G(w, z)− 1. From
this representation we can deduce that, if t =

√
1− 4w = 1 − 2w − 2w2 − 4w3 − · · · ,

we have G(w, 1) = (1 − t)/(2w); G′(w, 1) = 1/(wt) − (1 − t)/(2w2); G′(w, 1) =
1/(2t2)−1/(2t); G′′(w, 1) = 2/(wt3)−2/(w2t)+(1−t)/w3; G′

′(w, 1) = 2/t4−1/t3; and
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G′′(w, 1) = 1/t3− (1−2w)/t4 + 10w2/t5. Here lower primes denote differentiation with
respect to the first parameter, and upper primes denote differentiation with respect to
the second parameter. Similarly, from the formula

w(zG(wz, z) +G(w, z))H(w, z) = H(w, z)− 1

we deduce that

H ′(w, 1) = w/t4, H ′′(w, 1) = −w/t3 − w/t4 + 2w/t5 + (2w2 + 20w3)/t7.

The formula manipulation summarized here was originally done by hand, but
today it can readily be done by computer. In principle all moments of the distribution
are obtainable in this way.

The generating function gn(z) also represents

zinternal path length over all trees

with n+ 1 nodes; see exercise 2.3.4.5–5. It is interesting to note that G(w, z) is equal
to F (−wz, z)/F (−w, z), where F (z, q) =


n≥0 z

nqn2
/
n

k=1(1− qk); the coefficient of
qmzn in F (z, q) is the number of partitions m = p1 + · · ·+ pn such that pj ≥ pj+1 + 2
for 1 ≤ j < n and pn > 0 (see exercise 5.1.1–16).
16. For h = 2 the maximum clearly occurs for the path that goes through the upper
right corner of the lattice diagram, namely

⌊n/2⌋+ 1
2


.

For general h the corresponding number is

f̂(n, h) =

h

2


q + 1

2


+

r

2


(q + 1),

where q and r are defined in Theorem H; the permutation with

ai+jh = 1 + q(h− i) + (r − i)[i≤ r ] for 1 ≤ i ≤ h and j ≥ 0

maximizes the number of inversions between each of the


h
2


pairs of sorted sub-
sequences. The maximum number of moves is obtained if we replace f by f̂ in (6).
17. The only two-ordered permutation of {1, 2, . . . , 2n} that has as many as


n+1

2


inversions is n+1 1 n+2 2 . . . 2n n. Using this idea recursively, we obtain the
permutation defined by adding unity to each element of the sequence (2t − 1)R . . . 1R0R,
where R denotes the operation of writing an integer as a t-bit binary number and
reversing the left-to-right order of the bits(!).
18. Take out a common factor and let ht = 4N/π; we want to minimize the sumt

s=1 h
1/2
s /hs−1, when h0 = 1. Differentiation yields h3

s = 4h2
s−1hs+1, and we find

(2t−1) lg h1 = 2t+1−2(t+1)+lg ht. The minimum value of the stated estimate comes
to (1 − 2−t)π(2t−1−1)/(2t−1)N1+2t−1/(2t−1)/21+(t−1)/(2t−1), which rapidly approaches
the limiting value N

√
πN/2 as t→∞.

Typical examples of “optimum” h’s when N = 1000 (see also Table 6) are:

h2 ≈ 57.64, h1 ≈ 6.13, h0 = 1;

h3 ≈ 135.30, h2 ≈ 22.05, h1 ≈ 4.45, h0 = 1;

h4 ≈ 284.46, h3 ≈ 67.23, h2 ≈ 16.34, h1 ≈ 4.03, h0 = 1;

h9 ≈ 9164.74, h8 ≈ 12294.05, h7 ≈ 7119.55, h6 ≈ 2708.95, h5 ≈ 835.50,
h4 ≈ 232.00, h3 ≈ 61.13, h2 ≈ 15.69, h1 ≈ 3.97, h0 = 1.
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19. Let g(n, h) = Hr−1+


r<j≤h q/(qj+r), where q and r are defined in Theorem H;
then replace f by g in (6).
20. (This is much harder to write down than to understand.) Assume that a k-
ordered file R1, . . . , RN has been h-sorted, and let 1 ≤ i ≤ N−k; we want to show that
Ki ≤ Ki+k. Find u, v such that i ≡ u and i+k ≡ v (modulo h), 1 ≤ u, v ≤ h; and apply
Lemma L with xj = Kv+(j−1)h, yj = Ku+(j−1)h. Then the first r elements Ku, Ku+h,
. . . , Ku+(r−1)h of the y’s are respectively ≤ the last r elements Ku+k, Ku+k+h, . . . ,
Ku+k+(r−1)h of the x’s, where r is the greatest integer such that u+ k+ (r− 1)h ≤ N .
21. If xh + yk = x′h + y′k, we have (x − x′)h = (y′ − y)k, so x′ = x + tk and
y′ = y − th for some integer t. Let h′h + k′k = 1; then n = (nh′)h + (nk′)k, so every
integer n has a unique representation of the form n = xh + yk where 0 ≤ x < k, and
n is generable if and only if y ≥ 0. Let, similarly, hk − h − k − n = x′h + y′k; then
(x+x′)h+ (y+ y′)k = hk−h− k. Hence x+x′ ≡ k− 1 (modulo k) and we must have
x+ x′ = k − 1. Hence y + y′ = −1, and y ≥ 0 if and only if y′ < 0.

The symmetry of this result shows that exactly 1
2 (h−1)(k−1) positive integers are

unrepresentable in the stated form, a result originally due to Sylvester [Mathematical
Questions, with their Solutions, from the ‘Educational Times’ 41 (1884), 21].
22. To avoid cumbersome notation, consider s = 4, which is representative of the
general case. Let nk be the smallest number that is congruent to k (modulo 15) and
representable in the form 15a0 + 31a1 + · · · ; then we find easily that

k = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
nk = 0 31 62 63 94 125 126 127 158 189 190 221 252 253 254.

Hence 239 = 24(24−1)−1 is the largest unrepresentable number, and the total number
of unrepresentables is

x4 = (n1 − 1 + n2 − 2 + · · ·+ n14 − 14)/15
= (2 + 4 + 4 + 6 + 8 + 8) + 8 + (10 + 12 + 12 + 14 + 16 + 16) + 16
= 2x3 + 8 · 9;

in general, xs = 2xs−1 + 2s−1(2s−1 + 1).
For the other problem the answers are 22s + 2s + 2 and 2s−1(2s + s− 1) + 2,

respectively.
23. Each of the N numbers has at most ⌈(hs+2 − 1)(hs+1 − 1)/hs⌉ inversions in its
subfile.
24. (Solution obtained jointly with V. Pratt.) Construct the “h-recidivous permuta-
tion” of {1, 2, . . . , N} as follows. Start with a1 . . . aN blank; then for j = 2, 3, 4, . . .
do Step j: Fill in all blank positions ai from left to right, using the smallest number
that has not yet appeared in the permutation, whenever (2h − 1)j − i is a positive
integer representable as in exercise 22. Continue until all positions are filled. Thus the
2-recidivous permutation for N = 20 is

6 2 1 9 4 3 12 7 5 15 10 8 17 13 11 19 16 14 20 18.

The h-recidivous permutation is (2k − 1)-ordered for all k ≥ h. When 2h < j ≤
N/(2h−1), exactly 2h − 1 positions are filled during step j; the (k + 1)st of them adds
at least 2h−1− 2k to the number of moves required to (2h−1− 1)-sort the permutation.
Hence the number of moves to sort the h-recidivous permutation with increments
hs = 2s − 1 when N = 2h+1(2h − 1) is > 23h−4 > 1

64N
3/2. Pratt generalized this
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construction to a large family of similar sequences, including (12), in his Ph.D. thesis
(Stanford University, 1972). Heuristics that find permutations needing even more moves
are discussed by H. Erkiö, BIT 20 (1980), 130–136. See also Weiss and Sedgewick,
J. Algorithms 11 (1990), 242–251, for improvements on Pratt’s construction.
25. FN+1 [this result is due to H. B. Mann, Econometrica 13 (1945), 256]; for the
permutation must begin with either 1 or 2 1. There are at most ⌊N/2⌋ inversions; and
the total number of inversions is

N − 1
5 FN + 2N

5 FN−1.

(See exercise 1.2.8–12.) Note that the FN+1 permutations can conveniently be repre-
sented by “Morse code” sequences of dots and dashes, where a dash corresponds to
an inversion; see exercise 4.5.3–32. Hence we have found the total number of dashes
among all Morse code sequences of length N .

Our derivation shows that a random 3- and 2-ordered permutation has roughly
1
5 (ϕ−1 + 2ϕ−2)N = ϕ−1N/

√
5 ≈ .276N inversions. But if a random permutation is

3-sorted, then 2-sorted, exercise 42 shows that it has ≈ N/4 inversions; if it is 2-sorted,
then 3-sorted, it has ≈ N/3.
26. Yes; a shortest example is 4 1 3 7 2 6 8 5, which has nine inversions. In general, the
construction a3k+s = 3k + 4s for −1 ≤ s ≤ 1 yields files that are 3-, 5-, and 7-ordered,
having approximately 4

3N inversions. When N mod 3 = 2 this construction is best
possible.
27. (a) See J. Algorithms 15 (1993), 101–124. A simpler proof, which shows that c
can be any constant < 1

2 , was found independently by C. G. Plaxton and T. Suel,
J. Algorithms 23 (1997), 221–240. (b) This is obvious if m > 1

4c
2(lnN/ ln lnN)2.

Otherwise N1+c/
√

m ≥ N(lnN)2. R. E. Cypher [SICOMP 22 (1993), 62–71] has
proved the slightly stronger bound Ω(N(logN)2/ log logN) when the increments satisfy
hs+1 > hs for all s and when a sorting network is constructed as in exercise 5.3.4–2.
No nontrivial lower bounds are yet known for the asymptotic average running time.
28. 209 109 41 19 5 1, from (11). But better sequences are possible; see exercise 29.
29. Experiments by C. Tribolet in 1971 resulted in the choices 373 137 53 19 7 3 1
(Bave ≈ 7210) and 317 101 31 11 3 1 (Bave ≈ 8170). [The first of these yields a sorting
time of ≈ 127720u, compared to ≈ 128593u when the same data are sorted using
increments (11).] In general Tribolet suggests letting hs be the nearest prime number to
Ns/t. Experiments by Shelby Siegel in 1972 indicate that the best number of increments
in such a method, for N ≤ 10000, is t ≈ 4

3 ln(N/5.75). On the other hand, Marcin
Ciura’s experiments [Lect. Notes Comp. Sci. 2138 (2001), 106–117] indicate that the
minimum 7-pass Bave (≈ 6879) is obtained with increments 229 96 41 19 10 4 1, while
the sequence 737 176 69 27 10 4 1 yields the smallest total sorting time (≈ 125077u).

The best three-increment sequence, according to extensive tests by Carole M.
McNamee, appears to be 45 7 1 (Bave ≈ 18240). For four increments, 91 23 7 1 was
the winner in her tests (Bave ≈ 11865), but a rather broad range of increments gave
roughly the same performance.
30. The number of integer points in the triangular region

{x ln 2 + y ln 3 < lnN, x ≥ 0, y ≥ 0} is 1
2 (log2N)(log3N) +O(logN).

While we are h-sorting, the file is already 2h-ordered and 3h-ordered, by Theorem K;
hence exercise 25 applies.
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31. 01 START ENT3 T 1
02 1H LD4 H,3 T
03 ENN2 -INPUT-N,4 T
04 ST2 6F(0:2) T
05 ST2 7F(0:2) T
06 ST2 4F(0:2) T
07 ENT2 0,4 T
08 JMP 9F T
09 2H LDA INPUT+N,1 NT − S −B +A
10 4H CMPA INPUT+N-H,1 NT − S −B +A
11 JGE 8F NT − S −B +A
12 6H LDX INPUT+N-H,1 B
13 STX INPUT+N,1 B
14 7H STA INPUT+N-H,1 B
15 INC1 0,4 B
16 8H INC1 0,4 NT −B +A
17 J1NP 2B NT −B +A
18 DEC2 1 S
19 9H ENT1 -N,2 T + S
20 J2P 8B T + S
21 DEC3 1 T
22 J3P 1B T

Here A is related to right-to-left maxima in the same way that A in Program D is
related to left-to-right minima; both quantities have the same statistical behavior. The
simplifications in the inner loop have cut the running time to 7NT +7A−2S+1+15T
units, curiously independent of B !

When N = 8 the increments are 6, 4, 3, 2, 1, and we have Aave = 3.892, Bave =
6.762; the average total running time is 276.24u. (Compare with Table 5.) Both A
and B are maximized in the permutation 7 3 8 4 5 1 6 2. When N = 1000 there are
40 increments, 972, 864, 768, 729, . . . , 8, 6, 4, 3, 2, 1; empirical tests like those in Table 6
give A ≈ 875, B ≈ 4250, and a total time of about 268000u (more than twice as long
as Program D with the increments of exercise 28).

Instead of storing the increments in an auxiliary table, it is convenient to generate
them as follows on a binary machine:

P1. Set m← 2⌈lg N⌉−1, the largest power of 2 less than N.
P2. Set h← m.
P3. Use h as the increment for one sorting pass.
P4. If h is even, set h← h+ h/2; then if h < N, return to P3.
P5. Set m← ⌊m/2⌋ and if m ≥ 1 return to P2.

Although the increments are not being generated in descending order, the order speci-
fied here is sufficient to make the sorting algorithm valid.
32. 4 12 11 13 2 0 8 5 10 14 1 6 3 9 16 7 15.
33. Two types of improvements can be made. First, by assuming that the artificial
key K0 is ∞, we can omit testing whether or not p > 0. (This idea has been used, for
example, in Algorithm 2.2.4A.) Secondly, a standard optimization technique: We can
make two copies of the inner loop with the register assignments for p and q interchanged;
this avoids the assignment q ← p. (This idea has been used in exercise 1.1–3.)
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Thus we assume that location INPUT contains the largest possible value in its (0 :3)
field, and we replace lines 07 and following of Program L by:
07 8H LD3 INPUT,2(LINK) B′ p← Lq. (Here p ≡ rI3, q ≡ rI2.)
08 CMPA INPUT,3(KEY) B′

09 JG 4F B′ To L4 with q ↔ p if K > Kp.
10 7H ST1 INPUT,2(LINK) N ′ Lq ← j.
11 ST3 INPUT,1(LINK) N ′ Lj ← p.
12 JMP 6F N ′ Go to decrease j.
13 4H LD2 INPUT,3(LINK) B′′ p← Lq. (Here p ≡ rI2, q ≡ rI3.)
14 CMPA INPUT,2(KEY) B′′

15 JG 8B B′′ To L4 with q ↔ p if K > Kp.
16 5H ST1 INPUT,3(LINK) N ′′ Lq ← j.
17 ST2 INPUT,1(LINK) N ′′ Lj ← p.
18 6H DEC1 1 N j ← j − 1.
19 ENT3 0 N q ← 0.
20 LDA INPUT,1 N K ← Kj .
21 J1P 4B N N > j ≥ 1.

Here B′ + B′′ = B + N − 1, N ′ + N ′′ = N − 1, so the total running time is
5B + 14N +N ′ − 3 units. Since N ′ is the number of elements with an odd number of
lesser elements to their right, it has the statistics

(min 0, ave 1
2N + 1

4H⌊N/2⌋ −
1
2HN, max N − 1).

The ∞ trick also speeds up Program S; the following code suggested by J. H.
Halperin uses this idea and the MOVE instruction to reduce the running time to (6B +
11N − 10)u, assuming that location INPUT+N+1 already contains the largest possible
one-word value:
01 START ENT2 N-1 1
02 2H LDA INPUT,2 N − 1
03 ENT1 INPUT,2 N − 1
04 JMP 3F N − 1
05 4H MOVE 1,1(1) B
06 3H CMPA 1,1 B +N − 1
07 JG 4B B +N − 1
08 5H STA 0,1 N − 1
09 DEC2 1 N − 1
10 J2P 2B N − 1

Doubling up the inner loop would save an additional B/2 or so units of time.

34. There are


N
n


sequences of N choices in which the given list is chosen n times;

every such sequence has probability (1/M)n(1−1/M)N−n of occurring, since the given
list is chosen with probability 1/M.

35. 24 ENT1 0 1
25 ENT2 1-M 1
26 7H LD3 HEAD+M,2 M
27 J3Z 8F M
28 ST3 INPUT,1(LINK) M − E

29 ENT1 0,3 N
30 LD3 INPUT,1(LINK) N
31 J3P *-2 N
32 8H INC2 1 M
33 J2NP 7B M
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Note: If Program M were modified to keep track of the current end of each list,
by inserting ‘ST1 END,4’ between lines 19 and 20, we could save time by hooking the
lists together as in Algorithm 5.2.5H.
36. Program L: A = 3, B = 41, N = 16, time = 496u. Program M: A = 2 + 1 + 1 +
3 = 7, B = 2+0+3+3 = 8, N = 16, time = 549u. (We should also add the time needed
by exercise 35, 94u, in order to make a strictly fair comparison. The multiplications
are slow! Notice also that the improved Program L in exercise 33 takes only 358u.)
37. The stated identity is equivalent to

gNM (z) = M−N


n1+···+nM =N


N !

n1! . . . nM !


gn1 (z) . . . gnM (z),

which is proved as in exercise 34. It may be of interest to tabulate some of these
generating functions, to indicate the trend for increasing M :

g41(z) = (216 + 648z+ 1080z2 + 1296z3 + 1080z4 + 648z5 + 216z6)/5184,
g42(z) = (945 + 1917z+ 1485z2 + 594z3 + 135z4 + 81z5 + 27z6)/5184,
g43(z) = (1704 + 2264z+ 840z2 + 304z3 + 40z4 + 24z5 + 8z6)/5184.

If GM (w, z) is the stated double generating function, differentiation by z gives

G′
M (w, z) = M


n≥0

gn(z)w
n

n!

M−1 
n≥0

g′n(z)w
n

n! ,

hence 
N≥0

g′NM (1)M
NwN

N ! = Me(M−1)w


w2

4 ew


= M

4 w2eMw;

similarly, the formula g′′n(1) = 3
2


n
4


+ 5
3


n
3


yields
N≥0

g′′NM (1)M
NwN

N ! = M(M − 1)e(M−2)w


w2

4 ew

2

+Me(M−1)w


w4

16 + 5w3

18


ew.

Equating coefficients of wN gives g′NM (1) = 1
2


N
2

M−1, g′′NM (1) =

 3
2


N
4


+ 5
3


N
3

M−2,

and the variance is
 1

6


N
3


+ 2M−1
4


N
2

M−2.

38.


j,n


N
n


pn

j (1 − pj)N−n


n
2


=


N
2


j p
2
j ; setting pj = F (j/M)− F ((j − 1)/M),

and F ′(x) = f(x), this is asymptotic to


N
2

/M times

 1
0 f(x)2 dx when F is reasonably

well behaved. [However,
 1

0 f(x)2 dx might be quite large. See Theorem 5.2.5T for a
refinement that applies to all bounded integrable densities.]
39. To minimize AC/M + BM we need M =


AC/B, so M is one of the integers

just above or below this quantity. (In the case of Program M we would choose M
proportional to N.)
40. The asymptotic series for

n>N

n−1(1− α/N)n−N = −N−1 +

k≥0

(N + k)−1(1− α/N)k

can be obtained by restricting k to O(N1+ϵ), expanding (1 − α/N)k as e−αk/N times
(1 − kα2/2N2 + · · · ), and using Euler’s summation formula; it begins with the terms
eαE1(α)(1 + α2/2N) − (1 + α)/2N + O(N−2). Hence the asymptotic value of (15) is
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N(lnα+γ+E1(α))/α+(1−e−α(1+α))/2α+O(N−1). [The coefficient of N is ≈ 0.7966,
0.6596, 0.2880, respectively, for α = 1, 2, 10.] Note that we have lnα + γ + E1(α) = α

0 (1− e−t) t−1 dt, by exercise 5.2.2–43.

41. (a) We have ak = O(ρk), because the prime number theorem implies that the
number of primes between ρk and ρk+1 is (ρk+1/(k+ 1)− ρk/k)/ln ρ+O(ρk/k2); this is
positive for all sufficiently large k. Therefore the sum of the first


k
2


elements of (10)
is


1≤i<j≤k b(ai, aj) =


1≤i<j≤k O(ρi+j); and we have


1≤i<j≤k

ρi+j = ρ3(ρk − 1)(ρk−1 − 1)
(ρ2 − 1)(ρ− 1) .

(b) If


k−1
2

< logρ N ≤


k
2


we have (k − 2)2 < 2 logρ N , hence ρ2k = O(exp c
√

lnN ).
Notice that as ρ→ 1, the base sequence a1, a2, . . . becomes equal to the sequence

of prime numbers, and the bound in Theorem I reduces to O(N(logN)4(log logN)−2).
42. (a) [A. C. Yao, J. Algorithms 1 (1980), 14–50.] We can show that each of the

h
2


pairs of lists contributes
√

π
4 g−2h−3/2N3/2 + O(N/gh) inversions to each subfile

(Ka,Ka+g,Ka+2g, . . . ), 1 ≤ a ≤ g. For example, suppose h = 12, g = 5, a = 1, and con-
sider inversions where the lists K3 < K15 < K27 < · · · and K7 < K19 < K31 < · · · inter-
sect the subfile (K1,K6,K11, . . . ). After the first pass, (K3,K7,K15,K19,K27,K31, . . . )
is a random 2-ordered permutation. The elements Kj of concern to us have j ≡ 1
(modulo 5) and j ≡ 3 or 7 (modulo 12); hence j ≡ 51 or 31 (modulo 60), and we want
to compute the average value of g(51, 31) where

g(x, y) =

j<k

([Kx+ghj >Ky+ghk ] + [Ky+ghj >Kx+ghk ]) + r(x, y) ,

r(x, y) =


j

[Kmin(x,y)+ghj >Kmax(x,y)+ghj ] < N/gh+ 1 .

If |p| ≤ g and |q| ≤ g we have

[Kj+ph−gh >Kk+qh+gh ] ≤ [Kj >Kk ] ≤ [Kj+ph+gh >Kk+qh−gh ] ;

hence

[Kx+ghj >Ky+ghk ] + [Ky+ghj >Kx+ghk ]
≤ [Kx+ph+gh(j+1) >Ky+qh+gh(k−1) ] + [Ky+qh+gh(j+1) >Kx+ph+gh(k−1) ]

and it follows that g(x, y) ≤ g(x + ph, y + qh) + 8N/gh. Similarly we find g(x, y) ≥
g(x+ ph, y + qh) − 8N/gh. But the sum of g(x, y) over all g2 pairs (x, y) such that
xmod h = b and y mod h = c, for any given b ̸= c, is the total number of inversions
in a random 2-ordered permutation of 2N/h elements. Therefore by exercise 14, the
average value of g(x, y) is g−2π/128 (2N/h)3/2 +O(N/gh).

(b) See S. Janson and D. E. Knuth, Random Structures & Algorithms 10 (1997),
125–142. For large g and h we have ψ(h, g) =


πh/128 g+O(g−1/2h1/2) +O(gh−1/2).

43. If K < Kl after step D3, set (Kl, . . . ,Kj−h,Kj) ← (K,Kl, . . . ,Kj−h); otherwise
do steps D4 and D5 until K ≥ Ki. Here l = 1 when j = h + 1, and l ← l + 1 −
h [l=h] when j increases by 1. [See H. W. Thimbleby, Software Practice & Exper. 19
(1989), 303–307.] However, with a decent sequence of increments the inner loop is not
performed often enough to make this change desirable.
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Another idea for speeding up the program [see W. Dobosiewicz, Inf. Proc. Letters
11 (1980), 5–6] is to sort only partially when h > 1, not attempting to propagate Kj

further left than position j − h; but that approach seems to require more increments.
44. (a) Yes. This is clear whenever π′ is one step above π, and exercise 5.1.1–29 shows
that there is a path of adjacent transpositions from π to any permutation above it.

(b) Yes. Similarly, if π is above π′, πR is below π′R.
(c) No; 2 1 3 is neither above nor below 3 1 2, but 2 1 3 ≤ 3 1 2.
[The partial ordering π ≤ π′ was first discussed by C. Ehresmann, Annals of Math.

(2) 35 (1934), 396–443, §20, in the context of algebraic topology. Many mathematicians
now call it the “Bruhat order” of permutations, while aboveness is called the “weak
Bruhat order” — although aboveness is actually a stronger condition, because it holds
less often. Only the weak order defines a lattice.]

SECTION 5.2.2
1. No; it has 2m+1 fewer inversions, where m ≥ 0 is the number of elements ak such

that i < k < j and ai > ak > aj . (Hence all exchange-sorting methods will eventually
converge to a sorted permutation.)

2. (a) 6. (b) [A. Cayley, Philosophical Mag. (3) 34 (1849), 527–529.] Consider
the cycle representation of π. Any exchange of elements in the same cycle increases
the number of cycles by 1; any exchange of elements in different cycles decreases the
number by 1. (This is essentially the content of exercise 2.2.4–3.) A completely sorted
permutation is characterized by having n cycles. Hence xch(π) is n minus the number
of cycles in π. (Algorithm 5.2.3S does exactly xch(π) exchanges; see exercise 5.2.3–4.)

3. Yes; equal elements are never moved across each other.
4. It is the probability that b1 > max(b2, . . . , bn) in the inversion table, namely 

1≤k<n

k! kn−k−1


n! =

π/2n+O(n−1) = negligible.

5. We may assume that r > 0. Let b′i = (bi−r+1)[bi≥ r ] be the inversion table after
r− 1 passes. If b′i > 0, element i is preceded by b′i larger elements, the largest of which
will bubble up at least to position b′i + i, because there are i elements ≤ i. Furthermore
if element j is the rightmost to be exchanged, we have b′j > 0 and BOUND = b′j + j − 1
after the rth pass.

6. Solution 1: An element displaced farthest to the right of its final position moves
one step left on each pass except the last. Solution 2 (higher level): By exercise 5.1.1–8,
answer (f), a′i − i = bi − ci, for 1 ≤ i ≤ n, where c1 c2 . . . cn is the dual inversion table.
If bj = max(b1, . . . , bn) then cj = 0.

7. (2(n+ 1)(1 + P (n)− P (n+ 1))− P (n)− P (n)2)1/2 =


(2− π/2)n+O(1).
8. For i < k + 2 there are j + k − i+ 1 choices for bi; for k + 2 ≤ i < n− j + 2 there

are j − 1 choices; and for i ≥ n− j + 2 there are n− i+ 1.
10. (a) If i = 2k− 1, from (k− 1, ai − k) to (k, ai − k). If i = 2k, from (ai − k, k− 1)
to (ai−k, k). (b) Step a2k−1 is above the diagonal⇐⇒ k ≤ a2k−1−k ⇐⇒ a2k−1 ≥ 2k
⇐⇒ a2k−1 > a2k ⇐⇒ a2k ≤ 2k − 1 ⇐⇒ a2k − k ≤ k − 1 ⇐⇒ step a2k is above
the diagonal. Exchanging them interchanges horizontal and vertical steps. (c) Step
a2k+d is at least m below the diagonal ⇐⇒ k + m − 1 ≥ a2k+d − (k + m) + m ⇐⇒
a2k+d < 2k + m ⇐⇒ a2k ≥ 2k + m ⇐⇒ a2k − k ≥ k + m ⇐⇒ step a2k is at least m
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below the diagonal. (If a2k+d < 2k+m and a2k < 2k+m, there are at least (k+m)+k
elements less than 2k + m; that’s impossible. If a2k+d ≥ 2k + m and a2k ≥ 2k + m,
one of the ≥ must be > ; but we can’t fit all of the elements ≤ 2k +m into fewer than
(k +m) + k positions. Hence a2k+2m−1 < a2k if and only if a2k+2m−1 < 2k +m if and
only if 2k +m ≤ a2k. A rather unexpected result!)

11. 16 10 13 5 14 6 9 2 15 8 11 3 12 4 7 1 (61 exchanges), by considering the lattice
diagram. The situation becomes more complicated when N is larger; in general, the set
{K2,K4, . . . } should be {1, 2, . . . , M−1, M, M+2, M+4, . . . , 2⌊N/2⌋−M}, permuted
so as to maximize the exchanges for ⌊N/2⌋ elements. Here M = ⌈2k/3⌉, where k
maximizes k⌊N/2⌋− 1

9 ((3k−2)2k−1+(−1)k). The maximum total number of exchanges
is 1 − 2 lg lgN/ lgN + O(1/ logN) times the number of comparisons [R. Sedgewick,
SICOMP 7 (1978), 239–272].

12. The following program by W. Panny avoids the AND instruction by noting that
step M4 is performed for i = r + 2kp + s, k ≥ 0, and 0 ≤ s < p. Here TT ≡ 2t−1,
p ≡ rI1, r ≡ rI2, i ≡ rI3, i+ d−N ≡ rI4, and p− 1− s ≡ rI5; we assume that N ≥ 2.
01 START ENT1 TT 1 M1. Initialize p. p← 2t−1.
02 2H ENT2 TT T M2. Initialize q, r, d.
03 ST2 Q(1:2) T q ← 2t−1.
04 ENT2 0 T r ← 0.
05 ENT4 0,1 T rI4← d.
06 3H ENT3 0,2 A M3. Loop on i. i← r.
07 INC4 -N,3 A rI4← i+ d−N .
08 8H ENT5 -1,1 D + E s← 0.
09 4H LDA INPUT+1,3 C M4. Compare/exchange Ri+1 :Ri+d+1.
10 CMPA INPUT+N+1,4 C
11 JLE *+4 C Jump if Ki+1 ≤ Ki+d+1.
12 LDX INPUT+N+1,4 B
13 STX INPUT+1,3 B Ri+1 ↔ Ri+d+1.
14 STA INPUT+N+1,4 B
15 J5Z 7F C Jump if s = p− 1.
16 DEC5 1 C −D s← s+ 1.
17 INC3 1 C −D i← i+ 1.
18 INC4 1 C −D
19 J4N 4B C −D Repeat loop if i+ d < N .
20 JMP 5F E Otherwise go to M5.
21 7H INC3 1,1 D i← i+ p+ 1.
22 INC4 1,1 D
23 J4N 8B D Repeat loop if i+ d < N .
24 5H ENT2 0,1 A M5. Loop on q. r ← p.
25 Q ENT4 * A rI4← q.
26 ENTA 0,4 A
27 SRB 1 A
28 STA Q(1:2) A q ← q/2.
29 DEC4 0,1 A rI4← d.
30 J4P 3B A To M3 if d ̸= 0.
31 6H ENTA 0,1 T M6. Loop on p.
32 SRB 1 T
33 STA *+1(1:2) T
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34 ENT1 * T p← ⌊p/2⌋.
35 J1NZ 2B T To M2 if p ̸= 0.
The running time depends on six quantities, only one of which depends on the input
data (the remaining five are functions of N alone): T = t, the number of “major
cycles”; A = t(t + 1)/2, the number of passes or “minor cycles”; B = the (variable)
number of exchanges; C = the number of comparisons; D = the number of blocks of
consecutive comparisons; and E = the number of incomplete blocks. When N = 2t, it
is not difficult to prove that D = (t − 2)N + t + 2 and E = 0. For Table 1, we have
T = 4, A = 10, B = 3 + 0 + 1 + 4 + 0 + 0 + 8 + 0 + 4 + 5 = 25, C = 63, D = 38, E = 0,
so the total running time is 11A+ 6B + 10C + 2E + 12T + 1 = 939u.

In general when N = 2e1 + · · · + 2er , Panny has shown that D = e1(N + 1) −
2(2e1 − 1), E =


e1−er

2


+ (e1 + e2 + · · ·+ er−1)− (e1 − 1)(r − 1).
13. No, nor are Algorithms Q or R.
14. (a) When p = 1 we do (2t−1 − 0) + (2t−1 − 1) + (2t−1 − 2) + (2t−1 − 4) + · · · +
(2t−1−2t−2) = (t−1)2t−1+1 comparisons for the final merge. (b) xt = xt−1+ 1

2 (t−1)+
2−t = · · · = x0+


0≤k<t( 1

2k+2−k−1) = 1
2


t
2

+1−2−t. Hence c(2t) = 2t−2(t2−t+4)−1.

15. (a) Consider the number of comparisons such that i+ d = N ; then use induction
on r. (b) If b(n) = c(n+ 1), we have b(2n) = a(1) + · · ·+ a(2n) = a(0) + a(1) + a(1) +
· · · + a(n − 1) + a(n) + x(1) + x(2) + · · · + x(2n) = 2b(n) + y(2n) − a(n); similarly
b(2n + 1) = 2b(n) + y(2n + 1). (c) See exercise 1.2.4–42. (d) A rather laborious
calculation of (z(N) + 2z(⌊N/2⌋) + · · · )− a(N), using formulas such as

n
k=0

2k(n− k) = 2n+1 − n− 2,
n

k=0

2k

n− k

2


= 2n+1 −


n+ 2

2


− 1,

leads to the result

c(N) = N
1

2


e1

2


+ 2e1 − 1


− 2e1 (e1 − 1)− 1

+
r

j=1

2ej


e1 + · · ·+ ej−1 − j(e1 − 1) + 1

2

e1 − ej

2


.

16. Consider the
2n

n


lattice paths from (0, 0) to (n, n) as in Figs. 11 and 18, and

attach weight f(i − j) if i ≥ j, f(j − i − 1) + 1 if i < j, to the line from (i, j) to
(i + 1, j); here f(k) is the number of bit variations br ̸= br+1 in the binary expansion
k = ( . . . b2b1b0)2. The total number of exchanges on the final merge when N = 2n
is then


0≤j≤i<n(2f(j) + 1)

2i−j
i−j

2n−2i+j−1
n−i−1


. R. Sedgewick showed that this sum

simplifies, for general f, to n
2
2n

n


+2


k≥1
 2n

n−k


0≤j<k f(j); then he used the gamma

function method to obtain the asymptotic formula2n
n

1
4n lgn+


lg Γ (1/4)2

2π + 1
4 + γ + 2

4 ln 2 + δ(n)

n+O(

√
n logn)


,

where δ(n) is a periodic function of lgn with magnitude bounded by .0005. Hence
about 1/4 of the comparisons lead to exchanges, on the average, as n→∞. [SICOMP
7 (1978), 239–272; see also Flajolet and Odlyzko, SIAM J. Discrete Math. 3 (1990),
238–239.]
17. KN+1 is inspected when we are sorting a subfile with r = N and Kl the largest
key. K0 is inspected during step Q9 if left-to-right minima sink to position R1.
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18. Steps Q3 and Q4 make only a single change to i and j before exiting to Q5; the
partitioning process for Rl . . . Rr ends with j = ⌈(l + r)/2⌉ in step Q7, bisecting the
subfile as perfectly as possible. Quantitatively speaking, we replace (17) by A = 1,
B = ⌊(N − 1)/2⌋, C = N + (N mod 2); this puts us essentially in the best case of the
algorithm (see exercise 27), except that B ≈ 1

2C. If the “<” signs in steps Q3 and Q4
are changed to “≤ ,” the algorithm won’t sort any more; even if we assume “<” signs
in (13), it will interchange R0 with R1, then the third partitioning phase will move the
original R0 to position R2, etc. — a real catastrophe.
19. Yes, the other subfiles may be processed in any order. But the queue will contain
Ω(N/

√
logN ) items when each partitioning step divides the file equally, while a stack

is guaranteed to stay much smaller than this (see the next exercise).
20. max(0, ⌊lg(N+2)/(M+2)⌋). (The worst case occurs when N = 2k(M + 2)−1 and
all subfiles are perfectly bisected when they are partitioned.)
21. Exactly t records move to the area Rs+1 . . . RN in step Q6, hence B = t. The
partitioning phase ends with j = s, hence C − C′ = N + 1− s is the number of times
j decreases. We must also have i = s+ 1 in step Q7 when the keys are distinct, since
i = j implies Kj = K; thus C′ = s.
22. The stated relations for AN (z) follow because As−1(z)AN−s(z) is the generating
function for the value of A after independently sorting randomly and independently
ordered files of sizes s− 1 and N − s. Similarly, we obtain the relations

BN (z) =
N

s=1

s
t=0

bstN z
tBs−1(z)BN−s(z),

CN (z) = 1
N

N
s=1

zN+1Cs−1(z)CN−s(z),

DN (z) = 1
N

N
s=1

Ds−1(z)DN−s(z),

EN (z) = 1
N

N
s=1

Es−1(z)EN−s(z),

SN (z) = 1
N

N
s=1

z[M+1<s<N−M ]Ss−1(z)SN−s(z),

for N > M. Here bstN is the probability that s and t have given values in a file of
length N, namely 

s− 1
t

 
N − s
t


N


N − 1
s− 1


,

which is (1/N !) times the (s−1)! ways to permute {1, . . . , s−1} times the (N−s)! ways
to permute {s+ 1, . . . , N} times the


s−1

t


N−s

t


patterns with t displaced elements on

each side. For 0 ≤ N ≤ M , we have BN (z) = CN (z) = SN (z) = 1; DN (z) =N
k=1((1 + (k − 1)z)/k); and EN (z) =

N
k=1((1 + z + · · ·+ zk−1)/k).

[It is interesting to consider the behavior of these generating functions when N is
large; a sequence analogous to CN (z), but with zN+1 replaced by zN−1, is known to
converge to a non-normal probability distribution that has not yet been fully analyzed.
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See the articles by P. Hennequin, M. Regnier, and U. Rösler in RAIRO Theoretical
Informatics and Applications 23 (1989), 317–333; 23 (1989), 335–343; 25 (1991), 85–
100.]

23. When N > M, AN = 1 + (2/N)


0≤k<N Ak; BN =


0≤t<s≤N bstN (t + Bs−1 +
BN−s) = (1/N)

N
s=1((s − 1)(N − s)/(N − 1) + Bs−1 + BN−s) = (N − 2)/6 +

(2/N)


0≤k<NBk [see exercise 22]; DN = (2/N)


0≤k<NDk; EN is similar. When
N > 2M + 1, SN = (2/N)


0≤k<N Sk + (N − 2M − 2)/N. Each of these recurrences

has the form (19) for some function fn.

24. The recurrence CN = N − 1 + (2/N)


0≤k<N Ck, for N > M, has the solution
(N + 1)(2HN+1− 2HM+2 + 1− 4/(M + 2) + 2/(N + 1)), for N > M. (So we could save
about 4N/M comparisons. But each comparison takes longer if it must be followed by
a test of i versus j, so we lose, unless the cost of a key comparison exceeds 1

2M lnN
times the cost of a register comparison. Many texts on sorting fail to realize that such
an “improvement” makes quicksort significantly less quick!)

25. (Use (17) repeatedly with s = 1.) A = N −M, B = 0, C =


N+2
2

−


M+2
2

,

D = E = S = 0.

26. Actually you can’t do worse than to sort

1 2 3 . . . N−M N N−1 . . . N−M+1;

the subtler answer N M−1 M−2 . . . 1 M M+1 . . . N−1 is an equally bad case.
This is only a little worse than exercise 25, because it makes D = M − 1, E =


M
2

.

27. 12 2 3 1 8 6 7 5 9 10 11 4 16 14 15 13 20 18 19 17 21 22 23, which requires 546u. It
can be shown that the best case for N = 3(M + 1)2k − 1 occurs when the subfiles are
bisected by each partitioning until reaching size 3M + 2; then a trisection is performed
to avoid stack-pushing overhead. We have A = 3 · 2k − 1, C = (k + 5

3 )(N + 1),
S = 2k − 1, B = D = E = 0. (The behavior of the best case for general M and N
makes an interesting but complex pattern.)

28. The recurrence

Cn = n+ 1 + 2
n

3

 n
k=1

(k − 1)(n− k)Ck−1

can be transformed into
n

3


Cn − 2


n− 1

3


Cn−1 +


n− 2

3


Cn−2 = 2(n− 1)(n− 2) + 2(n− 2)Cn−2.

29. In general, consider the recurrence

Cn = n+ 1 + 2
n

2t+ 1

 n
k=1


k − 1
t


n− k
t


Ck−1,

which arises when the median of 2t + 1 elements governs the partitioning. Letting
C(z) =


n Cnz

n, the recurrence can be transformed to (1−z)t+1C(2t+1)(z)/(2t+2)! =
1/(1−z)t+2 +C(t)(z)/(t+1)! . Let f(x) = C(t)(1−x); then pt(ϑ)f(x) = (2t+2)!/xt+2,
where ϑ denotes the operator x(d/dx), and pt(x) = (t−x)t+1 − (2t+2)t+1. The general
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solution to (ϑ−α)g(x) = xβ is g(x) = xβ/(β−α)+Cxα, for α ̸= β; g(x) = xβ(ln x+C)
for α = β. We have pt(−t−2) = 0; so the general solution to our differential equation is

C(t)(z) = (2t+ 2)! ln(1− z)/p′t(−t− 2)(1− z)t+2 +
t

j=0

cj(1− z)αj

where α0, . . . , αt are the roots of pt(x) = 0, and the constants ci depend on the initial
values Ct, . . . , C2t. The handy identity

1
(1− z)m+1 ln

 1
1− z


=

n≥0

(Hn+m −Hm)

n+m

m


zn, m ≥ 0,

now leads to the surprisingly simple closed form solution

Cn = Hn+1 −Ht+1

H2t+2 −Ht+1
(n+ 1) + 1

n!

t
j=0

cj(−αj)n−t,

from which the asymptotic formula is easily deduced. (The leading term n lnn/
(H2t+2 − Ht+1) was discovered by M. H. van Emden [CACM 13 (1970), 563–567]
using an information-theoretic approach. In fact, suppose we wish to analyze any
partitioning process such that the left subfile contains at most xN elements with
asymptotic probability

 x

0 f(x) dx, as N →∞, for 0 ≤ x ≤ 1; van Emden proved that
the average number of comparisons required to sort the file completely is asymptotic
to α−1n lnn, where α = −1/

 1
0 (f(x) + f(1 − x))x ln x dx. This formula applies to

radix exchange as well as to quicksort and various other methods. See also H. Hurwitz,
CACM 14 (1971), 99–102.)
30. Solution 1 (of historic interest): Each subfile may be identified by four quantities
(l, r, k,X), where l and r are the boundaries (as presently), k indicates the number
of words of the keys that are known to be equal throughout the subfile, and X is a
lower bound for the (k + 1)st words of the key. Assuming nonnegative keys, we have
(l, r, k,X) = (1, N, 0, 0) initially. When partitioning a file, we let K be the (k + 1)st
word of the test key Kq. If K > X, partitioning takes place with all keys ≥ K at
the right and all keys < K at the left (looking only at the (k + 1)st word of the key
each time); the partitioned subfiles get the respective identifications (l, j−1, k,X) and
(j, r, k,K). But if K = X, partitioning takes place with all keys > K at the right
and all keys ≤ K [actually = K] at the left; the partitioned subfiles get the respective
identifications (l, j, k + 1, 0) and (j + 1, r, k,K). In both cases we are unsure that Rj

is in its final position since we haven’t looked at the (k+ 2)nd words. Obvious further
changes are made to handle boundary conditions properly. By adding a fifth “upper
bound” component, the method could be made symmetrical between left and right.

Solution 2, by Bentley and Sedgewick [SODA 8 (1997), 360–369]: In a subfile
identified by (l, r, k), let K be word k+ 1 of Kq as in solution 1, but use the algorithm
of exercise 41 to tripartition the subfile into (l, i − 1, k), (i, j, k + 1), (j + 1, r, k) for
the cases <K, =K, >K. This approach, which the authors call multikey quicksort,
is significantly better than solution 1, and it is competitive with the fastest known
methods for sorting strings of characters.
31. Go through a normal partitioning process, with R1 finally falling into position Rs.
If s = m, stop; if s < m, use the same technique to find the (m− s)th smallest element
of the right-hand subfile; and if s > m, find the mth smallest element of the left-hand
subfile. [CACM 4 (1961), 321–322; 14 (1971), 39–45.]
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R. G. Dromey [Software Practice & Experience 16 (1986), 981–986] has observed
that fewer comparisons and exchanges are needed if we stop each partitioning stage as
soon as i or j has reached position m.

32. The recurrence is C11 = 0 and Cnm = n+ 1 + (Anm +Bnm)/n for n > 1, where

Anm =


1≤s<m

C(n−s)(m−s) and Bnm =


m<s≤n

C(s−1)m,

for 1 ≤ m ≤ n. Since A(n+1)(m+1) = Anm + Cnm and B(n+1)m = Bnm + Cnm, we can
first find a formula for the quantity Dn = (n+1)C(n+1)(m+1)−nCnm, then sum this to
obtain the answer 2((n+1)Hn−(n+2−m)Hn+1−m−(m+1)Hm+n+ 5

3 )− 1
3δmn− 1

3δm1−
2
3δmnδm1. When n = 2m−1, it becomes 4m(H2m−1−Hm)+4m−4Hm + 4

3 (1−δm1) =
(4 + 4 ln 2)m − 4 lnm − 4γ − 5

3 + O(m−1) ≈ 3.39n. [See D. E. Knuth, Proc. IFIP
Congress (1971), 19–27.]

Another solution follows from the theory of Section 6.2.2: Suppose the keys are
{1, 2, . . . , n}, and let Xjk be the number of common ancestors of nodes j and k in the
binary search tree corresponding to quicksort. Then the number of comparisons made
by the algorithm of exercise 31 can be shown to be

n
j=1Xjm + Xmm − 2[node m

is a leaf ]. The probability that node i is a common ancestor of nodes j and k in a
random binary search tree is 1/(max(i, j, k)−min(i, j, k) + 1). We obtain the average
number of comparisons from the facts that EXjk = Hk + Hn+1−j + 1 − 2Hk−j+1 for
1 ≤ j ≤ k, and Pr(node m is a leaf) = Pr(m isn’t followed by m ± 1 in a random
permutation) = 1

3 + 1
6δm1 + 1

6δmn + 1
3δm1δmn. [See R. Raman, SIGACT News 25, 2

(June 1994), 86–89.]
For an analysis of a similar selection algorithm that uses median-of-three parti-

tioning, see Kirschenhofer, Prodinger, and Martínez, Random Structures & Algorithms
10 (1997), 143–156. Asymptotically faster methods are discussed in exercise 5.3.3–24.

33. Proceed as in the first stage of radix exchange, using the sign instead of bit 1.

34. We can avoid testing whether or not i ≤ j, as soon as we have found at least one
0 bit and at least one 1 bit in each stage — that is, after making the first exchange in
each stage. This saves approximately 2C units of time in Program R.

35. A = N − 1, B = (min 0, ave 1
4N lgN, max 1

2N lgN), C = N lgN, G = 1
2N ,

K = L = R = 0, S = 1
2N − 1, X = (min 0, ave 1

2 (N − 1), max N − 1). In general, the
quantities A, C, G, K, L, R, and S depend only on the set of keys in the file, not on
their initial order; only B and X are influenced by the initial order of the keys.

36. (a)


n
k


k
j


(−1)k+jaj =


n
j


n−j
k−j


(−1)k−jaj =


n
j


δnjaj = an. (b) ⟨δn0⟩;

⟨−δn1⟩; ⟨(−1)mδnm⟩; ⟨(1−a)n⟩; ⟨


n
m


(−a)m(1−a)n−m⟩. (c) Writing the relations to be

proved as xn = yn = an +zn, we have yn = an +zn by part (a); also 21−n
k≥2


n
k


yk =

zn, so yn satisfies the same recurrence as xn. [See exercises 53 and 6.3–17 for some
generalizations of this result. It does not appear to be easy to prove directly that
x̂n = ân2n−1/(2n−1 − 1).]

37. ⟨m cm


n

2m


2−n⟩ for an arbitrary sequence of constants c0, c1, c2, . . . . [This

answer, although correct, does not reveal immediately that ⟨1/(n + 1)⟩ and ⟨n − δn1⟩
are such sequences! Sequences having the form ⟨an + ân⟩ are always self-dual. Notice
that, in terms of the generating function A(z) =


anz

n/n!, we have Â(z) = ezA(−z);
hence A = Â is equivalent to saying that A(z)e−z/2 is an even function.]
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38. A partitioning stage that yields a left subfile of size s and a right subfile of size
N − s makes the following contributions to the total running time:

A = 1, B = t, C = N, K = δs1, L = δs0, R = δsN , X = h,

where t is the number of keys K1, . . . ,Ks with bit b equal to 1, and h is bit b of Ks+1;
if s = N, then h = 0. (See (17).) This leads to recurrence equations such as

BN = 2−N


0≤t≤s≤N


s

t


N − s
t


(t+Bs +BN−s)

= 1
4(N − 1) + 21−N


s≥2


N

s


Bs, for N ≥ 2; B0 = B1 = 0.

(See exercise 23.) Solving these recurrences by the method of exercise 36 yields the
formulas AN = VN − UN + 1, BN = 1

4 (UN + N − 1), CN = VN + N, KN = N/2,
LN = RN = 1

2 (VN − UN −N) + 1, XN = 1
2AN . Clearly GN = 0.

39. Each stage of quicksort puts at least one element into its final position, but this
need not happen during radix exchange (see Table 3).
40. If we switch to straight insertion whenever r − l < M in step R2, the problem
doesn’t arise unless more than M equal elements occur. If the latter is a likely prospect,
we can test whether or not Kl = · · · = Kr whenever j < l or j = r in step R8.
41. Lutz M. Wegner [IEEE Trans. C-34 (1985), 362–367] has discussed several ap-
proaches, of which the following (as simplified by Bentley and McIlroy in Software
Practice & Exp. 23 (1993), 1256–1258) appears to be best in practice. The basic idea
is to work with the five-part array

= K < K ? > K = K

l a b c d r

until the middle part is empty, then swap the two ends into the middle.

D1. [Initialize.] Set a← b← l, c← d← r.
D2. [Increase b until Kb > K.] If b ≤ c and Kb < K, increase b by 1 and repeat

this step. If b ≤ c and Kb = K, exchange Ra ↔ Rb, increase a and b by 1,
and repeat this step.

D3. [Decrease c until Kc < K.] If b ≤ c and Kc > K, decrease c by 1 and repeat
this step. If b ≤ c and Kc = K, exchange Rc ↔ Rd, decrease c and d by 1,
and repeat this step.

D4. [Exchange.] If b < c, exchange Rb ↔ Rc, increase b by 1, decrease c by 1, and
return to D2.

D5. [Cleanup.] Exchange Rl+k ↔ Rc−k for 0 ≤ k < min(a−l, b−a); also exchange
Rb+k ↔ Rr−k for 0 ≤ k < min(d − c, r − d). Finally set i ← l + b − a,
j ← r − d+ c.

Straightforward modifications to step D1 will handle degenerate cases efficiently
and ensure that a < b and c < d before we get to D2. Then the tests “b ≤ c” in D2
and D3 will be unnecessary; see exercise 24. Furthermore, this change will keep those
steps from needlessly exchanging records with themselves.

One of the main applications of sorting is to bring records with equal keys to-
gether. Therefore this tripartitioning scheme is often preferable to the bipartitioning
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of Algorithm Q. The exchanges in step D5 are efficient because all records with keys
equal to K are now in their final resting place.

This exercise is due to W. H. J. Feijen, who called it the “Dutch national flag
problem”: Given a set of red, white, and blue tokens arranged randomly in a column,
decide how to swap pairs of tokens so that the red ones will all be at the top and the
blue ones all at the bottom, while looking at each token only once and using only a
few auxiliary variables to control the process. [See E. W. Dijkstra, A Discipline of
Programming (Prentice–Hall, 1976), Chapter 14.]
42. This is a special case of a general theorem due to R. M. Karp; see JACM 41 (1994),
1136–1150, §2.8. Significantly sharper asymptotic bounds for tails of the quicksort
distribution have been obtained by McDiarmid and Hayward, J. Algorithms 21 (1996),
476–507.
43. As a → 0+, we have

 1
0 y

a−1(e−y − 1) dy +
∞

1 ya−1e−y dy = Γ (a) − 1/a =
(Γ (a+ 1)− Γ (1))/a→ Γ ′(1) = −γ, by exercise 1.2.7–24.
44. For k ≥ 0, we have rk(m) ∼ 1

2 (2m)(k+1)/2Γ ((k+1)/2)−δk0−


j≥0(−1)jBk+2j+1/

((k + 2j + 1)j! (2m)j). When k = −1, the contributions from f
(j−1)
k (m) in (36)

cancel with similar terms in the expansion of Hm−1, and we have r−1(m) = Hm−1 +
(1/
√

2m )t≥0 f−1(t) ∼ 1
2 (ln(2m) + γ) − 

j≥1(−1)jB2j/(2j)j! (2m)j . Therefore
the contribution to Wm−1 from the term N t/t of (33) is obtained from the sum
m


t≥1 t
−1 exp(−t2/2m)(1 − t3/3m2 + t6/18m4)(1 − t4/4m3)(1 − t/2m − t2/8m2) +

O(m−1/2) = 1
2m lnm + 1

2 (ln 2 + γ)m− 5
12

√
2πm + 4

9 + O(m−1/2). The term − 1
2N

t−1

contributes − 1
2


t≥1 exp(−t2/2m)(1 − t3/3m2)(1 − t/2m)(1 + t/m) + O(m−1/2) =
− 1

4

√
2πm+ 1

3 . The term 1
2δt1 yields 1

2 . And finally the term 1
2 (t−1)B2N

t−2 contributes
1

12m
−1

t≥1 t exp(−t2/2m) +O(m−1/2) = 1
12 +O(m−1/2).

45. The argument used to derive (42) is also valid for (43), except that we leave out
the residues at z = −1 and z = 0.
46. Proceeding as we did with (45), we obtain (s− 1)!/ ln 2 + δs(n), where

δs(n) = 2
ln 2


k≥1

ℜ(Γ (s− 2πik/ ln 2) exp (2πik lgn)).

[Note that |Γ (s + it)|2 = (0≤k<s(k2 + t2))π/(t sinhπt), for integer s ≥ 0, so we can
bound δs(n).]

47. In fact,


j≥1 e
−n/2j

(n/2j)s equals the integral in exercise 46, for all s > 0.
48. Making use of the intermediate identity

1− e−x = −1
2πi

 −1/2+i∞

−1/2−i∞
Γ (z)x−z dz,

we proceed as in the text, with 1− e−x playing the role of e−x− 1 +x; Vn+1/(n+ 1) =
(−1/2πi)

 −1/2+i∞
−1/2−i∞ Γ (z)n−z dz/(2−z − 1) + O(n−1), and the integral equals lgn +

γ/ ln 2 − 1
2 − δ0(n) + O(n−100) in the notation of exercise 46. [Thus the quantity

AN in exercise 38 is N(1/ ln 2− δ0(N − 1)− δ−1(N)) +O(1).]
49. The right-hand side of Eq. (40) can be improved to the estimate e−x(1− 1

2x
2/n+

O((x3+x4)n−2)). The effect is to subtract half the sum in exercise 47, replacing O(1)
in (50) by 2− 1

2 (1/ ln 2 + δ1(n)) +O(n−1). (The “2” comes from the “2/n” in (46).)
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50. Umn = n logm n+n((γ−1)/ lnm− 1
2 +δ−1(n))+m/(m−1)−1/(2 lnm)− 1

2δ1(n)+
O(n−1), with δs(n) as in exercise 46 but replacing ln 2 and lg by lnm and logm. [Note:
For m = 2, 3, 4, 5, 10, 100, 1000, and 106 we have δ−1(n) < .000000172501, .000041227,
.0002963, .0008501433, .0062704, .06797, .1525, and .348, respectively.]
51. Let N = 2m. We may extend the sum (35) over all t ≥ 1, when it equals

t≥1

1
2πi

 a+i∞

a−i∞
Γ (z)(t2/N)−ztk dz = 1

2πi

 a+i∞

a−i∞
Γ (z)Nzζ(2z − k) dz,

provided that a > (k + 1)/2. So we need to know properties of the zeta function.
When ℜ(w) ≥ −q, we have ζ(w) = O(|w|q+1) as |w| → ∞; hence we can shift the line
of integration to the left as far as we please if we only take the residues into account. The
factor Γ (z) has poles at 0, −1, −2, . . . , and ζ(2z− k) has a pole only at z = (k+ 1)/2.
The residue at z = −j is N−j(−1)jζ(−2j − k)/j!, and ζ(−n) = (−1)nBn+1/(n + 1).
The residue at z = (k + 1)/2 is 1

2Γ ((k + 1)/2)N (k+1)/2. But when k = −1 there is a
double pole at z = 0; and ζ(z) = 1/(z − 1) + γ +O(|z − 1|), so the residue at 0 in this
case is γ + 1

2 lnN − 1
2γ. We therefore obtain the asymptotic series mentioned in the

answer to exercise 44.
52. Set x = t/n; then 2n

n+ t

2n
n


= exp(−2n(x2/1 · 2 + x4/3 · 4 + · · · ) + (x2/2 + x4/4 + · · · )

− (1/6n)(x2 − x4 + · · · ) + · · · );

the desired sum can now be expressed in terms of


t≥1 t
kd(t)e−t2/n, for various k.

Proceeding as in exercise 51, since ζ(z)2 =


t≥1 d(t)t−z, we wish to evaluate the
residues of Γ (z)nzζ(2z − k)2 when k ≥ 0. At z = −j the residue is

n−j(−1)j(B2j+k+1/(2j + k + 1))2
/j! ,

and at z = (k + 1)/2 it is n(k+1)/2Γ ((k + 1)/2)(γ + 1
4 lnn + 1

4ψ((k + 1)/2)), where
ψ(z) = Γ ′(z)/Γ (z) = Hz−1 − γ ; thus, for example, when k = 0,


t≥1 e

−t2/nd(t) =
1
4
√
πn lnn+( 3

4γ−
1
2 ln 2)√πn+ 1

4 +O(n−M ) for all M. For Sn/
2n

n


, add ( 1

32 lnn+ 3
32γ+

1
24 −

1
16 ln 2)√π/n+O(n−1) to this quantity. (See exercises 1.2.7–23 and 1.2.9–19.)

53. Let q = 1− p. Generalizing exercise 36(c), if

xn = an +

k≥2


n

k


(pkqn−k + qkpn−k)xk,

then
xn = an +


k≥2


n

k


(−1)k âk(pk + qk)/(1− pk − qk).

We can therefore find BN and CN as before; the factor 1
4 in BN should be replaced

by pq. The asymptotic examination of UN proceeds essentially as in the text, with

Tn =


r≥1, s≥0


r

s


(e−npsqr−s

− 1 + npsqr−s)

= 1
2πi

 −3/2+i∞

−3/2−i∞
Γ (z)n−z(p−z + q−z) dz/(1− p−z − q−z)

= (n/hp)(lnn+ γ − 1 + h(2)
p /2hp − hp + δ(n)) +O(1),
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where hp = −(p ln p + q ln q), h(2)
p = p(ln p)2 + q(ln q)2, and δ(n) =


Γ (z)n−1−z/hp

summed over all complex z ̸= 1 such that p−z + q−z = 1. The latter set of points
seems to be difficult to analyze in general; but when p = ϕ−1, q = ϕ−2, the solutions
are z = (−1)k+1 + kπi/ lnϕ. The dominant term, (n lnn)/hp, could also have been
obtained from van Emden’s general formula quoted in the answer to exercise 29. For
p = ϕ−1 we have 1/hp ≈ 1.503718, compared to 1/h1/2 ≈ 1.442695.
54. Let C be a circle of radius (M+ 1

2 )b, so that the integral vanishes on C as M →∞.
(The asymptotic form of Un can now be derived in a new way, expanding Γ (n + 1)/
Γ (n+ ibm). The method of this exercise applies to all sums of the form

k


n

k


(−1)n−kf(k) = −1

2πi


B(n+ 1,−z)f(z) dz,

when f is reasonably well behaved. The latter formula can be found in N. E. Nörlund’s
Vorlesungen über Differenzenrechnung (Berlin: Springer, 1924), §103.)
55. Replace lines 04–06 of Program Q by
2H ENTA 0,2

INCA 0,3
SRB 1
STA *+1(0:2)
ENT4 *
LDA INPUT,2 rA←a

LDX INPUT,3 rX←c

CMPA INPUT,3
JL 1F
CMPA INPUT,4 rA:b
JLE 3F
CMPX INPUT,4 rX:b
JG 4F

STA INPUT,3 c≤b<a
STX INPUT,2

5H LDA INPUT,4 rA←b

JMP 6F
4H LDA INPUT,3 b<c≤a

LDX INPUT,2
STX INPUT,3
JMP 5F

3H STX INPUT,2 c≤a≤b
LDX INPUT,4
STX INPUT,3
JMP 6F

1H CMPA INPUT,4

JGE 5F
CMPX INPUT,4 a<b, c

JGE 5B
LDA INPUT,3 a<c<b

LDX INPUT,4
STX INPUT,3
JMP 6F

5H LDX INPUT,4 b≤a<c
STX INPUT,2

6H LDX INPUT+1,2
STX INPUT,4
ENT4 2,2
ENT5 0,3

followed by ‘STA INPUT+1,2’ (see the remark after (27)); and change the instruction in
line 22 to ‘STX INPUT+1,2’. The first three of these instructions should be replaced by
‘ENTX 0,2; INCX 0,3; ENTA 0; DIV =2=’ if binary shifting is not available.

This program essentially exchangesRl+1 withR⌊(l+r)/2⌋ and sorts the three records
Rl, Rl+1, Rr, then applies normal partitioning to Rl+1 . . . Rr−1. It is tempting to save
a few lines of code by simply putting the median element in rA, moving Rl to the
median’s former place, and using Program Q as it stands. But such an approach has
bad consequences, since it requires order N2 steps to sort the file N N−1 . . . 1. (This
amazing result, first noticed by D. B. Coldrick, has to be seen to be believed — try it!)
The technique recommended above, due to R. Sedgewick, appears to be free of such
simple worst-case anomalies, and runs faster too.

With this median-of-three partitioning scheme, the algorithm does not look at
KN+1, but it still might examine K0 in step Q9.
56. We can solve the recurrence


n
3

xn = bn + 2

n
k=1(k − 1)(n− k)xk−1, for n > m,

by letting yn = nxn, un = nyn+1 − (n+ 2)yn, vn = nun+1 − (n− 5)un; it follows that
vn = 6(bn+2 − 2bn+1 + bn), for n > m. Example: Let xn = δn1 for n ≤ m, and let
bn ≡ 0. Then vn = 0 for all n > m, hence n5 un+1 = m5 um+1. Since ym+1 = 12/m and
ym+2 = 12/(m+1), we ultimately find xn = 48

7 (n+1)/m(m+1)(m+2)+ 36
7 (m−1)4/n6,

for n > m. In general, let fn = (12/(n−1)(n−2))n
k=1(k−1)(n−k)xk−1; the solution
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for n > m when bn is identically zero is

xn = (n+ 1)(m+ 1)fm+2 − (m− 4)fm+1

7(m+ 1)(m+ 2) − ((m+ 1)fm+2 − (m+ 3)fm+1)m5

7n6 .

When bn =


n
3

/np and xn = 0 for n ≤ m, the solution is

xn

n+ 1 = (p− 3)(p− 2)
(p− 6)(p+ 1)(n+ 1)p+1 + 12

7
1

(p+ 1)(m+ 2)p+1 −
12
7

(m+ 1− p)6−p

(p− 6)(n+ 1)7 ,

for n > m; except that when p = −1 we have xn/(n+ 1) = 12
7 (Hn+1 −Hm+2) + 37

49 +
12
49 (m + 2)7/(n + 1)7, and when p = 6, xn/(n + 1) = − 12

7 (Hn−6 −Hm−5)/(n + 1)7 +
12
49/(m+ 2)7 + 37

49/(n+ 1)7.
Arguing as in exercises 21–23, we find that the first partitioning phase now con-

tributes 1 to A, t to B, and N − 1 to C, where t is defined as before but after
the rearrangement made in exercise 55. Under the new assumptions we find bstN =
6


s−2
t


N−s−1

t


/N


N−1
s−1

; hence the recurrence stated above arises in the following ways:

Value bN/
N

3


for N ≤M for N > M Solution for N > M

AN 0 1 (N+1)( 12
7 /(M+2))−1+O(N−6)

BN 0 (N−4)/5 (CN−3AN )/5
CN 0 N−1 (N+1)( 12

7 (HN+1−HM+2)+ 37
49−

24
7 /(M+2))+2+O(N−6)

DN N−HN 0 (N+1)(1− 12
7 HM+1/(M+2)− 4

7/(M+2))+O(N−6)
EN N(N−1)/4 0 (N+1)( 6

35M−
17
35 + 6

7/(M+2))+O(N−6)

Similarly SN = 3
7 (N + 1)(5M + 3)/(2M + 3)(2M + 1)−1 +O(N−6). The total average

running time of the program in exercise 55 is 53 1
2AN + 11BN + 4CN + 3DN + 8EN +

9SN +7N ; the choice M = 9 is very slightly better than M = 10, producing an average
time of approximately 10 22

35N lnN + 2.116N [Acta Inf. 7 (1977), 336–341]. With DIV
instead of SRB, add 11AN to the average running time and take M = 10.

SECTION 5.2.3
1. No; consider the case K1 > K2 = · · · = KN . But the method using ∞ (described

just before Algorithm S) is stable.
2. Traversing a linear list stored sequentially in memory is often slightly faster if we

scan the list from higher indices to lower, since it is usually easier for a computer to
test if an index is zero than to test if it exceeds N. (For the same reason, the search in
step S2 runs from j down to 1; but see exercise 8!)

3. (a) The permutation a1 . . . aN−1N occurs for inputs

N a2 . . . aN−1 a1, a1N a3 . . . aN−1 a2, . . . , a1 a2 . . . aN−2NaN−1, a1 . . . aN−1N.

(b) The average number of times the maximum is changed during the first iteration
of step S2 is HN − 1, as shown in Section 1.2.10. [Hence BN can be found from
Eq. 1.2.7–(8).]

4. If the input is a permutation of {1, 2, . . . , N}, the number of times i = j in step S3
is exactly one less than the number of cycles in the permutation. (Indeed, it is not
hard to show that steps S2 and S3 simply remove element j from its cycle; hence S3 is
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inactive only when j was the smallest element in its cycle.) By Eq. 1.3.3–(21) we could
save HN − 1 of the N − 1 executions of step S3, on the average.

Thus it is inefficient to insert an extra test “i = j?” before step S3. Instead of
testing i versus j, however, we could lengthen the program for S2 slightly, duplicating
part of the code, so that S3 never is encountered if the initial guess Kj is not changed
during the search for the maximum; this would make Program S a wee bit faster.

5. (N − 1) + (N − 3) + · · · = ⌊N2/4⌋.
6. (a) If i ̸= j in step S3, that step decreases the number of inversions by 2m − 1,

where m is one more than the number of keys in Ki+1 . . .Kj−1 that lie between Ki

and Kj ; clearly m is not less than the contribution to B on the previous step S2.
Now apply the observation of exercise 4, connecting cycles to the condition i = j.
(b) Every permutation can be obtained from N. . . 2 1 by successive interchanges of
adjacent elements that are out of order. (Apply, in reverse sequence, the interchanges
that sort the permutation into decreasing order.) Every such operation decreases I by
one and changes C by ±1. Hence no permutation has a value of I − C exceeding the
corresponding value for N. . . 2 1. [By exercise 5 the inequality B ≤ ⌊N2/4⌋ is best
possible.]

7. A. C. Yao, “On straight selection sort,” Computer Science Technical Report 185
(Princeton University, 1988), showed that the variance is αN1.5 + O(N1.495 logN),
where α = 4

3
√
π ln 4

e
≈ 0.9129; he also conjectured that the actual error term is

significantly smaller.
8. We can start the next iteration of step S2 at position Ki, provided that we have

remembered max (K1, . . . ,Ki−1). One way to keep all of this auxiliary information is
to use a link table L1 . . . LN such that KLk is the previous boldface element whenever
Kk is boldface; L1 = 0. [We could also get by with less auxiliary storage, at the expense
of some redundant comparisons.]

The following MIX program uses address modification so that the inner loop is fast.
rI1 ≡ j, rI2 ≡ k − j, rI3 ≡ i, rA ≡ Ki.
01 START ENT1 N 1 j ← N.
02 STZ LINK+1 1
03 JMP 9F 1
04 1H ST1 6F(0:2) N −D Modify addresses in loop.
05 ENT4 INPUT,1 N −D
06 ST4 7F(0:2) N −D
07 ENT4 LINK,1 N −D
08 ST4 8F(0:2) N −D
09 7H CMPA INPUT+J,2 A [Address modified]
10 JGE *+4 A Jump if Ki ≥ Kk.
11 8H ST3 LINK+J,2 N + 1− C Otherwise Lk ← i, [Address modified]
12 6H ENT3 J,2 N + 1− C i← k. [Address modified]
13 LDA INPUT,3 N + 1− C
14 INC2 1 A k ← k + 1.
15 J2NP 7B A Jump if k ≤ j.
16 4H LDX INPUT,1 N
17 STX INPUT,3 N Ri ← Rj .
18 STA INPUT,1 N Rj ← former Ri.
19 DEC1 1 N j ← j − 1.
20 ENT2 0,3 N rI2← i.
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21 LD3 LINK,3 N i← Li.
22 J3NZ 5F N If i > 0, k will start at i.
23 9H ENT3 1 C Otherwise i← 1.
24 ENT2 2 C k will start at 2.
25 5H DEC2 0,1 N + 1
26 LDA INPUT,3 N + 1 rA← Ki.
27 J2NP 1B N + 1 Jump if k ≤ j.
28 J1P 4B D + 1 Jump if j > 0.

9. N − 1 +


N≥k≥2((k − 1)/2− 1/k) = 1
2


N
2


+N −HN. [The average values of C
and D are, respectively, HN + 1 and HN − 1

2 ; hence the average running time of the
program is (1.25N2 + 31.75N − 15HN + 14.5)u.] Program H is much better.
10.

−∞ −∞

−∞

−∞

−∞ −∞

−∞

−∞ −∞

−∞

−∞

−∞

−∞ −∞

−∞

−∞ −∞

−∞

−∞

−∞ −∞

−∞

−∞ −∞

087

087

087

087

087

061

061

11. 897

512 765

503 275 653 703

170 426 509 677

154 612

−∞ −∞

−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞

087 061

12. 2n − 1, once for each −∞ in a branch node.
13. If K ≥ Kr+1, then step H4 may go to step H5 if j = r. (Step H5 is inactive
unless Kr < Kr+1, when step H6 will go to H8 anyway.) To ensure that K ≥ Kr+1
throughout the algorithm, we may start with KN+1 ≤ min(K1, . . . ,KN ); instead of
setting Rr ← R1 in step H2, set Rr+1 ← RN+1 and RN+1 ← R1; also set R2 ← RN+1
after r = 1. (This trick does not speed up the algorithm nor does it make Program H
any shorter.)
14. When inserting an element, give it a key that is less (or greater) than all previously
assigned keys, to get the effect of a simple queue (or stack, respectively).
15. For efficiency, the following solution is a little bit tricky, avoiding all multiples of 3
[CACM 10 (1967), 570].

P1. [Initialize.] Set p[1]← 2, p[2]← 3, k ← 2, n← 5, d← 2, r ← 1, t← 25, and
place (25, 10, 30) in the priority queue. (In this algorithm, p[i] = ith prime;
k = number of primes found so far; n = prime candidate; d = distance to
next candidate; r = number of elements in the queue; t = p[r + 2]2, the next
n for which we should increase r. The queue entries have the form (u, v, 6p),
where p is a prime divisor of u, v = 2p or 4p, and u+v is not a multiple of 3.)
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P2. [Advance q.] Let (q, q′, q′′) be a queue element with the smallest first compo-
nent. Replace it in the queue by (q + q′, q′′ − q′, q′′). (This denotes the next
multiple of q′′/6 that must be excluded.) If n > q, repeat this step until n ≤ q.

P3. [Check for prime n.] If n > N, terminate the algorithm. Otherwise, if n < q,
set k ← k + 1, p[k]← n, n← n+ d, d← 6− d, and repeat this step.

P4. [Check for prime
√
n.] (Now n = q is not prime.) If n = t, set r ← r + 1,

u ← p[r + 2], t ← u2, and insert (t, 2u, 6u) or (t, 4u, 6u) into the queue
according as umod 3 = 2 or umod 3 = 1.

P5. [Advance n.] Set n← n+ d, d← 6− d, and return to P2.
Thus the computation begins as follows:

Queue contents Primes found
(25, 10, 30) 5, 7, 11, 13, 17, 19, 23
(35, 20, 30)(49, 28, 42) 29, 31
(49, 28, 42)(55, 10, 30) 37, 41, 43, 47
(55, 10, 30)(77, 14, 42)(121, 22, 66) 53

If the queue is maintained as a heap, we can find all primes ≤ N in O(N logN log logN)
steps; the length of the heap is at most the number of primes ≤

√
N , and the entry

for p is updated O(N/p) times. The sieve of Eratosthenes, as implemented in exercise
4.5.4–8, is a O(N log logN) method requiring considerably more random access storage.
More efficient implementations are discussed in Section 7.1.3.
16. I1. [Make a new leaf j.] Set K ← key to be inserted; j ← n+ 1.

I2. [Find parent of j.] Set i← ⌊j/2⌋.
I3. [Done?] If i = 0 or Ki ≥ K, set Kj ← K and terminate the algorithm.
I4. [Sift and move j up.] Set Kj ← Ki, j ← i, and return to I2.

[T. Porter and I. Simon showed in IEEE Trans. SE-1 (1975), 292–298, that if An+1
denotes the average number of times step 4 is executed, given a random heap of
uniformly random numbers, we have An = ⌊lgn⌋ + (1 − n−1)An′ for n > 1, where
n = (1bl−1bl−2 . . . b0)2 implies n′ = (1bl−2 . . . b0)2. If l = ⌊lgn⌋, this value is always
≥ A2l+1−1 = (2l+1 − 2)/(2l+1 − 1), and always ≤ A2l < α, where α is the constant
in (19).]
17. The file 1 2 3 goes into the heap 3 2 1 with Algorithm H, but into 3 1 2 with
exercise 16. [Note: The latter method of heap creation has a worst case of order
N logN ; but empirical tests have shown that the average number of iterations of step 2
during the creation of a heap is less than about 2.28N , for random input. R. Hayward
and C. McDiarmid [J. Algorithms 12 (1991), 126–153] have proved rigorously that the
constant of proportionality lies between 2.2778 and 2.2994.]
18. Delete step H6, and replace H8 by:

H8′. [Move back up.] Set j ← i, i← ⌊j/2⌋.
H9′. [Does K fit?] If K ≤ Ki or j = l, set Rj ← R and return to H2. Otherwise

set Rj ← Ri and return to H8′.
The method is essentially the same as in exercise 16, but with a different starting place
in the heap. The net change to the file is the same as in Algorithm H. Empirical tests
on this method show that the number of times Rj ← Ri occurs per siftup during the
selection phase is (0, 1, 2) with respective probabilities (.837, .135, .016). This method
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makes Program H somewhat longer but improves its asymptotic speed to (13N lgN +
O(N))u. A MIX instruction to halve the value of an index register would be desirable.

C. J. H. McDiarmid and B. A. Reed [J. Algorithms 10 (1989), 352–365] have
proved that this modification also saves an average of (3β−8)N ≈ 0.232N comparisons
during the heap-creation phase, where β is defined in the answer to exercise 27. For
further analysis of Floyd’s improvement, see I. Wegener, Theoretical Comp. Sci. 118
(1993), 81–98.

J. Wu and H. Zhu [J. Comp. Sci. and Tech. 9 (1994), 261–266] have observed that
binary search can also be used, so that each siftup of the selection phase involves at
most lgN + lg lgN comparisons and lgN moves.
19. Proceed as in the revised siftup algorithm of exercise 18, with K = KN, l = 1, and
r = N − 1, starting with a given value of j in step H3.
20. For 0 ≤ k ≤ n, the number of positive integers ≤ N whose binary representation
has the form (bn . . . bka1 . . . aq)2 for some q ≥ 0 is clearly (bk−1 . . . b0)2+1+


0≤q<k 2q =

(1bk−1 . . . b0)2.
21. Let j = (cr . . . c0)2 be in the range ⌊N/2k+1⌋ = (bn . . . bk+1)2 < j < (bn . . . bk)2 =
⌊N/2k⌋. Then sj is the number of positive integers ≤ N whose binary representation
has the form (cr . . . c0a1 . . . aq)2 for some q ≥ 0, namely


0≤q≤k 2q = 2k+1 − 1. Hence

the number of nonspecial subtrees of size 2k+1− 1 is

⌊N/2k⌋ − ⌊N/2k+1⌋ − 1 = ⌊(N − 2k)/2k+1⌋.

[To prove the latter identity, use the replicative law in exercise 1.2.4–38 with n = 2 and
x = N/2k+1.]
22. The five possibilities before l = 1 are 5 3 4 1 2, 3 5 4 1 2, 4 3 5 1 2, 1 5 4 3 2, and
2 5 4 1 3. Each of these possibilities a1a2a3a4a5 leads to three possible permutations
a1a2a3a4a5, a1a4a3a2a5, a1a5a3a4a2 before l = 2.
23. (a) After B iterations, j ≥ 2Bl; hence 2Bl ≤ r. (b) We have

n
l=1⌊log2 (N/l)⌋ =

(⌊N/2⌋ − ⌊N/4⌋) + 2(⌊N/4⌋ − ⌊N/8⌋) + 3(⌊N/8⌋ − ⌊N/16⌋) + · · · = ⌊N/2⌋+ ⌊N/4⌋+
⌊N/8⌋+ · · · = N−ν(N), where ν(N) is the number of ones in the binary representation
of N. Also by exercise 1.2.4–42 we have

N−1
r=1 ⌊lg r⌋ = N⌊lgN⌋−2⌊lg N⌋+1+2. We know

by Theorem H that this upper bound on B is best possible during the heap-creation
phase. Furthermore it is interesting to note that there is a unique heap containing the
keys {1, 2, . . . , N} such that K is identically equal to 1 throughout the selection phase
of Algorithm H. (For example, when N = 7 that heap is 7 5 6 2 4 3 1; it is not difficult
to pass from N to N + 1.) This heap gives the maximum value of B (as well as the
maximum value ⌈N/2⌉−1 of D) for the selection phase of heapsort, so the best possible
upper bound on B for the entire sort is N − ν(N) +N⌊lgN⌋ − 2⌊lg N⌋+1 + 2.
24.

N
k=1⌊lg k⌋

2 = (N + 1 − 2n)n2 +


0≤k<nk
22k = (N + 1)n2 − (2n − 3)2n+1 − 6,

where n = ⌊lgN⌋ (see exercise 4.5.2–22); hence the variance of the last siftup is βN =
((N + 1)n2− (2n− 3)2n+1− 6)/N − ((N + 1)n+ 2− 2n+1)2

/N2 = O(1). The standard
deviation of B′

N is ({βs | s ∈MN})1/2 = O(
√
N ).

25. The siftup is “uniform,” and each comparison Kj :Kj+1 has probability 1
2 of

coming out < . The average contribution to C in this case is just one-half the sum
of the average contributions to A and B, namely ((2n− 1)2n−1 + 1

2 )/(2n+1 − 1).
26. (a) ( 10

25 + 1
2 + 1 3

9 + 1
2 + 1 1

2 + 1 2
5 + 2 1

2 + 1
2 + 1 1

2 + 1 1
2 + 2 1

2 + 1 1
2 + 2 + 2 + 3 + 0 +

1 + 1 + 2 + 1 + 2 + 2 + 3 + 1 + 2 + 2)/26 = 1189/780 ≈ 1.524.
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(b) (N
k=1 ν(k)−N+ 1

2⌊N/2⌋−
1
2n+

n−1
k=1 min(αk−1, αk−αk−1−1)/(αk−1))/N,

where ν(k) is the number of one bits in the binary representation of k, and αk =
(1bk . . . b0)2. If N = 2e1 + 2e2 + · · · + 2et, with e1 > e2 > · · · > et ≥ 0, it can be
shown that

N
k=0 ν(k) = 1

2 ((e1 + 2)2e1 + (e2 + 4)2e2 + · · · + (et + 2t)2et) + t − N.
[The asymptotic properties of such sums can be analyzed perspicuously with the
help of Mellin transforms; see Flajolet, Grabner, Kirschenhofer, Prodinger, and Tichy,
Theoretical Comp. Sci. 123 (1994), 291–314.]
27. J. W. Wrench, Jr. has observed that the general Lambert series


n≥1 anx

n/(1−xn)
can be expanded as


N≥1(d\N ad)xN =


m≥1(am +


k≥1(am + am+k)xkm)xm2.

[The cases an = 1 and an = n were introduced by J. H. Lambert in his Anlage
zur Architectonic 2 (Riga: 1771), §875; Clausen stated his formula for the case an = 1
in Crelle 3 (1828), 95, and H. F. Scherk presented a proof in Crelle 9 (1832), 162–163.
When an = n and x = 1

2 we obtain the relation

β =

n≥1

n

2n − 1 =

m≥1


m


2m + 1
2m − 1


+ 2m

(2m − 1)2


2−m2

= 2.74403 38887 59488 36048 02148 91492 27216 43114+;

this constant arises in (20), where we have B′
N ∼ (β−2)N and C′

N ∼ ( 1
2β−

1
4α−

1
2 )N.]

Incidentally, if we set q = x and z = xy in the first identity of exercise 5.1.1–16,
then evaluate ∂

∂y
at y = 1, we get the interesting identity

n≥1

xn

1− xn
=

k≥1

kxk(1− xk+1)(1− xk+2) . . . .

28. The children of node k are nodes 3k−1, 3k, and 3k+1; the parent is ⌊(k+1)/3⌋. A
MIX program analogous to Program H takes asymptotically 21 2

3N logN ≈ 13.7N lgN
units of time. Using the idea of exercise 18 lowers this to 18 2

3N log3 N ≈ 11.8N lgN,
although the division by 3 will add a large Θ(N) term.

For further information about t-ary heaps, see S. Okoma, Lecture Notes in Comp.
Sci. 88 (1980), 439–451.
30. Suppose n = 2t− 1 + r, where t = ⌊lgn⌋ and 1 ≤ r ≤ 2t. Then h2m = [m= 0] and

h(n+1)m ≤
t−2
j=0

(2j − 1)hn(m−j) + 2t−1hn(m−t+1) + rhn(m−t) for n ≥ 2,

by considering the number of elements on level j that could be the final resting place
of Kn+1 after it has been sifted up in place of K1. Therefore, if gnm = hnm/2m, we
have

g(n+1)m ≤
t−2
j=0

2j − 1
2j

gn(m−j) + gn(m−t+1) + r

2t
gn(m−t) ≤ (lg(n+ 1)) max

m≥0
gnm,

and it follows by induction that gnm ≤ Ln =
n

k=2 lg k.
The average total number of promotions during the selection phase is B′′

N =
h−1

N


m≥0 mhNm, where hN =


m≥0 hNm is the total number of possible heaps

(Theorem H). We know that B′′
N ≤ N⌈lgN⌉. On the other hand, we have B′′

N ≥
m−h−1

N

m
k=1(m−k)hNk ≥ m−h−1

N LN

m
k=1(m−k)2k > m−2m+1h−1

N LN , for all m.
Choosing m = lg(hN/LN ) +O(1) now gives B′′

N ≥ lg(hN/LN ) +O(1).
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The number of comparisons needed to create a heap is at most 2N , by exercise
23(b); hence hN ≥ N !/22N. Clearly LN ≤ (lgN)N , so we have lg(hN/LN ) ≥ N lgN −
N lg lgN +O(N). [J. Algorithms 15 (1993), 76–100.]
31. (Solution by J. Edighoffer, 1981.) Let A be an array of 2n elements such that
A[2⌊i/2⌋] ≤ A[2i] and A[2⌊i/2⌋ − 1] ≥ A[2i− 1] for 1 < i ≤ n; furthermore we require
that A[2i − 1] ≥ A[2i] for 1 ≤ i ≤ n. (The latter condition holds for all i if and only
if it holds for n/2 < i ≤ n, because of the heap structure.) This “twin heap” contains
2n elements; to handle an odd number of elements, we simply keep one element off
to the side. Appropriate modifications of the other algorithms in this section can be
used to maintain twin heaps, and it is interesting to work out the details. This idea
was independently discovered and developed further by J. van Leeuwen and D. Wood
[Comp. J. 36 (1993), 209–216], who called the structure an “interval heap.”
32. In any heap of N distinct elements, the largest m = ⌈N/2⌉ elements form a subtree.
At least ⌊m/2⌋ of them must be nonleaves of that subtree, since a binary tree with k
leaves has at least k− 1 nonleaves. Therefore at least ⌊m/2⌋ of the largest m elements
appear in the first ⌊N/2⌋ positions of the heap. Those elements must be promoted to
the root position before reaching their final destinations; so their movement contributes
at least

⌊m/2⌋
k=1 ⌊lg k⌋ = 1

2m lgm+O(m) to B, by exercise 1.2.4–42. Thus Bmin(N) ≥
1
4N lgN+O(N)+Bmin(⌊N/2⌋), and the result follows by induction on N. [I. Wegener,
Theoretical Comp. Sci. 118 (1993), 81–98, Theorem 5.1. Schaffer and Sedgewick, and
independently Bollobás, Fenner, and Frieze, have constructed permutations that require
no more than 1

2N lgN +O(N log logN) promotions; see J. Algorithms 15 (1993), 76–
100; 20 (1996), 205–217. Such permutations are quite rare, by the result of exercise 30.]
33. Let P and Q point to the given priority queues. The following algorithm uses the
convention DIST(Λ) = 0, as in the text, although Λ isn’t really a node.

M1. [Initialize.] Set R← Λ.
M2. [List merge.] If Q = Λ, set D ← DIST(P) and go to M3. If P = Λ, set

P ← Q, D ← DIST(P), and go to M3. Otherwise if KEY(P) ≥ KEY(Q), set
T ← RIGHT(P), RIGHT(P) ← R, R ← P, P ← T and repeat step M2. If
KEY(P) < KEY(Q), set T ← RIGHT(Q), RIGHT(Q) ← R, R ← Q, Q ← T and
repeat step M2. (This step essentially merges the two “right lists” of the
given trees, temporarily inserting upward pointers into the RIGHT fields.)

M3. [Done?] If R = Λ, terminate the algorithm; P points to the answer.
M4. [Fix DISTs.] Set Q ← RIGHT(R). If DIST(LEFT(R)) < D, then set D ←

DIST(LEFT(R)) + 1, RIGHT(R) ← LEFT(R), LEFT(R) ← P; otherwise set
D ← D + 1, RIGHT(R) ← P. Finally set DIST(R) ← D, P ← R, R ← Q,
and return to M3.

34. Starting with the recurrence

L1(z) = z, Lm+1(z) = Lm(z)

L(z)−

m−1
k=1

Lk(z)

,

for parts of the overall generating function L(z) =


n≥0 lnz
n =


m≥1 Lm(z), where

Lm(z) = z2m−1 + · · · generates leftist trees with shortest path length m from root
to Λ, Rainer Kemp has proved that L(z) = z + 1

2L(z)2 + 1
2


m≥1 Lm(z)2, and that
a ≈ 0.25036 and b ≈ 2.7494879 [Inf. Proc. Letters 25 (1987), 227–232; Random
Graphs ’87 (1990), 103–130]. Luis Trabb Pardo noticed in 1978 that the generating
function G(z) = zL(z) satisfies the elegant relation G(z) = z +G(zG(z)).
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35. Let the DIST field of the deleted node be d0, and let the DIST field of the merged
subtrees be d1. If d0 = d1, we need not go up at all. If d0 > d1, then d1 = d0 − 1; and
if we go up n levels, the new DIST fields of the ancestors of P must be, respectively,
d1 + 1, d1 + 2, . . . , d1 + n. If d0 < d1, the upward path must go only leftwards.
36. Instead of a general priority queue, it is simplest to use a doubly linked list; move
nodes to one end of the list whenever they are used, and delete nodes from the other
end. [See the discussion of self-organizing files in Section 6.1.]
37. In an infinite heap, the kth-largest element is equally likely to appear in the left or
the right subheap of its larger ancestors. Thus we can use the theory of digital search
trees, obtaining e(k) = Ck − Ck−1 in the notation of Eq. 6.3–(13). By exercise 6.3–28
we have e(k) = lg k+γ/(ln 2)+ 1

2 −α+δ0(k)+O(k−1) ≈ lg k− .274, where α is defined
in (19) and δ0(k) is a periodic function of lg k. [P. V. Poblete, BIT 33 (1993), 411–412.]
38. M0 = ∅; M1 = {1}; MN = {N} ⊎ M2k−1 ⊎ MN−2k for N > 1, where k =
⌊lg(2N/3)⌋.

SECTION 5.2.4
1. Start with i1 = · · · = ik = 1, j = 1. Repeatedly find min(x1i1 , . . . , xkik ) = xrir ,

and set zj = xrir , j ← j + 1, ir ← ir + 1. (In this case the use of xi(mi+1) = ∞ is a
decided convenience.)

When k is moderately large, it is desirable to keep the keys x1i1 , . . . , xkik in a tree
structure suited to repeated selection, as discussed in Section 5.2.3, so that only ⌊lg k⌋
comparisons are needed to find the new minimum each time after the first. Indeed, this
is a typical application of the principle of “smallest in, first out” in a priority queue.
The keys can be maintained as a heap, and ∞ can be avoided entirely. See the further
discussion in Section 5.4.1.

2. Let C be the number of comparisons; we have C = m + n − S, where S is the
number of elements transmitted in step M4 or M6. The probability that S ≥ s is easily
seen to be

qs =


m+ n− s
m


+

m+ n− s

n


m+ n

m


for 1 ≤ s ≤ m+n; qs = 0 for s > m+n. Hence the mean of S is µmn = q1 + q2 + · · · =
m/(n+ 1) +n/(m+ 1) [see exercises 3.4.2–5, 6], and the variance is σ2

mn = (q1 + 3q2 +
5q3 + · · · )−µ2

mn = m(2m+n)/(n+1)(n+2)+(m+2n)n/(m+1)(m+2)−µ2
mn. Thus

C = (min min(m,n), ave m+ n− µmn, max m+ n− 1, dev σmn).

When m = n the average was first computed by H. Nagler, CACM 3 (1960), 618–620;
it is asymptotically 2n− 2 +O(n−1), with a standard deviation of

√
2 +O(n−1). Thus

C hovers close to its maximum value.
3. M2′. If Ki < K′

j , go to M3′; if Ki = K′
j , go to M7′; if Ki > K′

j , go to M5′.
M7′. Set K′′

k ← K′
j , k ← k+1, i← i+1, j ← j+1. If i > M, go to M4′; otherwise

if j > N, go to M6′; otherwise return to M2′.
(Appropriate modifications are made to other steps of Algorithm M. Again many
special cases disappear if we insert artificial keys KM+1 = K′

N+1 = ∞ at the end of
the files.)

4. The sequence of elements that appears at a fixed internal node of the selection
tree, as time passes, is obtained by merging the sequences of elements that appear at
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the children of that node. (The discussion in Section 5.2.3 is based on selecting the
largest element, but it could equally well have reversed the order.) So the operations
involved in tree selection are essentially the same as those involved in merging, but
they are performed in a different sequence and using different data structures.

Another relation between merging and tree selection is indicated in exercise 1.
Note that an N -way merge of one-element files is a selection sort; compare also four-
way merging of (A,B,C,D) to two-way merging of (A,B), (C,D), then (AB,CD).

5. In step N6 we always have Ki < Ki−1 ≤ Kj ; in N10, Kj < Kj+1 < Ki.
6. For example, 2 6 4 10 8 14 12 16 15 11 13 7 9 3 5 1; after one pass, two of the

expected stepdowns disappear: 1 2 5 6 7 8 13 14 16 15 12 11 10 9 4 3. This possibility
was first noted by D. A. Bell, Comp. J. 1 (1958), 74. Quirks like this make it almost
hopeless to carry out a precise analysis of Algorithm N.

7. ⌈lgN ⌉, if N > 1. (Consider how many times p must be doubled until it is ≥ N.)
8. If N is not a multiple of 2p, there is one short run on the pass, and it is always

near the middle; letting its length be t, we have 0 ≤ t < p. Step S12 handles the cases
where the short run is to be “merged” with an empty run, or where t = 0; otherwise
we have essentially x1 ≤ x2 ≤ · · · ≤ xp | yt ≥ · · · ≥ y1. If xp ≤ yt, the left-hand run is
exhausted first, and step S6 will take us to S13 after xp has been transmitted. On the
other hand, if xp > yt, the right-hand side will be artificially exhausted, but Kj = xp

will never be < Ki in step S3! Thus S6 will eventually take us to S13 in all cases.
10. For example, Algorithm M can merge elements xj+1 . . . xj+m with xj+m+1 . . .
xj+m+n into positions x1 . . . xm+n of an array without conflict, if j ≥ n. With care we
can exploit this idea so that N + 2⌊lg N⌋−1 locations are required for an entire sort. But
the program seems to be rather complicated compared to Algorithm S. [Comp. J. 1
(1958), 75; see also L. S. Lozinskii, Kibernetika 1, 3 (1965), 58–62.]
11. Yes. This can be seen, for example, by considering the relation to tree selection
mentioned in exercise 4. But Algorithms N and S are obviously not stable.
12. Set L0 ← 1, t← N + 1; then for p = 1, 2, . . . , N − 1, do the following:

If Kp ≤ Kp+1 set Lp ← p+ 1; otherwise set Lt ← −(p+ 1), t← p.

Finally, set Lt ← 0, LN ← 0, LN+1 ← |LN+1|.
(Stability is preserved. The number of passes is ⌈lg r⌉, where r is the number of

ascending runs in the input; the exact distribution of r is analyzed in Section 5.1.3.
We may conclude that natural merging is preferable to straight merging when linked
allocation is being used, although it was inferior for sequential allocation.)
13. The running time for N ≥ 3 is (11A + 6B + 3B′ + 9C + 2C′′ + 4D + 5N + 9)u,
where A is the number of passes; B = B′+B′′ is the number of subfile-merge operations
performed, where B′ is the number of such merges in which the p subfile was exhausted
first; C = C′ +C′′ is the number of comparisons performed, where C′ is the number of
such comparisons with Kp ≤ Kq; D = D′ + D′′ is the number of elements remaining
in subfiles when the other subfile has been exhausted, where D′ is the number of such
elements belonging to the q subfile. In Table 3 we have A = 4, B′ = 6, B′′ = 9, C′ = 22,
C′′ = 22, D′ = 10, D′′ = 10, total time = 761u. (The comparable Program 5.2.1L
takes only 433u, when improved as in exercise 5.2.1–33, so we can see that merging
isn’t especially efficient when N is small.)

Algorithm L does a sequence of merges on subfiles whose sizes (m,n) can be
determined as follows: Let N − 1 = (bk . . . b1b0)2 in binary notation. There are
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(bk . . . bj+1)2 “ordinary” merges with (m,n) = (2j , 2j), for 0 ≤ j < k; and there are
“special” merges with (m,n) = (2j , 1 + (bj−1 . . . b0)2) whenever bj = 1, for 0 ≤ j ≤ k.
For example, when N = 14 there are six ordinary (1, 1) merges, three ordinary (2, 2)
merges, one ordinary (4, 4) merge, and the special merges deal with subfiles of sizes
(1, 1), (4, 2), (8, 6). The multiset MN of merge sizes (m,n) can also be described by
the recurrence relations

M1 = ∅; M2k+r = {(2k, r)} ⊎M2k ⊎Mr for 0 < r ≤ 2k.

It follows that, regardless of the input distribution, we have A = ⌈lgN ⌉, B = N−1,
C′ +D′′ =

k
j=0 bj2j(1 + 1

2 j), C
′′ +D′ =

k
j=0 bj(1 + 2j( 1

2 j + bj+1 + · · ·+ bk)); hence
only B′, C′, D′ need to be analyzed further.

If the input to Algorithm L is random, each of the merging operations satisfies
the conditions of exercise 2, and is independent of the behavior of the other merges;
so the distribution of B′, C′, D′ is the convolution of their individual distributions
for each subfile merge. The average values for such a merge are B′ = n/(m + n),
C′ = mn/(n+ 1), D′ = n/(m+ 1). Sum these over all relevant (m,n) to get the exact
average values.

When N = 2k we have, of course, the simplest situation; B′
ave = 1

2B, C′
ave = 1

2Cave,
C +D = kN , and Dave =

k
j=1(2k−j2j/(2j−1 + 1)) = α′N +O(1), where

α′ =

n≥0

1
2n + 1 = α+ 1

2 − 2

n≥1

1
4n − 1

= 1.26449 97803 48444 20919 13197 47255 49848 25577−

can be evaluated to high precision as in exercise 5.2.3–27. This special case was first
analyzed by A. Gleason [unpublished, 1956] and H. Nagler [CACM 3 (1960), 618–620].
14. Set D = B in exercise 13 to maximize C. [A detailed analysis of Algorithm L has
been carried out by W. Panny and H. Prodinger, Algorithmica 14 (1995), 340–354.]
15. Make extra copies of steps L3, L4, L6 for the cases that Ls is known to equal p or q.
[A further improvement can also be made, removing the assignment s← p (or s← q)
from the inner loop, by simply renaming the registers! For example, change lines 20
and 21 to ‘LD3 INPUT,1(L)’ and continue with p in rI3, s in rI1 and Ls known to equal p.
With eighteen copies of the inner loop, corresponding to the different permutations of
(p, q, s) with respect to (rI1, rI2, rI3), and to different knowledge about Ls, we can cut
the average running time to (8N lgN +O(N))u.]
16. (The result will be slightly faster than Algorithm L; see exercise 5.2.3–28.)
17. Consider the new record as a subfile of length 1. Repeatedly merge the smallest
two subfiles if they have the same length. (The resulting sorting algorithm is essentially
the same as Algorithm L, but the subfiles are merged at different relative times.)
18. Yes, but it seems to be a complicated job. The first solution to be found used
the following ingenious construction [Doklady Akad. Nauk SSSR 186 (1969), 1256–
1258]: Let n be ≈

√
N . Divide the file into m+ 2 “zones” Z1 . . . Zm Zm+1 Zm+2, where

Zm+2 contains N mod n records while each other zone contains exactly n records.
Interchange the records of Zm+1 with the zone containing RM ; the file now takes the
form Z1 . . . Zm A, where each of the Z1 . . . Zm contains exactly n records in order and
where A is an auxiliary area containing s records, for some s in the range n ≤ s < 2n.

Find the zone with smallest leading element, and exchange that entire zone with Z1;
if more than one zone has the smallest leading element, choose one that has the smallest
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trailing element. (This takes O(m + n) operations.) Then find the zone with the
next smallest leading and trailing elements, and exchange it with Z2, etc. Finally in
O(m(m + n)) = O(N) operations we will have rearranged the m zones so that their
leading elements are in order. Furthermore, because of our original assumptions about
the file, each of the keys in Z1 . . . Zm will now have fewer than n inversions.

We can merge Z1 with Z2, using the following trick: Interchange Z1 with the
first n elements A′ of A; then merge Z2 with A′ in the usual way but exchanging
elements with the elements of Z1Z2 as they are output. For example, if n = 3 and
x1 < y1 < x2 < y2 < x3 < y3, we have

Zone 1 Zone 2 Auxiliary
Initial contents: x1 x2 x3 y1 y2 y3 a1 a2 a3

Exchange Z1: a1 a2 a3 y1 y2 y3 x1 x2 x3
Exchange x1: x1 a2 a3 y1 y2 y3 a1 x2 x3
Exchange y1: x1 y1 a3 a2 y2 y3 a1 x2 x3
Exchange x2: x1 y1 x2 a2 y2 y3 a1 a3 x3
Exchange y2: x1 y1 x2 y2 a2 y3 a1 a3 x3
Exchange x3: x1 y1 x2 y2 x3 y3 a1 a3 a2

(The merge is always complete when the nth element of the auxiliary area has been
exchanged; this method generally permutes the auxiliary records.)

The trick above is used to merge Z1 with Z2, then Z2 with Z3, . . . , Zm−1 with Zm,
requiring a total of O(mn) = O(N) operations. Since no element has more than
n inversions, the Z1 . . . Zm portion of the file has been completely sorted.

For the final “cleanup,” we sort RN+1−2s . . . RN by insertion, in O(s2) = O(N)
steps; this brings the s largest elements into area A. Then we merge R1 . . . RN−2s

with RN+1−2s . . . RN−s, using the trick above with auxiliary storage area A (but
interchanging the roles of right and left, less and greater, throughout). Finally, we
sort RN+1−s . . . RN by insertion.

Subsequent refinements are discussed by J. Katajainen, T. Pasanen, and J. Teuhola
in Nordic J. Computing 3 (1996), 27–40. See answer 5.5–3 for the problem of stable
merging in place.
19. We may number the input cars so that the final permutation has them in order,
1 2 . . . 2n; so this is essentially a sorting problem. First move the first 2n−1 cars
through n− 1 stacks, putting them in decreasing order, and transfer them to the nth
stack so that the smallest is on top. Then move the other 2n−1 cars through n − 1
stacks, putting them into increasing order and leaving them positioned just before the
nth stack. Finally, merge the two sequences together in the obvious way.
20. For further information, see R. E. Tarjan, JACM 19 (1972), 341–346.
22. See Information Processing Letters 2 (1973), 127–128.
23. The merges can be represented by a binary tree that has all external nodes on levels
⌊lgN⌋ and ⌈lgN ⌉. Therefore the maximum number of comparisons is the minimum
external path length of a binary tree with N external nodes, Eq. 5.3.1–(34), minus
N −1, since f(m,n) = m+n−1 gives the maximum and there are N −1 merges. (See
also Eq. 5.4.9–(1).)

General techniques for studying the asymptotic properties of such recurrences with
the help of Mellin transforms have been presented by P. Flajolet and M. Golin in Acta
Informatica 31 (1994), 673–696; in particular, they show that the average number of
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comparisons is N lgN − θN + δ(lgN)N +O(1) and the variance is ≈ .345N , where δ is
a continuous function of period 1 and average value 0, and

θ = 1
ln 2 −

1
2 + 1

ln 2

∞
m=1

2
(m+ 1)(m+ 2) ln 2m+ 1

2m

= 1.24815 20420 99653 84890 29565 64329 53240 16127+.

The total number of comparisons is well approximated by a normal distribution as
N →∞; see the complementary analyses by H.-K. Hwang and M. Cramer in Random
Structures & Algorithms 8 (1996), 319–336; 11 (1997), 81–96.

SECTION 5.2.5
1. No, because radix sorting doesn’t work at all unless the distribution sorting is

stable, after the first pass. (But the suggested distribution sort could be used in a most-
significant-digit-first radix sorting method, generalizing radix exchange, as suggested
in the last paragraph of the text.)

2. It is “anti-stable,” just the opposite; elements with equal keys appear in reverse
order, since the first pass goes through the records from RN to R1. (This proves to be
convenient because of lines 28 and 20 of Program R, equating Λ with 0; but of course
it is not necessary to make the first pass go backwards.)

3. If pile 0 is not empty, BOTM[0] already points to the first element; if it is empty,
we set P ← LOC(BOTM[0]) and later make LINK(P) point to the bottom of the first
nonempty pile.

4. When there are an even number of passes remaining, take pile 0 first (top to
bottom), followed by pile 1, . . . , pile (M − 1); the result will be in order with respect
to the digits examined so far. When there are an odd number of passes remaining,
take pile (M − 1) first, then pile (M − 2), . . . , pile 0; the result will be in reverse order
with respect to the digits examined so far. (This rule was apparently first published
by E. H. Friend [JACM 3 (1956), 156, 165–166].)

5. Change line 04 to ‘ENT3 7’, and change the R3SW and R5SW tables to:
R3SW LD2 KEY,1(1:1)

LD2 KEY,1(2:2)
LD2 KEY,1(3:3)
LD2 KEY,1(4:4)
LD2 KEY,1(5:5)
LD2 INPUT,1(1:1)
LD2 INPUT,1(2:2)
LD2 INPUT,1(3:3)

R5SW LD1 INPUT,1(LINK)
... (repeat the previous line six more times)
DEC1 1

The new running time is found by changing “3” to “8” everywhere; it amounts to
(11p− 1)N + 16pM + 12p− 4E + 2, for p = 8.

6. (a) Consider placing an (N + 1)st element. The recurrence

pM(N+1)k = k + 1
M

pMN(k+1) + M − k
M

pMNk
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is equivalent to the stated formula. (b) The nth derivative satisfies g(n)
M(N+1)(z) =

(1 − n/M)g(n)
MN (z) + ((1 − z)/M)g(n+1)

MN (z), by induction on n. Setting z = 1, we find
g

(n)
MN (1) = (1 − n/M)NMn, since gM0(z) = zM. Hence mean(gMN ) = (1 − 1/M)NM,

var(gMN ) = (1− 2/M)NM(M − 1) + (1− 1/M)NM − (1− 1/M)2NM2. (Notice that
the generating function for E in Program R is gMN (z)p.)

7. Let R = radix sort, RX = radix exchange. Some of the important similarities and
differences: RX goes from most significant digit to least significant, while R goes the
other way. Both methods sort by digit inspections, without making comparisons of keys.
RX always has M = 2 (but see exercise 1). The running time for R is almost unvarying,
while RX is sensitive to the distribution of the digits. In both cases the running time
is O(N logK), where K is the range of keys, but the constant of proportionality is
higher for RX; on the other hand, when the keys are uniformly distributed in their
leading digits, RX has an average running time of O(N logN) regardless of the size
of K. R requires link fields while RX runs in minimal space. The inner loop of R is
more suited to pipeline computers.

8. On the final pass, the piles should be hooked together in another order; for
example, if M = 256, pile (10000000)2 comes first, then pile (10000001)2, . . . , pile
(11111111)2, pile (00000000)2, pile (00000001)2, . . . , pile (01111111)2. This change
in hooking order can be done easily by modifying Algorithm H, or (in Table 1) by
changing the storage allocation strategy, on the last pass.

9. We could first separate the negative keys from the positive keys, as in exercise
5.2.2–33; or we could change the keys to complement notation on the first pass.
Alternatively, after the last pass we could separate the positive keys from the negative
ones, reversing the order of the latter, although the method of exercise 5.2.2–33 no
longer applies.
11. Without the first pass the method would still sort perfectly, because (by coinci-
dence) 503 already precedes 509. Without the first two passes, the number of inversions
would be 1 + 1 + 0 + 0 + 0 + 1 + 1 + 1 + 0 + 0 = 5.
12. After exchanging Rk with R[P] in step M4 (exercise 5.2–12), we can compare Kk

to Kk−1. If Kk is less, we compare it to Kk−2, Kk−3, . . . , until finding Kk ≥ Kj . Then
set (Rj+1, . . . , Rk−1, Rk)← (Rk, Rj+1, . . . , Rk−1), without changing the LINK fields. It
is convenient to place an artificial key K0, which is ≤ all other keys, at the left of
the file.
14. If the original permutation of the cards requires k readings, in the sense of exercise
5.1.3–20, and if we use m piles per pass, we must make at least ⌈logm k⌉ passes.
(Consider going back from a sorted deck to the original one; the number of readings
increases by at most a factor of m on each pass.) The given permutation requires 4
increasing readings, 10 decreasing readings; hence decreasing order requires 4 passes
with two piles or 3 passes with three piles.

Conversely, this optimum number of passes can be achieved: Number the cards
from 0 to k − 1 according to which reading it belongs to, and use a radix sort (least
significant digit first in radix m). [See Martin Gardner’s Sixth Book of Mathematical
Games (San Francisco: W. H. Freeman, 1971), 111–112.]
15. Let there be k readings and m piles. The order is reversed on each pass; if there are
k readings in one order, the number of readings in the opposite order is n+ 1− k. The
minimum number of passes is either the smallest even number greater than or equal to
logm k or the smallest odd number greater than or equal to logm(n + 1 − k). (Going
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backwards, there are at most m decreasing readings after one pass, m2 increasing
readings after two passes, etc.) The example can be sorted into increasing order in
min(2, 5) = 2 passes, into decreasing order in min(3, 4) = 3 passes, using only two piles.
16. Assume that each string is followed by a special null character that is less than
any letter of the alphabet. Perform a left-to-right radix sort by starting with all strings
linked together in a single block of data. Then for k = 1, 2, . . . , refine every block that
contains more than one distinct string by splitting it into subblocks based on the kth
letter of each string, meanwhile keeping the blocks sorted by their already-examined
prefixes. When a block has only one item, or when its kth characters are all null (so
that its keys are identical), we can arrange to avoid examining it again. [R. Paige
and R. E. Tarjan, SICOMP 16 (1987), 973–989, §2.] This process is essentially that
of constructing a trie as in Section 6.3. A simpler but slightly less efficient algorithm
based on right-to-left radix sort was given for this problem by Aho, Hopcroft, and
Ullman, The Design and Analysis of Computer Algorithms (Addison–Wesley, 1974),
79–84. The methods of McIlroy, Bostic, and McIlroy, cited in the text, are faster yet
in practice.
17. MacLaren’s method speeds up the second level, but it cannot be used at the top
level because it does not compute the numbers Nk.
18. First we prove the hint: Let pk =

 (k+1)/CN

k/CN
f(x) dx be the probability that a

key falls into bin k when there are CN bins. The time needed to distribute the rec-
ords is O(N), and the average number of inversions remaining after distribution is
1
2
CN−1

k=0


j


N
j


pj

k(1 − pk)N−j


j
2


= 1
2
CN−1

k=0


N
2

p2

k ≤ N−1
4
CN−1

k=0 pkB/C, because
pk ≤ B/CN.

Now consider two levels of distribution, with cN top-level bins, and let bk =
sup{f(x) | k/cN ≤ x < (k + 1)/cN}. Then the average total running time is O(N)
plus

cN−1
k=0 Tk, where Tk is the average time needed by MacLaren’s method to sort

Nk keys having the density function fk(x) = f((k + x)/cN)/cNpk. By the hint, we
have Tk = EO(bkNk/cNpk), because fk(x) is bounded by bk/cNpk. But ENk = Npk,
so Tk = O(bk/c). And as N → ∞ we have

cN−1
k=0 bk → N

 1
0 f(x) dx = N , by the

definition of Riemann integrability.

SECTION 5.3.1
1. (a)

1:2

A12 A21

where Aij is either
i :3

j :3 B3ij

Bij3 Bi3j

or
j :3

i :3Bij3

Bi3j B3ij

and Bijk is

j :4

k :4 i :4

ijk4 ij4k i4jk 4ijk

. The external path length is 112 (optimum).

(b) Here Aij =
3:4

Cij34 Cij43

where Cijkl =

i :k

j :k i : l

ijkl j : l j : l klij

ikjl iklj kijl kilj

.

Again the external path length is 112 (optimum).
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2. In the notation of exercise 5.2.4–14,

L(n)−B(n) =
t

k=1

((ek + k − 1)2ek − (e1 + 1)2ek) + 2e1+1 − 2et

= 2e1 − 2et −
t

k=2

(e1 − ek + 2− k)2ek

≥ 2e1 − (2e1−1 + · · ·+ 2e1−t+1 + 2et) ≥ 0,

with equality if and only if n = 2k − 2j for some k > j ≥ 0. [When merging is done
“top-down” as in exercise 5.2.4–23, the maximum number of comparisons is B(n).]

3. When n > 0, the number of outcomes such that the smallest key appears exactly k
times is


n
k


Pn−k. Thus 2Pn =


k


n
k


Pn−k, for n > 0, and we have 2P (z) = ezP (z) + 1

by Eq. 1.2.9–(10).
Another proof comes from the fact that Pn =


k≥0


n
k


k!, since


n
k


is the number

of ways to partition n elements into k nonempty parts and these parts can be permuted
in k! ways. Thus


n≥0 Pnz

n/n! =


k≥0(ez − 1)k = 1/(2− ez) by Eq. 1.2.9–(23).
Still another proof, perhaps the most interesting, arises if we arrange the elements

in sequence in a stable manner, so that Ki precedes Kj if and only if Ki < Kj or
(Ki = Kj and i < j). Among all Pn outcomes, a given arrangement Ka1 . . .Kan now
occurs exactly 2k times if the permutation a1 . . . an contains k ascents; hence Pn can
be expressed in terms of the Eulerian numbers, Pn =


k


n
k


2k. Eq. 5.1.3–(20) with

z = 2 now establishes the desired result.
This generating function was obtained by A. Cayley [Phil. Mag. (4) 18 (1859),

374–378] in connection with the enumeration of an imprecisely defined class of trees.
See also P. A. MacMahon, Proc. London Math. Soc. 22 (1891), 341–344; J. Touchard,
Ann. Soc. Sci. Bruxelles 53 (1933), 21–31; and O. A. Gross, AMM 69 (1962), 4–8,
who gave the interesting formula Pn =


k≥1 k

n/21+k, n ≥ 1.
4. The representation

2P (z) = 1
2


1− i cot i(z− ln 2)

2


= 1

2 −
1

z− ln 2 −

k≥1

 1
z− ln 2−2πik + 1

z− ln 2+2πik


yields the convergent series Pn/n! = 1

2 (ln 2)−n−1 +


k≥1 ℜ((ln 2 + 2πik)−n−1).
5.

1:2

2:3 2:3 2:3

1<2<3 1<2=3 1:3 1=2<3 1=2=3 3<1=2 1:3 2=3<1 3<2<1

1<3<2 1=3<2 3<1<2 2<1<3 2<1=3 2<3<1

6. S′(n) ≥ S(n), since the keys might all be distinct; thus we must show that S′(n) ≤
S(n). Given a sorting algorithm that takes S(n) steps on distinct keys, we can construct
a sorting algorithm for the general case by defining the = branch to be identical to the
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1:2

3:4 3:4 3:4

1=3<2=4 1:3 1=4<2=3 1:3 1:3 1:3 2=3<1=4 1:3 2=4<1=3

1<2=3=4 1=3=4<2 ∗ ∗ 1=2=3<4 3<1=2=4 1=2<3=4 1=2=3=4 3=4<1=2 1=2=4<3 4<1=2=3 ∗ ∗ 2<1=3=4 2=3=4<1

Fig. A–1. Solution to exercise 7. (“∗” denotes an impossible case.)

1:2

3:4 3:4 3:4

1:3 1:4 1:3 2:3 2:4

1=2<3=4 1=2=3=4 3=4<1=2

C1234 C3412 C4312 C2134

A1234 B1324 A3412 A1243 B1423 A4312 A2134 B2314 A3421 A2143 B2413 A4321

where
j : l

i<j=k<l i<k<j= l ∗

Aijkl = k : l

i=j<k<l i=j<k= l i=j<l<k

Bijkl= i :k

j :k i=k= l<j k= l<i<j

i<j<k= l i<j=k= l i<k= l<j

Cijkl=

Fig. A–2. Solution to exercise 8.
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< branch, removing redundancies. When an external node appears, we know all of the
equality relations, since we have Ka1 ≤ Ka2 ≤ · · · ≤ Kan and an explicit comparison
Kai :Kai+1 has been made for 1 ≤ i < n.

M. Paterson observes that if the multiplicities of keys are (n1, . . . , nm), the number
of comparisons can be reduced to n lgn−


nj lgnj +O(n); see SICOMP 5 (1976), 2.

This lower bound can almost be reached without substantial auxiliary memory by
adapting heapsort to equal keys as suggested by Munro and Raman in Lecture Notes
in Comp. Sci. 519 (1991), 473–480.

7. See Fig. A–1. The average number of comparisons is (2 + 3 + 3 + 2 + 3 + 3 + 3 +
2 · 3 + 3 + 3 + 3 + 2 + 3 + 3 + 2)/16 = 2 3

4 .
8. See Fig. A–2. The average number of comparisons is 3 56

81 .
9. We need at least n − 1 comparisons to discover that all keys are equal, if they

are. Conversely, n− 1 comparisons always suffice, since we can always deduce the final
ordering after comparing K1 with all of the other keys.
10. Let f(n) be the desired function, and let g(n) be the minimum average number of
comparisons needed to sort n+k elements when k > 0 and exactly k of the elements have
known values (0 or 1). Then f(0) = f(1) = g(0) = 0, g(1) = 1; f(n) = 1 + 1

2f(n− 1) +
1
2g(n−2), g(n) = 1 + min(g(n−1), 1

2g(n−1) + 1
2g(n−2)) = 1 + 1

2g(n−1) + 1
2g(n−2),

for n ≥ 2. (Thus the best strategy is to compare two unknown elements whenever
possible.) It follows that f(n)− g(n) = 1

2 (f(n− 1)− g(n− 1)) for n ≥ 2, and g(n) =
2
3 (n+ 1

3 (1− (− 1
2 )n)) for n ≥ 0. Hence the answer is

2
3n+ 2

9 −
2
9 (− 1

2 )n − ( 1
2 )n−1

, for n ≥ 1.

(This exact formula may be compared with the information-theoretic lower bound,
log3(2n − 1) ≈ 0.6309n.)
11. Binary insertion proves that Sm(n) ≤ B(m) + (n − m)⌈lg(m + 1)⌉, for n ≥ m.
On the other hand Sm(n) ≥ ⌈lgm

k=1


n
k


k!⌉, and this is asymptotically n lgm +

O(((m− 1)/m)n); see Eq. 1.2.6–(53).
12. (a) If there are no redundant comparisons, we can arbitrarily assign an order to
keys that are actually equal, when they are first compared, since no order can be
deduced from previously made comparisons. (b) Assume that the tree strongly sorts
every sequence of zeros and ones; we shall prove that it strongly sorts every permutation
of {1, 2, . . . , n}. Suppose it doesn’t; then there is a permutation for which it claims
that Ka1 ≤ Ka2 ≤ · · · ≤ Kan , whereas in fact Kai > Kai+1 for some i. Replace all
elements < Kai by 0 and all elements ≥ Kai by 1; by assumption the method will now
sort when we take the path that leads to Ka1 ≤ Ka2 ≤ · · · ≤ Kan , a contradiction.
13. If n is even, F (n)−F (n−1) = 1+F (⌊n/2⌋)−F (⌊n/2⌋−1) so we must prove that
wk−1 < ⌊n/2⌋ ≤ wk; this is obvious since wk−1 = ⌊wk/2⌋. If n is odd, F (n)−F (n−1) =
G(⌈n/2⌉) −G(⌊n/2⌋), so we must prove that tk−1 < ⌈n/2⌉ ≤ tk; this is obvious since
tk−1 = ⌈wk/2⌉.
14. By exercise 1.2.4–42, the sum is n⌈lg 3

4n⌉ − (w1 + · · · + wj) where wj < n ≤
wj+1. The latter sum is wj+1 − ⌊j/2⌋ − 1. We can therefore express F (n) in the form
n⌈lg 3

4n⌉ − ⌊2
⌊lg(6n)⌋/3⌋+ ⌊ 1

2 lg(6n)⌋ (and in many other ways).
15. If ⌈lg 3

4n⌉ = lg( 3
4n) + θ, F (n) = n lgn − (3 − lg 3)n + n(θ + 1 − 2θ) + O(logn).

If ⌈lgn⌉ = lgn + θ, B(n) = n lgn − n + n(θ + 1 − 2θ) + O(logn). [Note that lgn! =
n lgn− n/(ln 2) +O(logn); 1/(ln 2) ≈ 1.443; 3− lg 3 ≈ 1.415.]
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17. The number of cases with bk < ap < bk+1 is
m− p+ n− k

m− p


p− 1 + k

p− 1


,

and the number of cases with aj < bq < aj+1 is
n− q +m− j

n− q


q − 1 + j

q − 1


.

18. No, since we are considering only the less efficient branch of the tree below each
comparison. One of the more efficient branches might turn out to be harder to handle.
20. Let L be the maximum level on which an external node appears, and let l be
the minimum such level. If L ≥ l + 2, we can remove two nodes from level L and
place them below a node at level l; this decreases the external path length by l+ 2L−
(L − 1 + 2(l + 1)) = L − l − 1 ≥ 1. Conversely, if L ≤ l + 1, let there be k external
nodes on level l and N − k on level l + 1, where 0 < k ≤ N. By exercise 2.3.4.5–3,
k2−l + (N − k)2−l−1 = 1; hence N + k = 2l+1. The inequalities 2l ≤ N < 2l+1 now
show that l = ⌊lgN⌋; this defines k and yields the external path length (34).
21. Let r(x) be the root of x’s right subtree. All subtrees have minimum height if and
only if ⌈lg t(l(x))⌉ ≤ ⌈lg t(x)⌉ − 1 and ⌈lg t(r(x))⌉ ≤ ⌈lg t(x)⌉ − 1 for all x. The first
condition is equivalent to 2t(l(x))− t(x) ≤ 2⌈lg t(x)⌉− t(x), and the second condition is
equivalent to t(x)− 2t(l(x)) ≤ 2⌈lg t(x)⌉− t(x).
22. By exercise 20, the four conditions ⌊lg t(l(x))⌋, ⌊lg t(r(x))⌋ ≥ ⌊lg t(x)⌋ − 1 and
⌈lg t(l(x))⌉, ⌈lg t(r(x))⌉ ≤ ⌈lg t(x)⌉ − 1 are necessary and sufficient. Arguing as in
exercise 21, we can prove them equivalent to the stated conditions. [Martin Sandelius,
AMM 68 (1961), 133–134.] See exercise 33 for a generalization.
23. Multiple list insertion assumes that the keys are uniformly distributed in a known
range, so it isn’t a “pure comparison” method satisfying the restrictions considered in
this section.
24. First proceed as if sorting five elements, until after five comparisons we reach one of
the configurations in (6). In the first three cases, complete sorting the five elements in
two more comparisons, then insert the sixth element f . In the other case, first compare
f :b, insert f into the main chain, then insert c. [Picard, Théorie des Questionnaires,
page 116.]
25. Since N = 7! = 5040 and q = 13, there would be 8192 − 5040 = 3152 external
nodes on level 12 and 5040− 3152 = 1888 on level 13.
26. Ľ. Kollár [Lecture Notes in Comp. Sci. 233 (1986), 449–457] has presented an
excellent way to verify that the optimum method has an external path length of 62416.
27.

1:3

2:3 1:2

1:2 132 312 2:3

123 213 231 321
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is the only way to recognize the two most frequent permutations with two comparisons,
even though the first comparison produces a .27/.73 split!
28. Lun Kwan has constructed an 873-line program whose average running time is
38.925u. Its maximum running time is 43u; the latter appears to be optimal since it is
the time for 7 compares, 7 tests, 6 loads, 5 stores.
29. We must make at least S(n) comparisons, because it is impossible to know whether
a permutation is even or odd unless we have made enough comparisons to determine
it uniquely. For we can assume that enough comparisons have been made to narrow
things down to two possibilities that depend on whether or not ai is less than aj , for
some i and j; one of the two possibilities is even, the other is odd. [On the other hand
there is an O(n) algorithm for this problem, which simply counts the number of cycles
and uses no comparisons at all; see exercise 5.2.2–2.]
30. Start with an optimal comparison tree of height S(n); repeatedly interchange i↔ j
in the right subtree of a node labeled i :j, from top to bottom. Interpreting the result
as a comparison-exchange tree, every terminal node defines a unique permutation that
can be sorted by at most n− 1 more comparison-exchanges (by exercise 5.2.2–2).

[The idea of a comparison-exchange tree is due to T. N. Hibbard.]
31. At least 8 are required, since every tree of height 7 will produce the configuration

a
b c

d
e

(or its dual) in some branch after 4 steps, with a ̸= 1. This configuration cannot be
sorted in 3 more comparison/exchange operations. On the other hand the following
tree achieves the desired bound (and perhaps also the minimum average number of
comparison/exchanges):

1:4

2:5

4:5

3:4

1:3 4:5

2:3

1:2

3:4

2:3 4:5

1:2

2:3

α α α β β β

Symmetrical

Symmetrical

2:3

1:2 3:4

α= 1:3

1:2 3:4

1:2 1:2

β=

33. Simple operations applied to any tree of order x and resolution 1 can be applied to
yield another whose weighted path length is no greater, where all external nodes lie on
levels k and k−1 for some k, and at most one external node is noninteger. Furthermore,
the noninteger external node lies on level k, if such a node is present. The weighted
path length of any such tree has the stated value, so this must be minimal. Conversely,
if (iv) and (v) hold in any real-valued search tree it is possible to show by induction
that the weighted path length has the stated value, since there is a simple formula for
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the weighted path length of a tree in terms of the weighted path lengths of the two
subtrees of the root.

36. [Mat. Zametki 4 (1968), 511–518.] See S. Felsner and W. T. Trotter, Combina-
torics, Paul Erdős is Eighty 1 (1993), 145–157, for a summary of progress on this
problem, and for a proof that we can always achieve

1 ≤ T (G1)/T (G2) ≤ ρ,

where the constant ρ is slightly less than 8/3.

SECTION 5.3.2

1. S(m+ n) ≤ S(m) + S(n) +M(m,n).

2. The internal node that is kth in symmetric order corresponds to the comparison
A1 :Bk.

3. Strategy B(1, l) is no better than strategy A(1, l+1), and strategy B′(1, l) no better
than A′(1, l−1); hence we must solve the recurrence

.M.(1, n) = min
1≤j≤n

max( max
1≤l≤j

(1+.M.(1, l−1)), max
j≤l≤n

(1+.M.(1, n−l))), n ≥ 1;

.M.(1, 0) = 0.

It is not difficult to verify that ⌈lg(n+ 1)⌉ satisfies this recurrence.

4. No. [C. Christen, FOCS 19 (1978), 259–266.]

6. Strategy A′(i, i+1) can be used when j = i + 1, except when i ≤ 2. And we can
use strategy A(i, i+2) when j ≥ i+ 2.

7. To insert k + m elements among n others, independently insert k elements and
m elements. (When k and m are large, an improved procedure is possible; see exer-
cise 19.)

8, 9. In the following diagrams, i :j denotes the comparison Ai :Bj , Mij denotes
merging i elements with j in M(i, j) steps, and A denotes sorting the pattern
or in three steps.

2:6

2:4 2:8

2:5 1:4M23 M18

M14 M15 M13+1 A

1:2

3:5

2:2 2:3

2:1

M34

1+M22 M22+1 1+A

M14 M13+1
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10.
1:2

5:8

2:2

5:6

3:2

4:2

3:1

3:3

4:4

2:1

4:6

3:5

3:5

4:6

3:3

4:4

3:2

4:2

2:2

3:4

2:2

3:3

M25 M14+2

M23+2

M33+2

M23+1 M22+2

2A M22+3

2M12+1 2+A

1+M45

M14+1 M13+2

M22+2

M32+2 M22+3

M12+3 M12+3

2A A+3

M22+1+A

Symmetrical

M57

11. Let n = gt as in the hint. We may assume that t ≥ 6. Without loss of generality
let A2 :Bj be the first comparison. If j > gt−1, the outcome A2 < Bj will require ≥ t
more steps. If j ≤ gt−1, the outcome A2 < Bj would be no problem, so only the case
A2 > Bj needs study, and we get the most information when j = gt−1. If t = 2k + 1,
we might have to merge A2 with the gt−gt−1 = 2k−1 elements > Bgt−1 , and merge A1
with the gt−1 others, but this requires k+ (k+ 1) = t further steps. On the other hand
if n = gt − 1, we could merge A2 with 2k−1 − 1 elements, then A1 with n elements, in
(k − 1) + (k + 1) further steps, hence M(2, gt−1) ≤ t.

The case t = 2k is considerably more difficult; note that gt − gt−1 ≥ 2k−2. After
A2 > Bgt−1 , suppose we compare A1 :Bj . If j > 2k−1 the outcome A1 < Bj requires
k + (k − 1) further comparisons (too many). If j ≤ 2k−1, we can argue as before that
j = 2k−1 gives most information. After A1 > B2k−1 , the next comparisons with A1
might as well be with B2k−1+2k−2 , then B2k−1+2k−2+2k−3 ; since 2k−1 + 2k−2 + 2k−3 >
gt−1, the remaining problem is to merge {A1, A2} with n − (2k−1 + 2k−2 + 2k−3)
elements. Of course we needn’t make any comparisons with A1 right away; we could
instead compare A2 :Bn+1−j . If j ≤ 2k−3, we consider the case A2 < Bn+1−j , while if
j > 2k−3 we consider A2 > Bn+1−j . The latter case requires at least (k − 2) + (k + 1)
more steps. Continuing, we find that the only potentially fruitful line is A2 > Bgt−1 ,
A2 < Bn+1−2k−3 , A1 > B2k−1 , A1 > B2k−1+2k−2 , A1 > B2k−1+2k−2+2k−3 , but then
we have exactly gt−5 elements left! Conversely, if n = gt − 1, this line works. [Acta
Informatica 1 (1971), 145–158.]
12. The first comparison must be either α :Xk for 1 ≤ k ≤ i, or (symmetrically)
β :Xn−k for 1 ≤ k ≤ j. In the former case the response α < Xk leaves us with
Rn(k−1, j) more comparisons to make; the response α > Xk leaves us with the problem
of sorting α < β, Y1 < · · · < Yn−k, α < Yi−k+1, β > Yn−k−j , where Yr = Xr−k.
13. [Computers in Number Theory (New York: Academic Press, 1971), 263–269.]
14. [SICOMP 9 (1980), 298–320. The complete solution for M(4, n) was obtained
shortly afterwards by J. Schulte Mönting, who also gave a conjectured solution for
M(5, n), in Theor. Comp. Sci. 14 (1981), 19–37.]
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15. Double m until it exceeds n. This involves ⌊lg(n/m)⌋+ 1 doublings.
16. All except (m,n) = (2, 8), (3, 6), (3, 8), (3, 10), (4, 8), (4, 10), (5, 9), (5, 10), when
it’s one over.
17. Assume that m ≤ n and let t = lg(n/m) − θ. Then lg


m+n

m


> lgnm − lgm! ≥

m lgn− (m lgm−m+ 1) = m(t+ θ) +m− 1 = H(m,n) + θm− ⌊2θm⌋ ≥ H(m,n) +
θm− 2θm ≥ H(m,n)−m. (The inequality m! ≤ mm21−m is a consequence of the fact
that k(m− k) ≤ (m/2)2 for 1 ≤ k < m.)
19. First merge {A1, . . . , Am} with {B2, B4, . . . , B2⌊n/2⌋}. Then we must insert the
odd elements B2i−1 among ai of the A’s for 1 ≤ i ≤ ⌈n/2⌉, where a1+a2+· · ·+a⌈n/2⌉ ≤
m. The latter operation requires at most ai operations for each i, so at most m more
comparisons will finish the job.
20. Apply (12).
22. R. Michael Tanner [SICOMP 7 (1978), 18–38] has shown that a “fractile insertion”
algorithm makes at most 1.06 lg


m+n

m


comparisons on the average. Ľ. Kollár [Com-

puters and Artificial Intelligence 5 (1986), 335–344] has studied the average behavior
of Algorithm H.
23. The adversary keeps an n×n matrix X whose entries xij are initially all 1. When
the algorithm asks if Ai = Bj , the adversary sets xij to 0. The answer is “No,” unless
the permanent of X has just become zero. In the latter case, the adversary answers
“Yes” (as it must, lest the algorithm terminate immediately!), and deletes row i and
column j from X; the resulting (n−1)× (n−1) matrix will have a nonzero permanent.
The adversary continues in this way until only a 0× 0 matrix is left.

If the permanent is about to become zero, we can rearrange rows and columns so
that i = j = 1 and the matrix has all 1s on the diagonal, yet its permanent vanishes
when x11 ← 0; then we must have x1kxk1 = 0 for all k > 1. It follows that at least
n zeros are deleted when the adversary first answers “Yes,” and n− 1 the second time,
etc. The algorithm will terminate only after receiving n “Yes” answers to nonredundant
questions, and after asking at least n+ (n− 1) + · · ·+ 1 questions [JACM 19 (1972),
649–659]. A similar argument shows that n+ (n− 1) + · · ·+ (n−m+ 1) questions are
needed to determine that A ⊆ B when |A| = m ≤ n = |B|.
24. The coarse preliminary merge needs at most m + q − 1 comparisons, and the
subsequent insertions need at most t each. These upper bounds cannot be decreased.
So the maximum is the same as for Algorithm H (see (19)).
25. The general problem is as hard as the special case where each xij is 0 or 1 and
x = 1

2 . Then each comparison is equivalent to looking at the bit xij , and we want to
determine the entire matrix by inspecting the fewest bits. Any merging problem (1)
corresponds to such a 0–1 matrix if we set xij = [Ai >Bn+1−j ]. (N. Linial and M. Saks,
in J. Algorithms 6 (1985), 86–103, attribute this observation to J. Shearer. A similar
result connects searching and sorting with respect to any partial order.)

SECTION 5.3.3
1. Player 11 lost to 05 ; so 13 was known to be worse than 05, 11, and 12.
2. Let x be the tth largest, and let S be the set of all elements y such that the

comparisons made are insufficient to prove either that x < y or y < x. There are
permutations, consistent with all the comparisons made, in which all elements of
S are less than x; for we can stipulate that all elements of S are less than x and
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embed the resulting partial ordering in a linear ordering. Similarly there are consistent
permutations in which all elements of S are greater than x. Hence we don’t know the
rank of x unless S is empty.

3. An adversary may regard the loser of the first comparison as the worst player
of all.

4. Suppose the largest t−1 elements are {a1, . . . , at−1}. Any path in the comparison
tree to determine the largest t elements, consistent with this assumption, must include
at least n− t comparisons to determine the largest of the remaining n− t+ 1 elements.
Such paths have at least n− t binary choice points, so there are at least 2n−t of them.
Thus, each of the nt−1 choices for the largest t − 1 elements must appear in at least
2n−t leaves of the tree.

5. In fact, Wt(n) ≤ Vt(n) + S(t− 1), by exercise 2.
6. Let g(l1, l2, . . . , lm) = m− 2 + ⌈lg(2l1 + 2l2 + · · ·+ 2lm)⌉, and assume that f = g

whenever l1 + l2 + · · ·+ lm + 2m < N. We shall prove that f = g when l1 + l2 + · · ·+
lm + 2m = N. We may assume that l1 ≥ l2 ≥ · · · ≥ lm. There are only a few possible
ways to make the first comparison:
Strategy A(j, k), for j < k. Compare the largest element of group j with the largest of
group k. This gives the relation

f(l1, . . . , lm) ≤ 1 + g(l1, . . . , lj−1, lj+1, lj+1, . . . , lk−1, lk+1, . . . , lm)
= g(l1, . . . , lj−1, lj , lj+1, . . . , lk−1, lj , lk+1, . . . , lm) ≥ g(l1, . . . , lm).

Strategy B(j, k), for lk > 0. Compare the largest element of group j with one of the
small elements of group k. This gives the relation

f(l1, . . . , lm) ≤ 1 + max(α, β) = 1 + β,

where
α = g(l1, . . . , lj−1, lj+1, . . . , lm) ≤ g(l1, . . . , lm)− 1,

β = g(l1, . . . , lk−1, lk−1, lk+1, . . . , lm) ≥ g(l1, . . . , lm)− 1.
Strategy C(j, k), for j ≤ k, lj > 0, lk > 0. Compare a small element from group j with
a small element from group k. The corresponding relation is

f(l1, . . . , lm) ≤ 1 + g(l1, . . . , lk−1, lk − 1, lk+1, . . . , lm) ≥ g(l1, . . . , lm).

The value of f(l1, . . . , lm) is found by taking the minimum right-hand side over all
these strategies; hence f(l1, . . . , lm) ≥ g(l1, . . . , lm). When m > 1, Strategy A(m−1,m)
shows that f(l1, . . . , lm) ≤ g(l1, . . . , lm), since g(l1, . . . , lm−1, lm) = g(l1, . . . , lm−1, lm−1)
when l1 ≥ · · · ≥ lm. (Proof: ⌈lg(M + 2a)⌉ = ⌈lg(M + 2b)⌉ for 0 ≤ a ≤ b, when M is a
positive multiple of 2b.) When m = 1, use Strategy C(1, 1).

[S. S. Kislitsyn’s paper determined the optimum strategy A(m−1,m) and eval-
uated f(l, l, . . . , l) in closed form; the general formula for f and this simplified proof
were discovered by Floyd in 1970.]

7. For j > 1, if j + 1 is in α′, cj is 1 plus the number of comparisons needed to select
the next largest element of α′. Similar reasoning applies if j + 1 is in α′′; and c1 is
always 0, since the tree always looks the same at the end.

8. In other words, is there an extended binary tree with n external nodes such that
the sum of the distances to the t− 1 farthest internal nodes from the root is less than
the corresponding sum for the complete binary tree? The answer is no, since it is not
hard to show that the kth largest element of µ(α) is at least ⌊lg(n− k)⌋ for all α.
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9. (All paths use six comparisons, yet the procedure is not optimum for V 3(5).)

1:2

3:4

2:4

3:5

2:5

2:3

3 2

1:5

5 1

2:3

2:5

5 2

1:3

3 1

Symmetrical

Symmetrical

Symmetrical

10. (Found manually by trial and error, using exercise 6 to help find fruitful lines.)

1:2

3:4

2:4

5:6

2:6

3:5

2:7

5:7

4:5

4 2:5

5 2

4:7

4 3:7

7 3

2:5

2:3

3 2

1:5

5:7

7 5

1:7

7 1

3:7

6:7

1:3

2:3

2 3:6

6 3

1:7

1:6

6 1

7

1:6

1:5

5:7

7 5

1:7

7 1

6

3:6

1:6

1:5

3:5

5 3

1:3

3 1

1:7

2:7

2 6:7

7 6

1:3

1:6

6 1

3

6

Symmetrical

Symmetrical

Symmetrical

Symmetrical

Symmetrical

11. See Information Processing Letters 3 (1974), 8–12.
12. After discarding the smallest of {X1, X2, X3, X4}, we have the configuration q q
plus n − 3 isolated elements; the third largest of them can be found in V3(n − 1) − 1
further steps.



5.3.3 ANSWERS TO EXERCISES 663

13. After finding the median of the first f(n) elements, say Xj , compare it to each of
the others; this splits the elements into approximately n/2−k less than Xj and n/2+k
greater than Xj , for some k. It remains to find the |k|th largest or smallest element of
the bigger set, which requires n/2+O(|k| logn) further comparisons. The average value
of |k| (consider points uniformly distributed in [0 . . 1]) is O(1/

√
n ) + O(n/


f(n) ).

Let T (n) be the average number of comparisons when f(n) = n2/3; then T (n) − n =
T (n2/3)− n2/3 + n/2 +O(n2/3), and the result follows.

It is interesting to note that when n = 5, this method requires only 5 13
15 compar-

isons on the average, slightly better than the tree of exercise 9.
14. In general, the t largest can be found in Ut(n) ≤ Vt(n − 1) + 1 comparisons,
by finding the tth largest of {X1, . . . , Xn−1} and comparing it with Xn, because of
exercise 2. (Kirkpatrick actually proved that (12) is a lower bound for Ut(n + 1) − 1.
For larger t, an improved bound for Ut(n) was found by J. W. John, SICOMP 17
(1988), 640–647.)
15. min(t, n+1−t). Assuming that t ≤ n + 1 − t, if we don’t save each of the first
t words when they are first read in, we may have forgotten the tth largest, depending
on the subsequent values still unknown to us. Conversely, t locations are sufficient,
since we can compare a newly input item with the previous tth largest, storing the
register if and only if it is greater.
16. The algorithm starts with (a, b, c, d) = (n, 0, 0, 0) and ends with (0, 1, 1, n−2). If
the adversary avoids “surprising” outcomes, the only transitions possible after each
comparison are from (a, b, c, d) to itself or to

(a−2, b+1, c+1, d), if a ≥ 2;
(a−1, b, c+1, d) or (a−1, b+1, c, d), if a ≥ 1;

(a, b−1, c, d+1), if b ≥ 2;
(a, b, c−1, d+1), if c ≥ 2.

It follows that ⌈ 3
2a⌉ + b + c − 2 comparisons are needed to get from (a, b, c, d) to

(0, 1, 1, a+b+c+d−2). [Reference: CACM 15 (1972), 462–464. In FOCS 16 (1975), 71–
74, Pohl proved that the algorithm also minimizes the average number of comparisons.]
17. Use (6) first for the largest, then for the smallest, noting that ⌊n/2⌋ of the
comparisons are common to both.
18. Vt(n) ≤ 18n− 151, for all sufficiently large n.
21. Step 0. Build two knockout trees of sizes 2k and 2k−t+1.

Step j, for 1 ≤ j ≤ t. (At this point we have output the largest j−1 elements. The
remaining elements, together with a set of dummy placeholders that each equal −∞,
now appear in two knockout trees A and B, where A has 2k leaves and B has 2k−t+j .)
Let a be the champion of A, and assume that a has beaten a0, a1, . . . , ak−1, where
al is a champion of 2l elements. Similarly, let b and b0, b1, . . . , bk−t+j−1 be the
champion and subchampions of B. If j = t, output max(a, b) and stop. Otherwise,
“grow” another level at the bottom of B by introducing 2k−t+j dummies who each
have lost their first game to the players of B. (Our strategy will be to merge B
into A, if possible, by exchanging it with the subtree A′ of A that contains a0, a1,
. . . , ak−t+j ; notice that A′, like the newly enlarged B, is a knockout tree with 2k−t+j+1

leaves.) Compare b to ak−t+j+1, then compare the winner to ak−t+j+2, etc., until c =
max(b, ak−t+j−1, . . . , ak−1) has been found. Case 1, b < c: Output a and interchange
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B with A′. Case 2, b = c and b < a: Output a and interchange B with A′. Case 3, b = c
and b > a: Output b. After handling these three cases we are left with (possibly new)
knockout trees A and B in which the champion of B has just been output. Remove that
element from B and replace it by −∞, making any necessary comparisons to restore
the knockout tournament structure (as in tree selection). This completes Step j.

Step 0 makes 2k − 1 + 2k+1−t − 1 comparisons, and Step t makes 1. Steps 1, 2,
. . . , t − 1 each make at most k − 1 comparisons, except in Case 2 when there might
be k. But whenever Case 2 occurs, we’ll save one comparison the next time we’re in
Case 1 or Case 2, because a0 will then be −∞. Thus the first t− 1 steps make at most
(t− 1)(k − 1) + 1 comparisons altogether.

By exercise 3 we have Wt(n) ≤ n + (t − 1)(k − 1) for all n ≤ 2k + 2k+1−t, when
k ≥ t ≥ 2. If n ≥ 2k +t−2, exercise 4 says that Wt(n) ≥ n−t+⌈lg(2k +t−2)t−1⌉, which
is n−t+(t−1)k+1 if t ≥ 3. Thus the method is optimum for 2k+t−2 ≤ n ≤ 2k+2k+1−t

when k ≥ t ≥ 3. (Also for several smaller values of n, if t is large.)
A similar method, which uses a reserved element instead of −∞ when rebuilding B

at the end of steps 1, . . . , t−2 (see the proof of (11)), proves that Vt(n) ≤ n+(t−1)(k−1)
when n ≤ 2k + 2k+1−t + t− 2 and k ≥ t ≥ 3. [See J. Algorithms 5 (1984), 557–578.]
22. In general when 2r · 2k < n+ 2− t ≤ (2r + 1) · 2k and t < 2r ≤ 2t, this procedure
starting with t + 1 knockout trees of size 2k will yield ⌊(t − 1)/2⌋ fewer comparisons
than (11), since at least this many of the comparisons that were used to find the
minimum in (ii) can be “reused” in (iii).
23. According to (15), the quantity V⌈n/2⌉(n)/n is bounded below by 2 as n → ∞.
But D. Dor and U. Zwick have shown that the actual lower limit is strictly greater
than 2, while the upper limit is less than 2.942 [SICOMP 28 (1999), 1722–1758; 14
(2001), 312–325]. They also have proved an asymptotic upper bound

Vαn(n) ≤


1 + α lg 1
α

+O

α log log 1

α


n,

which is not extremely far from (15) when α is small [Combinatorica 16 (1996), 41–58].
24. Since Wt(n) = n + O(t logn) by Eq. (6), the statement in the hint is surely true
when t ≤

√
n/ lnn. Suppose that statement holds for n, and let u and v have ranks

t− = ⌊t−
√
t lnn⌋ and t+ = ⌈t+

√
t lnn ⌉ in the first n of 2n randomly ordered elements.

(The smallest element has rank 1.) Compare the other n elements to v, and compare
those less than v also to u. The probability ps that an element x of rank t in the
first n has rank s overall is


s−1
t−1
2n−s

n−t


/
2n

n


. The average value of s is


sps = 2n+1

n+1 t;
this is the average number of elements < x, hence the average number of comparisons
to u is


n

n+1

t+ = t + O(n logn)1/2. Let u and v have ranks s− and s+ among all

2n elements, and let T− = ⌊2t−
√

2t ln 2n⌋, T+ = ⌈2t+
√

2t ln 2n ⌉. If s− ≤ T− and
s+ ≥ T+, we can find the elements of ranks T− and T+ by selecting from the s+−s−+1
elements between u and v. We will prove that it’s very unlikely to have s− > T− or
s− < T−− 2

√
n lnn or s+ < T+ or s+ > T+ + 2

√
n lnn; therefore O(n logn)1/2 further

comparisons will almost always suffice. The hint will follow by induction on n if we
can show that “very unlikely” means “with probability O(n−1−ϵ) for all sufficiently
large n.”

Notice that ps+1/ps = s(n − s + t)/(s + 1 − t)(2n − s) decreases as s increases
from t to n + t, and it is ≤ 1 if and only if s ≥ 2n(t − 1)/(n − 1); it is ≤ 1 −
1
2cn

−1/2 +O(n−1) when s = s(c) = 2t+ ct(n− t)/n3/2. Therefore the probability that
s ≥ s(c) is ≤ 2c−1n1/2ps(c)(1 +O(n−1/2)). Similarly, ps−1/ps < 1− 1

2cn
−1/2 −O(n−1)
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when s = s(c) = 2t − 1 − c(t − 1)(n + 1 − t)/n3/2, so s ≤ s(c) with probability
≤ 2c−1n1/2ps(c)(1 + O(n−1/2)). In the cases we need, the relevant values of c are
≥ .55n3/2(lnn)1/2t−1/2(n − t)−1 for all large n, and Stirling’s approximation implies
that ps(c) and ps(c) are both

O(n1/2s−1/2(2n− s)−1/2) exp(−2sc2(n− t)2/n3 − 2(2n− s)c2t2/n3)
≤ O(t−1/2 exp(−4t(n− t)c2/n2)) ≤ O(t−1/2n−1.2).

Thus the probability O(n−1.2(logn)1/2) is indeed very unlikely. [A similar construction
appeared in CACM 18 (1975), 165–172, but the analysis was incorrect.]
25. Given a selection algorithm and a permutation π of {1, . . . , n}, let’s charge each
comparison πi :πj to πi if |πi − t| > |πj − t|; if |πi − t| = |πj − t|, we charge 1

2 to each.
A charge to πi is called useful if πi < πj ≤ t or πi > πj ≥ t; otherwise it’s useless. Let
xk be the total charge to k. Then the total number of comparisons is x1 + · · · + xn.
Clearly xt = 0; but xk ≥ 1 for all k ̸= t, because every element other than t has a
useful charge. We will prove that Ext+k + Ext−k ≥ 3 for 0 < k < t.

Let Ak(π) = [the first charge to t+ k was useless]. Then Ak(π) = 1 − A−k(π′),
where π′ is like π but with the elements (t−k, . . . , t+k−1, t+k) replaced respectively
by (t−k+1, . . . , t+k, t−k). Therefore EAk + EA−k = 1.

Let Bk(π) = [the first charge to both t + k and t − k was 1
2 , and t + k received

its second charge before t − k did]. Also let Ck(π) = [xt+k ≥ 2 +Ak ]. Then Bk(π) ≤
Ck(π′), where π′ is like π but with the elements (t− k, t− k+ 1, . . . , t+ k− 1) replaced
by (t+ k− 1, t− k, . . . , t+ k− 2). Similarly, B−k(π) ≤ C−k(π′′), where π′′ is obtained
from π by changing (t−k+1, . . . , t+k−1, t+k) to (t−k+2, . . . , t+k, t−k+1). It follows
that EBk ≤ ECk and EB−k ≤ EC−k.

The proof is completed by observing that xt−k +xt+k ≥ 2+Ak +A−k−Bk−B−k +
Ck + C−k. [See JACM 36 (1989), 270–279, for further results.]

The upper bound in (17) also has a matching lower bound: Andrew and Frances
Yao proved that V t(n) ≥ n+ 1

2 t (ln lnn− ln t−9) for t > 1 and n ≥ (8t)18t, in SICOMP
11 (1982), 428–447.
26. (a) Let the vertices of the two types of components be designated a; b < c. The
adversary acts as follows on nonredundant comparisons: Case 1, a :a′, make an arbitrary
decision. Case 2, x :b, say that x > b; all future comparisons y :b with this particular b
will result in y > b, otherwise the comparisons are decided by an adversary for Ut(n−1),
yielding ≥ 2 + Ut(n − 1) comparisons in all. This reduction will be abbreviated “let
b = min; 2 + Ut(n− 1).” Case 3, x :c, let c = max; 2 + Ut−1(n− 1).

(b) Let the new types of vertices be designated d1, d2 < e; f < g < h > i. Case 1,
a :a′ or c :c′, arbitrary decision. Case 2, a :c, say that a < c. Case 3, x :b, let b = min;
2 + Ut(n − 1). Case 4, x :d, let d = min; 2 + Ut(n − 1). Case 5, x :e, let e = max;
3+Ut−1(n−1). Case 6, x :f , let f = min; 2+Ut(n−1). Case 7, x :g, let f and g = min;
3 + Ut(n − 2). Case 8, x :h, let h = max; 3 + Ut−1(n − 1). Case 9, x : i, let i = min;
2 + Ut(n− 1).

(c) For t = 1 we have Ut(n) = n− 1, so the inequality holds. For 1 < t ≤ n/2− 1,
use induction and (b). For t = (n − 1)/2, use induction and (a). For t = n/2,
Ut(n− 1) = Ut−1(n− 1); use induction and (a).
27. (a) The height h satisfies 2h ≥


l 1 ≥


l Pr(l)/p = 1/p.

(b) If r ≤ t, we reach A3 after at least n− |S0| − |T0| = n− |S0| − r flips. The tth
largest element will be either the smallest or largest element of Q, and the elements of
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Q have not yet been compared to each other, so we will need at least |Q|−1 more flips.
If |S0| < q we have |Q| = r, and if not we have |Q| ≥ |S0|−|C(y0)|+1 ≥ |S0|−(q−r)+1;
so in both cases at least n−q flips will be made. There are n+1−t sets T containing the
t− 1 largest elements determined by a given leaf, and for every such T the probability
of reaching that leaf is either zero or 2−f/


n
t


, where f ≥ n − q is the number of flips

corresponding to T . [This adversary is implicit in the paper of Bent and John, STOC
17 (1985), 213–216.]

(c) If t < r, change t to n + 1 − t; this will make t ≥ r when r maximizes the
right-hand side, since r will be O(

√
n ). If it is possible to reach A3 with |C(y)| > q− r

for all y ∈ T0, the algorithm will make n − 1 comparisons to relate the tth largest
element to all the others, in addition to at least (r − 1)(q − r + 1) comparisons that it
made between S and T \ {y0}.

(d) Choose r = ⌈√m ⌉ and q = 2r − 2. (It is slightly better to let q = r +
⌊√m+ 1

2 ⌋− 2; this choice maximizes the lower bound derived in (c).)

SECTION 5.3.4
1. (When m = 2k − 1 is odd it is best to have vk followed by vk+1, wk+1, vk+2, . . .

instead of by wk+1, vk+1, wk+2, . . . in the diagram. This change is valid because the
swapped lines are being compared to each other.)

(3,5) odd-even merge

x1

x2

x3

y1
y2
y3
y4
y5

z1
z2
z3
z4
z5
z6
z7
z8

v1
w1

v2
v3
w2

v4
w3

v5

Pratt eight-sort

2. The increment h needs 2− [2h≥n] levels; see the diagram above for n = 8.
3. C(m,m−1) = C(m,m)− 1, for m ≥ 1.
4. If T̂ (6) = 4, there would be three comparators acting at each time, since Ŝ(6) = 12.

But then removing the bottom line and its four comparators would give Ŝ(5) ≤ 8,
a contradiction. [The same argument yields T̂ (7) = T̂ (8) = 6. Further values have
been obtained by D. Bundala and J. Závodný via satisfiability encoding (see Section
7.2.2.2). The value of T̂ (17) remains unknown.]

5. Let f(n) = f(⌈n/2⌉) + 1 + ⌈lg⌈n/2⌉⌉, if n ≥ 2. Then f(n) = (1 + ⌈lgn⌉)⌈lgn⌉/2
by induction on n.

6. We may assume that each stage makes ⌊n/2⌋ comparisons (extra comparisons
can’t hurt). Since T̂ (6) = 5, it suffices to show that T (5) = 5. After two stages when
n = 5, we cannot avoid the partial orderings q qqq qH

H or qq qqqP�
P� , which cannot be sorted in

two more stages.
7. Assume that the input keys are {1, 2, . . . , 10}. The key fact is that after the first 16

comparators, lines 2, 3, 4, and 6 cannot contain 8 or 9, nor can they contain both 6
and 7. (Notice that the modified network has delay 8.)

8. Straightforward generalization of Theorem F.
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9. M̂(3, 3) ≥ Ŝ(6) − 2Ŝ(3); M̂(4, 4) ≥ Ŝ(8) − 2Ŝ(4); M̂(5, 5) ≥ 2M̂(2, 3) + 3 by
exercise 8; and M̂(2, 3) ≥ Ŝ(5) − Ŝ(2) − Ŝ(3). Similarly M̂(3, 4) = 8. But what are
M̂(3, 5) and M̂(4, 5)?
10. The hint follows by the method of proof in Theorem Z. Hence the number of 0s
in the even subsequence minus the number of 0s in the odd subsequence is ±1 or 0.
11. (Solution by M. W. Green.) The network is symmetric in the sense that, whenever
zi is compared to zj , there is a corresponding comparison of z2t−1−j :z2t−1−i. Any
symmetric network capable of sorting a sequence ⟨z0, . . . , z2t−1⟩ will also sort the
sequence ⟨−z2t−1, . . . ,−z0⟩.

Batcher has observed that the network will actually sort any cyclic shift ⟨zj , zj+1,
. . . , z2t−1, z0, . . . , zj−1⟩ of a bitonic sequence. This is a consequence of the 0–1 principle.

[These results do not hold for bitonic sorters when the order is not a power of 2. For
example, Fig. 52 does not sort ⟨0, 0, 0, 0, 0, 1, 0⟩. Batcher’s original definition of bitonic
sequences was more complicated and less useful than the definition adopted here.]
12. x ∨ y is (consider 0–1 sequences), but not x ∧ y (consider ⟨3, 1, 4, 5⟩ ∧ ⟨6, 7, 8, 2⟩).
13. A perfect shuffle has the effect of replacing zi by zj , where the binary representation
of j is that of i rotated cyclically to the right one place (see exercise 3.4.2–13). Consider
shuffling the comparators instead of the lines; then the first column of comparators acts
on the pairs z[i] and z[i ⊕ 2r−1], the next column on z[i] and z[i ⊕ 2r−2], . . . , the tth
column on z[i] and z[i ⊕ 1], the (t + 1)st column on z[i] and z[i ⊕ 2r−1] again, etc.
Here ⊕ denotes exclusive-or on the binary representation. This shows that Fig. 57 is
equivalent to Fig. 56; after s stages we have groups of 2s elements that are alternatively
sorted and reverse-sorted.

C. G. Plaxton and T. Suel [Math. Systems Theory 27 (1994), 491–508] have shown
that any such network requires at least Ω((logn)2/ log logn) levels of delay.
14. (a) Let yis = xjs , yjs = xis , yk = xk for is ̸= k ̸= js; then yαs = xα. (b) This
is obvious unless the set {is, js, it, jt} has only three distinct elements; suppose that
is = it. Then if s < t the first s− 1 comparators have (is, js, jt) replaced, respectively,
by (js, jt, is) in both (αs)t and (αt)s. (c) (αs)s = α, and α1 = α, so we can assume
that s1 > s2 > · · · > sk > 1. (d) Let β = α[i :j]; then gβ(x1, . . . , xn) = (x̄i ∨ xj) ∧
(gα(x1, . . . , xi, . . . , xj , . . . , xn) ∨ gα(x1, . . . , xj , . . . , xi, . . . , xn)). Iterating this identity
yields the result. (e) fα(x) = 1 if and only if no path in Gα goes from i to j where
xi > xj . If α is a sorting network, the conjugates of α are also; and fα(x) = 0 for all
x with xi > xi+1. Take x = e(i); this shows that G has an arc from i to k1 for some
k1 ̸= i. If k1 ̸= i+1, x = e(i)∨e(k1) shows that G has an arc from i or k1 to k2 for some
k2 /∈ {i, k1}. If k2 ̸= i + 1, continue in the same way until finding a path in G from i
to i+ 1. Conversely if α is not a sorting network, let x be a vector with xi > xi+1 and
gα(x) = 1. Some conjugate α′ has fα′(x) = 1, so Gα′ can have no path from i to i+ 1.
[In general, (xα)i ≤ (xα)j for all x if and only if Gα′ has an oriented path from i to j
for all α′ conjugate to α.]
15. [1 :4][3 :2][1 :3][2 :4][2 :3].
16. The process clearly terminates. Each execution of step T2 has the effect of
interchanging the iqth and jqth outputs, so the result of the algorithm is to permute the
output lines in some way. Since the resulting (standard) network makes no change to the
input ⟨1, 2, . . . , n⟩, the output lines must have been returned to their original position.
17. Make the network standard by the algorithm of exercise 16; then by considering
the input sequence ⟨1, 2, . . . , n⟩, we see that standard selection networks must take the
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t largest elements into the t highest-numbered lines; and a V̂t(n) network must take
the tth largest into line n+ 1− t. Apply the zero-one principle.
18. The proof in Theorem A shows that V̂t(n) ≥ (n− t)⌈lg(t+ 1)⌉+ ⌈lg t⌉.
19. The network [1:n][2 :n] . . . [1 :3][2 :3] selects the smallest two elements with 2n− 4
comparators; add [1:2] for V̂2(n). The lower bounds come from the proof of Theorem A
(see the previous answer).
20. (a) First note that V̂3(n) ≥ V̂3(n − 1) + 2 when
n ≥ 4: By symmetry the first comparator may be
assumed to be [1 :n]; after this must come a network
to select the third largest of ⟨x2, x3, . . . , xn⟩, and an-
other comparator touching line 1. On the other hand,
V̂3(5) ≤ 7, since four comparators find the min and
max of {x1, x2, x3, x4}, then we sort the other three.

(b) A subtle construction by M. W. Green, shown
for n = 11, does the job. (Equality probably holds.)
21. False; consider, for example, the two networks [1 :2][3 :4][2 :3][1 :4][1 :2][3 :4] and
[1:2][3 :4][2 :3][3 :4][1:4][1 :2][3 :4]. (However, N. G. de Bruijn proved in Discrete Math.
9 (1974), 337, that new comparators do not mess up sorting networks that are primitive
in the sense of exercise 36.)
22. (a) By induction on the length of α, since xi ≤ yi and xj ≤ yj implies that
xi ∧ xj ≤ yi ∧ yj and xi ∨ xj ≤ yi ∨ yj . (b) By induction on the length of α, since
(xi∧xj)(yi∧yj)+(xi∨xj)(yi ∨ yj) ≥ xiyi + xjyj . [Consequently ν(x∧y) ≤ ν(xα∧yα),
an observation due to W. Shockley.]
23. Let xk = 1 if and only if pk ≥ j, yk = 1 if and only if pk > j; then (xα)k = 1 if
and only if (pα)k ≥ j, etc.
24. The formula for l′i is obvious and for l′j take z = x ∧ y as in the hint and observe
that (zα)i = (zα)j = 0 by exercise 21. Adding additional 1s to z shows the existence of
a permutation p with (pα′)j ≤ ζ(z), by exercise 23. The relations for u′

i and u′
j follow

by reversing the order.
25. (Solution by H. Shapiro.) Let p and q be permutations with (pα)k = lk and
(qα)k = uk. We can transform p into q by repeatedly interchanging pairs (i, i + 1) of
adjacent integers; such an interchange in the input affects the kth output by at most ±1.
26. There is a one-to-one correspondence that takes the element ⟨p1, . . . , pn⟩ of Pnα
into the “covering sequence” x(0) covers x(1) covers . . . covers x(n), where the x(i) are
in Dnα; in this correspondence, x(i−1) = x(i) ∨ e(j) if and only if pj = i. For example,
⟨3, 1, 4, 2⟩ corresponds to the sequence ⟨1, 1, 1, 1⟩ covers ⟨1, 0, 1, 1⟩ covers ⟨1, 0, 1, 0⟩
covers ⟨0, 0, 1, 0⟩ covers ⟨0, 0, 0, 0⟩. [Andrew Yao observes that consequently it suffices
to test a sorting network on


n

⌊n/2⌋

− 1 suitably chosen permutations. For example,

any 4-network that sorts ⟨4, 1, 2, 3⟩, ⟨3, 1, 4, 2⟩, ⟨3, 4, 1, 2⟩, ⟨2, 4, 1, 3⟩, and ⟨2, 3, 4, 1⟩ sorts
everything. See exercise 6.5–1; see also exercise 56.]
27. The principle holds because (xα)i is the ith smallest element of x. If x and y
denote different columns of a matrix whose rows are sorted, so that xi ≤ yi for all i,
and if xα and yα denote the result of sorting the columns, the stated principle shows
that (xα)i ≤ (yα)i for all i, since we can choose i elements of x in the same rows as any
i given elements of y. [We have used this principle to prove the invariance property of
shellsort, Theorem 5.2.1K. Further exploitation of the idea appears in an interesting
paper by David Gale and R. M. Karp, J. Computer and System Sciences 6 (1972),
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103–115; see also B. E. Tenner, Annals of Combinatorics 11 (2007), 101–114. The
fact that column sorting does not mess up sorted rows was apparently first observed in
connection with the manipulation of tableaux; see Hermann Boerner, Darstellung von
Gruppen (Springer, 1955), Chapter V, §5.]
28. If {xi1 , . . . , xit} are the t largest elements, then xi1 ∧ . . .∧xit is the tth largest. If
{xi1 , . . . , xit} are not the t largest, then xi1 ∧ . . . ∧ xit is less than the tth largest.
29. ⟨x1 ∧ y1, (x2 ∧ y1) ∨ (x1 ∧ y2), (x3 ∧ y1) ∨ (x2 ∧ y2) ∨ (x1 ∧ y3), y1 ∨ (x3 ∧ y2) ∨
(x2 ∧ y3)∨ (x1 ∧ y4), y2 ∨ (x3 ∧ y3)∨ (x2 ∧ y4)∨ (x1 ∧ y5), y3 ∨ (x3 ∧ y4)∨ (x2 ∧ y5)∨x1,
y4 ∨ (x3 ∧ y5) ∨ x2, y5 ∨ x3⟩.
30. Applying the distributive and associative laws reduces any formula to ∨’s of ∧’s;
then the commutative, idempotent, and absorption laws lead to canonical form. The
Si are precisely those sets S such that the formula is 1 when xj = [j ∈S ] while the
formula is 0 when xj = [j ∈S′ ] for any proper subset S′ of S.
31. δ4 = 166. R. Church [Duke Math. J. 6 (1940), 732–734] found δ5 = 7579, M. Ward
[Bull. Amer. Math. Soc. 52 (1946), 423] found δ6 = 7828352, and the next values
are δ7 = 2414682040996, δ8 = 56130437228687557907786 [R. Church, Notices Amer.
Math. Soc. 12 (1965), 724; J. Berman and P. Köhler, Mitteilungen Math. Seminar
Gießen 121 (1976), 103–124; D. Wiedemann, Order 8 (1991), 5–6]. The asymptotic
formula δ2m = exp(

2m−1
m


ln 2 +

 2m
m+1


/2m+1 + 1

16 (m − 1)

m/π + O(m−1/2)) has

been established by A. D. Korshunov and A. A. Sapozhenko, with a similar formula for
δ2m+1; see Russian Math. Surveys 58 (2003), 929–1001, Theorem 1.8.
32. Gt+1 is also the set of all strings θψ where θ and ψ are in Gt and θ ⊆ ψ as vectors
of 0s and 1s. It follows that Gt is the set of all strings z0 . . . z2t−1 of 0s and 1s having
the property that zi ≤ zj whenever the binary representation of i is “⊆” the binary
representation of j in the 0–1 vector sense. Each element z0 . . . z2t−1 of Gt, except
00 . . . 0 and 11 . . . 1, represents a ∧–∨ function f(x1, . . . , xt) from D2t into {0, 1}, under
the correspondence f(x1, . . . , xt) = z(x1...xt)2 .
33. If such a network existed we would have (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x4) =
f(x1∧x2, x1∨x2, x3, x4) or f(x1∧x3, x2, x1∨x3, x4) or . . . or f(x1, x2, x3∧x4, x3∨x4)
for some function f . The choices ⟨x1, x2, x3, x4⟩ = ⟨x, x̄, 1, 0⟩, ⟨x, 0, x̄, 1⟩, ⟨x, 1, 0, x̄⟩,
⟨1, x, x̄, 0⟩, ⟨1, x, 0, x̄⟩, ⟨0, 1, x, x̄⟩ show that no such f exists.
34. Yes; after proving this, you are ready to tackle the network for n = 16 in Fig. 49
(unless you simply checked all 2n bit vectors by brute force using Theorem Z).
35. Otherwise the permutation in which only i and i+1 are misplaced would never be
sorted. Let Dk be the number of comparators [i : i+k] in a standard sorting network.
Then D1 + 2D2 +D3 ≥ 2(n− 2) since there must be two comparators from {i, i+1} to
{i+2, i+3}, for 1 ≤ i ≤ n− 3, as well as [1:2] and [n−1:n]. Similarly D1 + 2D2 + · · ·+
kDk +(k−1)Dk+1 + · · ·+D2k−1 ≥ k(n−k), a formula suggested by J. M. Pollard. We
can also prove that 2D1 +D2 ≥ 3n−4: If we strike out the first comparators of the form
[j :j+1] for all j there must be at least one more comparator lying within {i, i+1, i+2},
for 1 ≤ i ≤ n− 2. Similarly kD1 + (k− 1)D2 + · · ·+Dk ≥ S(k + 1)(n− k) + k(k− 1).
36. (a) Each adjacent comparator reduces the number of inversions by 0 or 1, and
⟨n, n−1, . . . , 1⟩ has


n
2


inversions. (b) Let α = β [p :p+1], and argue by induction on
the length of α. If p = i, then j > p + 1, and (xβ)p > (xβ)j , (xβ)p+1 > (xβ)j ; hence
(yβ)p > (yβ)j and (yβ)p+1 > (yβ)j . If p = i − 1, then either (xβ)p or (xβ)p+1 is
> (xβ)j ; hence either (yβ)p or (yβ)p+1 is > (yβ)j . If p = j− 1 or j, the arguments are
similar. For other p the argument is trivial.
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Notes: If α is a primitive sorting network, so is αR (the comparators in reverse
order). For generalizations and another proof of (c), see N. G. de Bruijn, Discrete
Mathematics 9 (1974), 333–339; Indagationes Math. 45 (1983), 125–132. In the latter
paper, de Bruijn proved that a primitive network sorts all permutations of the multiset
{n1 · 1, . . . , nm · m} if and only if it sorts the single permutation mcm . . . 1c1 . The
relation x ⪯ y, defined for permutations x and y to mean that there exists a standard
network α such that x = yα, is called Bruhat order ; the analogous relation restricted
to primitive α is weak Bruhat order (see the answer to exercise 5.2.1–44).
37. It suffices to show that if each comparator is replaced by an interchange operation
we obtain a “reflection network” that transforms ⟨x1, . . . , xn⟩ into ⟨xn, . . . , x1⟩. But
in this interpretation it is not difficult to trace the route of xk. Note that the per-
mutation π = (1 2)(3 4) . . . (2n−1 2n)(2 3)(4 5) . . . (2n−2 2n−1) = (1 3 5 . . . 2n−1
2n 2n−2 . . . 2) satisfies πn = (1 2n)(2 2n−1) . . . (n−1 n). The odd-even transposition
sort was mentioned briefly by H. Seward in 1954; it has been discussed by A. Grasselli
[IRE Trans. EC-11 (1962), 483] and by Kautz, Levitt, and Waksman [IEEE Trans.
C-17 (1968), 443–451]. The reflective property of this network was introduced much
earlier by H. E. Dudeney in one of his “frog puzzles” [Strand 46 (1913), 352, 472;
Amusements in Mathematics (1917), 193].
38. Insert the elements i1, . . . , iN into an initially empty tableau using Algorithm
5.1.4I but with one crucial change: Set Pij ← xi in step I3 only if xi ̸= Pi(j−1). It
can be proved that xi will equal Pi(j−1) in that step only if xi + 1 = Pij , when the
inputs i1 . . . iN define a primitive sorting network. (The parenthesized assertions of the
algorithm need to be modified.) After ij has been inserted into P , set Qst ← j as in
Theorem 5.1.4A. After N steps, the tableau P will always contain (r, r+1, . . . , n−1) in
row r, while Q will be a tableau from which the sequence i1 . . . iN can be reconstructed
by working backwards.

For example, when n = 6 the sequence i1 . . . iN = 4 1 3 2 4 3 5 4 3 1 2 3 5 1 4 corre-
sponds to

P =

1 2 3 4 5
2 3 4 5
3 4 5
4 5
5

, Q =

1 4 5 8 13
2 6 7 15
3 9 12
10 11
14

.

The transpose of Q corresponds to the complementary network [n−i1 :n−i1+1] . . .
[n−iN :n−iN +1].

References: A. Lascoux and M. P. Schützenberger, Comptes Rendus Acad. Sci. (I)
295 (Paris, 1982), 629–633; R. P. Stanley, Eur. J. Combinatorics 5 (1984), 359–372;
P. H. Edelman and C. Greene, Advances in Math. 63 (1987), 42–99. The diagrams of
primitive sorting networks also correspond to arrangements of pseudolines and to other
abstractions of two-dimensional convexity; see D. E. Knuth, Lecture Notes in Comp.
Sci. 606 (1992), for further information.
39. When n = 8, for example, such a network must include the comparators
shown here; all other comparators are ineffective on 10101010. Then lines
⌈n/3⌉ . . ⌈2n/3⌉ = 3 . . 6 sort 4 elements, as in exercise 37. (This exercise is
based on an idea of David B. Wilson.)

Notes: There is a one-to-one correspondence between minimal-length
primitive networks that sort a given bit string and Young tableaux whose
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shape is bounded by the zigzag path defined by that bit string. Thus, exercise 38
yields a one-to-one correspondence between primitive networks of


n/2+1

2


comparators
that sort (10)n/2 and primitive networks of


n/2+1

2


comparators that sort n/2 + 1
arbitrary numbers. If a primitive network sorts the bit string 1n/20n/2, we can make a
stronger statement: All of its “halves,” consisting of the subnetworks on lines k through
k+n/2 inclusive, are sorting networks, for 1 ≤ k ≤ n/2. (See also de Bruijn’s theorem,
cited in the answer to exercise 36.)
40. This follows by applying the tail inequalities to the interesting construction in
Proposition 7 of a paper by H. Rost, Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete 58 (1981), 41–53, setting b = 1

2 , a = 1
4 , and t = 4n+

√
n lnn.

Experiments show that the expected time to reach any primitive sorting network —
not necessarily the bubble sort — is very nearly 2n2. Curiously, R. P. Stanley and S. V.
Fomin have proved that if the comparators [ik :ik+1] are chosen nonuniformly in such a
way that ik = j occurs with probability j/


n
2

, the corresponding expected time comes

to exactly


n
2

H(n2).

42. There must exist a path of length ⌈lgn⌉ or more, from some input to the largest
output (consider mn in Theorem A). When that input is set to ∞, the comparators
on this path have a predetermined behavior, and the remaining network must be an
(n− 1)-sorter. [IEEE Trans. C-21 (1972), 612–613.]
45. After l levels the input x1 can be in at most 2l different places. After merging is
complete, x1 can be in n+ 1 different places.
46. [J. Algorithms 3 (1982), 79–88; the following alternative proof is due to V. S.
Grinberg.] We may assume that 1 ≤ m ≤ n and that every stage makes m comparisons.
Let l = ⌈(n−m)/2⌉ and suppose we are merging x1 ≤ · · · ≤ xm with y1 ≤ · · · ≤ yn. An
adversary can force ⌈lg(m+n)⌉ stages as follows: In the first stage some xj is compared
to an element yk where we have either k ≤ l or k ≥ l+m. The adversary decides that
xj−1 < y1 and xj+1 > yn; also that xj > yk if k ≤ l, xj < yk if k ≥ l+m. The remaining
task is essentially to merge xj with either yk+1 ≤ · · · ≤ yn and k ≤ l or y1 ≤ · · · ≤ yk−1
and k ≥ l+m; so at least min(n−l+1, l+m) = ⌈(m+n)/2⌉ outcomes remain. At least
⌈lg⌈(m+ n)/2⌉⌉ = ⌈lg(m+ n)⌉− 1 subsequent stages are therefore necessary.
48. Let u be the smallest element of (xα)j , and let y(0) be any vector in Dn such that
(y(0))k = 0 implies (xα)k contains an element ≤ u, (y(0))k = 1 implies (xα)k contains
an element > u. If α = β [p :q], it is possible to find a vector y(1) satisfying the same
conditions but with α replaced by β, and such that y(1)[p :q] = y(0). Starting with
(y(0))i = 1, (y(0))j = 0, we eventually reach y = y(r) satisfying the desired condition.

G. Baudet and D. Stevenson have observed that exercises 37 and 48 combine to
yield a simple sorting method with (n lnn)/k+O(n) comparison cycles on k processors:
First sort k subfiles of size ≤ ⌈n/k⌉, then merge them in k passes using the “odd-even
transposition merge” of order k. [IEEE Trans. C-27 (1978), 84–87.]
49. Both (x ∨∨ y) ∨∨ z and x ∨∨ (y ∨∨ z) represent the largest m elements of the multiset
x ⊎ y ⊎ z; (x ∧∧ y) ∧∧ z and x ∧∧ (y ∧∧ z) represent the smallest m. If x = y = z = {0, 1},
(x ∧∧ z) ∨∨ (y ∧∧ z) = (x ∧∧ y) ∨∨ (x ∧∧ z) ∨∨ (y ∧∧ z) = {0, 0}, but the middle elements
of {0, 0, 0, 1, 1, 1} are {0, 1}. Sorting networks for three elements and the result of
exercise 48 imply that the middle elements of x ⊎ y ⊎ z may be expressed either as
((x ∨∨ y) ∧∧ z) ∨∨ (x ∧∧ y) or ((x ∧∧ y) ∨∨ z) ∧∧ (x ∨∨ y) or any other formula obtained by
permuting x, y, z in these expressions. (There seems to be no symmetrical formula for
the middle elements.)
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50. Equivalently by Theorem Z, we must find all identities satisfied by the operations

x ∨∨ y = min(x+y, 1), x ∧∧ y = max(0, x+y−1)

on rational values x, y in [0 . . 1]. [This is the operation of pouring as much liquid as
possible from a glass that is x full into another that is y full, as observed by J. M.
Pollard.] All such identities can be obtained from a system of four axioms and a rule of
inference for multivalued logic due to Łukasiewicz; see Rose and Rosser, Trans. Amer.
Math. Soc. 87 (1958), 1–53.
51. Let α′ = α[i :j], and let k be an index ̸= i, j. If (xα)i ≤ (xα)k for all x, then
(xα′)i ≤ (xα′)k; if (xα)k ≤ (xα)i and (xα)k ≤ (xα)j for all x, the same holds when α is
replaced by α′; if (xα)k ≤ (xα)i for all x, then (xα′)k ≤ (xα′)j . In this way we see that
α′ has at least as many known relations as α, plus one more if [i :j] isn’t redundant.
[Bell System Tech. J. 49 (1970), 1627–1644.]
52. (a) Consider sorting 0s and 1s; let w = x0 +x1 + · · ·+xN . The network fails if and
only if w ≤ t and x0 = 1 before the complete N -sort. If x0 = 1 at this point, it must
have been 1 initially, and for 1 ≤ j ≤ n we must have initially had either x2j−1+2nk = 1
for 0 ≤ k ≤ m or x2j+2nk = 1 for 0 ≤ k ≤ m; therefore w ≥ 1+(m+1)n = t. So failure
implies that w = t and xj = xj+2nk for 1 ≤ k ≤ m and x2j = x̄2j−1 for 1 ≤ j ≤ n.
Furthermore the special subnetwork must transform such inputs so that x2m+2n+j = 1
for 1 ≤ j ≤ m.

(b) For example, the special subnetwork for (y1 ∨ y2 ∨ ȳ3) ∧ (ȳ2 ∨ y3 ∨ ȳ4) ∧ . . .
could be

[1 + 2n :2mn+ 2n+ 1][3 + 2n :2mn+ 2n+ 1][6 + 2n :2mn+ 2n+ 1]
[4 + 4n :2mn+ 2n+ 2][5 + 4n :2mn+ 2n+ 2][8 + 4n :2mn+ 2n+ 2] ... ,

using x2j−1+2kn and x2j+2kn to represent yj and ȳj in the kth clause, and x2m+2n+k

to represent that clause itself.
53. Paint the lines red or blue according to the following rule:

if imod 4 is then line i in case (a) is and in case (b) it is
0 red red;
1 blue red;
2 blue blue;
3 red blue.

Now observe that the first t− 1 levels of the network consist of two separate networks,
one for the 2t−1 red lines and another for the 2t−1 blue lines. The comparators on
the tth level complete a merging network, as in the bitonic or odd-even merge. This
establishes the desired result for k = 1.

The red-blue decomposition also establishes the case k = 2. For if the input is
4-ordered, the red lines contain 2t−1 numbers that are 2-ordered, and so do the blue
lines, so we are left with

x0y0y1x1x2y2y3x3 . . . (case (a)) or x0x1y0y1x2x3y2y3 . . . (case (b))

after t− 1 levels; the final result

(x0∧y0)(x0∨y0)(y1∧x1)(y1∨x1) . . . or x0(x1∧y0)(x1∨y0)(y1∧x2)(y1∨x2) . . .

is clearly 2-ordered.
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Now for k ≥ 2, we can assume that k ≤ t. The first t − k + 2 levels decompose
into 2k−2 separate networks of size 2t−k+2, which each are 2-ordered by the case k = 2;
hence the lines are 2k−1-ordered after t − k + 2 levels. The subsequent levels clearly
preserve 2k−1-ordering, because they have a “vertical” periodicity of order 2k−2. (We
can imagine −∞ on lines −1, −2, . . . and +∞ on lines 2t, 2t + 1, . . . .)

References: Network (a) was introduced by M. Dowd, Y. Perl, L. Rudolph,
and M. Saks, JACM 36 (1989), 738–757; network (b) by E. R. Canfield and S. G.
Williamson, Linear and Multilinear Algebra 29 (1991), 43–51. It is interesting to note
that in case (a) we have Dnα = Gt, where Gt is defined in exercise 32 [Dowd et al.,
Theorem 17]; thus the image of Dn is not enough by itself to characterize the behavior
of a periodic network.
54. The following construction by Ajtai, Komlós, and Szemerédi [FOCS 33 (1992),
686–692] shows how to sort m3 elements with four levels of m2-sorters: We may suppose
that the elements being sorted are 0s and 1s; let the lines be numbered (a, b, c) =
am2 + bm+ c for 0 ≤ a, b, c < m. The first level sorts the lines {(a, b, (b+ k) modm) |
0 ≤ a, b < m} for 0 ≤ k < m; let ak be the number of 1s in the kth group of m2 lines.
The second level sorts {(a, b, k) | 0 ≤ a, b < m} for 0 ≤ k < m; the number of 1s in the
kth group is then

bk =
m2−1

j=0


a(k−j) mod m + j

m2


,

and it follows that b0 ≤ b1 + 1, b1 ≤ b2 + 1, . . . , bm−1 ≤ b0 + 1. In the third level we
sort {(k, a, b) | 0 ≤ a, b < m} for 0 ≤ k < m; the number of 1s in the kth group is

ck =
m−1
i=0

m−1
j=0


bi + km+ j

m2


.

If 0 < ck+1 < m2 we have ck ≤


m−1
2


and cj = 0 for j < k. Similarly, if 0 < ck < m2

we have ck+1 ≥ m2−


m−1
2


and cj = 0 for j > k+ 1. Consequently a fourth level that
sorts lines m2k −


m−1

2

. .m2k +


m−1

2

− 1 for 0 < k < m will complete the sorting.

It follows that four levels of m-sorters will sort f(m) = ⌊
√
m ⌋3 elements, and 16

levels will sort f(f(m)) elements. This proves the stated result, since f(f(m)) > m2

when m > 24. (The construction is not “tight,” so we can probably do the job with
substantially fewer than 16 levels.)
55. [If P (n) denotes the minimum number of switches needed in

a permutation network, it is clear that P (n) ≥ ⌈lgn!⌉. By
slightly extending a construction due to L. J. Goldstein and
S. W. Leibholz, IEEE Trans. EC-16 (1967), 637–641, one
can show that P (n) ≤ P (⌊n/2⌋) + P (⌈n/2⌉) + n − 1, hence

P (n) ≤ B(n) for all n, where B(n) is the binary insertion function of Eq. 5.3.1–(3).
M. W. Green has proved (unpublished) that P (5) = 8.]
56. In fact we can construct αx inductively so that xαx = 0k−1101n−k−1, when x has
k zeros. The base case, α10, is empty. Otherwise at least one of the following four
cases applies, where y is not sorted: (1) x = y0, αx = αy[n−1:n][n−2:n−1] . . . [1 :2].
(2) x = y1, αx = αy[1 :n][2 :n] . . . [n−1:n]. (3) x = 0y, αx = α+

y [1 :n][1 :n−1] . . . [1 :2].
(4) x = 1y, αx = α+

y [1 :2][2 :3] . . . [n−1:n]. The network α+ is obtained from α by
changing each comparator [i :j] to [i+1:j+1]. [See M. J. Chung and B. Ravikumar,
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Discrete Math. 81 (1990), 1–9.] This construction uses


n
2

− 1 comparators; can it be

done with substantially fewer?
57. [See H. Zhu and R. Sedgewick, STOC 14 (1982), 296–302.] The stated delay time
is easily verified by induction. But the problem of analyzing the recurrence

A(m,n) = A(⌊m/2⌋, ⌈n/2⌉) +A(⌈m/2⌉, ⌊n/2⌋) + ⌈m/2⌉+ ⌈n/2⌉ − 1,

when A(0, n) = A(m, 0) = 0, is more difficult.
A bitonic merge makes B(m,n) = C ′(m+n) comparisons; see (15). Therefore we

can use the fact that {⌊m/2⌋+ ⌈n/2⌉, ⌈m/2⌉+ ⌊n/2⌋} = {⌊(m+ n)/2⌋, ⌈(m+ n)/2⌉}
to show that B(m,n) = B(⌊m/2⌋, ⌈n/2⌉) + B(⌈m/2⌉, ⌊n/2⌋) + ⌊(m + n)/2⌋. Then
A(m,n) ≤ B(m,n) by induction.

Let D(m,n) = C(m+ 1, n+ 1) + C(m,n)− C(m+ 1, n)− C(m,n+ 1). We have
D(0, n) = D(m, 0) = 1, and D(m,n) = 1 when m+ n is odd. Otherwise m+ n is even
and mn ≥ 1, and we have D(m,n) = D(⌊m/2⌋, ⌊n/2⌋)− 1. Consequently D(m,n) ≤ 1
for all m,n ≥ 0.

The recurrence for A is equivalent to the recurrence for C except when m and n are
both odd. And in that case we have A(m,n) ≥ C(⌊m/2⌋, ⌈n/2⌉) +C(⌈m/2⌉, ⌊n/2⌋) +
⌈m/2⌉+ ⌈n/2⌉ − 1 = C(m,n) + 1−D(⌊m/2⌋, ⌊n/2⌋) ≥ C(m,n) by induction.

Let l = ⌈lg min(m,n)⌉. On level k of the even-odd recursion, for 0 ≤ k < l, we per-
form 2k merges of the respective sizes (mjk, njk) = (⌊(m+j)/2k⌋, ⌊(n+2k − 1−j)/2k⌋)
for 0 ≤ j < 2k. The cost of recursion,


j(⌈mjk/2⌉+⌈njk/2⌉−1), is fk(m)+fk(n)−2k;

we can write fk(n) = max(n′
k, n − n′

k), where n′
k = 2k⌊n/2k+1 + 1/2⌋ is the multiple

of 2k that is nearest to n/2. Since 0 ≤ fk(n)− n/2 ≤ 2k−1, the total cost of recursion
for levels 0 to l − 1 lies between 1

2 (m+ n)l − 2l and 1
2 (m+ n)l.

Finally, ifm ≤ n, the 2l merges (mjl, njl) on level l havemjl = 0 for 0 ≤ j < 2l−m,
and mjl = 1 for the other m values of j. Since A(1, n) = n, the total cost of level l ism+n−1

k=n ⌊k/2l⌋ ≤
m+n−1

k=n k/m = m−1
2 + n.

Thus even-odd merging, unlike bitonic merging, is within O(m + n) of the opti-
mum number of comparisons M̂(m,n). Our derivation shows in fact that A(m,n) =l−1

k=0(fk(m) + fk(n)− 2k) + gl(m+ n)− gl(max(m,n)), where gl(n) can be expressed
in the form

n−1
k=0⌊k/2

l⌋ = ⌊n/2l⌋(n− 2l−1(⌊n/2l⌋+ 1)).
58. If h[k + 1] = h[k] + 1 and the file is not in order, something must happen to it
on the next pass; this decreases the number of inversions, by exercise 5.2.2–1, hence
the file will eventually become sorted. But if h[k + 1] ≥ h[k] + 2 for 1 ≤ k < m, the
smallest key will never move into its proper place if it is initially in R2.
59. We use the hint, and also regard KN+1 = KN+2 = · · · = 1. If Kh[1]+j = · · · =
Kh[m]+j = 1 at step j, and if Ki = 0 for some i > h[1] + j, we must have i < h[m] + j
since there are fewer than n 1s. Suppose k and i are minimal such that h[k] + j < i <
h[k + 1] + j and Ki = 0. Let s = h[k + 1] + j − i; we have s < h[k + 1]− h[k] ≤ k. At
step j − s, at least k+ 1 0s must have been under the heads, since Ki = Kh[k+1]+j−s

was set to zero at that step; s steps later, there are at least k+ 1− s ≥ 2 0s remaining
between Kh[1]+j and Ki, inclusive, contradicting the minimality of i.

The second pass gets the next n− 1 elements into place, etc. If we start with the
permutation N N−1 . . . 2 1, the first pass changes it to

N+1−n N−n . . . 1 N+2−n . . . N−1 N,

since Kh[1]+j > Kh[m]+j whenever 1 ≤ h[1] + j and h[m] + j ≤ N ; therefore the bound
is best possible.
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60. Suppose that h[k + 1] − s > h[k] and h[k] ≤ s; the smallest key ends in position
Ri for i > 1 if it starts in Rn−s. Therefore h[k + 1] ≤ 2h[k] is necessary; it is also
sufficient, by the special case t = 0 of the following result:

Theorem. If n = N and if K1 . . .KN is a permutation of {1, 2, . . . , n}, a single
sorting pass will set Ki = i for 1 ≤ i ≤ t + 1, if h[k + 1] ≤ h[k] + h[k − i] + i for
1 ≤ k < m and 0 ≤ i ≤ t. (By convention, let h[k] = k when k ≤ 0.)

Proof. By induction on t; if step t does not find the key t+ 1 under the heads, we may
assume that it appears in position Rh[k+1]+t−s for some s > 0, where h[k+1]−s < h[k];
hence h[k − t] + t − s > 0. But this is impossible if we consider step t − s, which
presumably placed the element t+ 1 into position Rh[k+1]+t−s although there were at
least t+ 1 lower heads active.

(The condition is necessary for t = 0 and t = 1, but not for t = 2.)
61. If the numbers {1, . . . , 23} are being sorted, the theorem in the previous exercise
shows that {1, 2, 3, 4} find their true destination. When 0s and 1s are being sorted one
can verify that it is impossible to have all heads reading 0 while all positions not under
the heads contain 1s, at steps −2, −1, and 0; hence the proof in the previous exercise
can be extended to show that {5, 6, 7} find their true destination. Finally {8, . . . , 23}
must be sorted, by the argument in exercise 59.
63. When r ≤ m−2, the heads take the string 0p110130170 . . . 012r−101q into the string
0p+1110130170 . . . 012r−1−1012r−1+q; hence m−2 passes are necessary. [When the heads
are at positions 1, 2, 3, 5, . . . , 1+2m−2, Pratt has discovered a similar result: The string
0p1a012b−1012b+1−10 . . . 012r−101q, 1 ≤ a ≤ 2b−1, goes into 0p+11a−1012b−1012b+1−10
. . . 012r−1−1012r+q, hence at least m−⌈log2 m⌉−1 passes are necessary in the worst case
for this sequence of heads. The latter head sequence is of special interest since it has
been used as the basis of a very ingenious sorting device invented by P. N. Armstrong
[see U.S. Patent 3399383 (1965)]. Pratt conjectures that these input sequences provide
the true worst case, over all inputs.]
64. During quicksort, each key K2, . . . ,KN is compared with K1; let A= {i |Ki <K1},
B = {j | Kj > K1}. Subsequent operations quicksort A and B independently; all
comparisons Ki :Kj for i in A and j in B are suppressed, by both quicksort and
the restricted uniform algorithm, and no other comparisons are suppressed by the
unrestricted uniform algorithm.

In this case we could restrict the algorithm even further, omitting cases 1 and 2 so
that arcs are added to G only when comparisons are explicitly made, yet considering
only paths of length 2 when testing for redundancy. Another way to solve this problem
is to consider the equivalent tree insertion sorting algorithm of Section 6.2.2, which
makes precisely the same comparisons as the uniform algorithm in the same order.
65. (a) The probability that Kai is compared with Kbi is the probability that ci other
specified keys do not lie between Kai and Kbi ; this is the probability that two numbers
chosen at random from {1, 2, . . . , ci+2} are consecutive, namely 2/(ci + 2).

(b) The first n − 1 values of ci are zero, then come (n − 2) 1s, (n − 3) 2s,
etc.; hence the average is 2

n
k=1(n − k)/(k + 1) = 2

n
k=1((n + 1)/(k + 1) − 1) =

2(n+ 1)(Hn+1 − 1)− 2n.
(c) The “bipartite” nature of merging shows that the restricted uniform algorithm

is the same as the uniform algorithm for this sequence. The pairs involving vertex N
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have c’s equal to 0, 1, . . . , N−2, respectively; so the average number of comparisons is
exactly the same as quicksort.

66. No; when N = 5 every pair sequence beginning with (1, 2)(2, 3)(3, 4)(4, 5)(1, 5) will
avoid at least one subsequent comparison. [An interesting research problem: For all N,
find a (restricted) uniform sorting method whose worst case is as good as possible.]

67. Suppose ci = j for exactly tj values of i. For the restricted case we need to prove
that


j tj/(2 + j) is minimized when (t0, t1, . . . , tN−2) = (N−1, . . . , 2, 1). Gil Kalai

has shown that the achievable vectors (t0, t1, . . . , tN−2) are always lexicographically
≥ (N−1, . . . , 2, 1); see Graphs and Combinatorics 1 (1985), 65–79.

68. An item can lose at most one inversion per pass, so the minimum number of passes
is at least the maximum number of inversions of any item in the input permutation.
The bubble sort strategy achieves this bound, since each pass decreases the inversion
count of every inverted item by one (see exercise 5.2.2–1). An additional pass may
be needed to determine whether or not sorting is complete, but the wording of this
exercise allows us to overlook such considerations.

It is perhaps unfortunate that the first theorem in the study of computational
complexity via automata established the “optimality” of a sorting method that is so
poor from a programming standpoint! The situation is analogous to the history of
random number generation, which took several backward steps when generators that
are “optimum” from one particular point of view were recommended for general use.
(See the comments following Eq. 3.3.3–(39).) The moral is that optimality results are
often heavily dependent on the abstract model; the results are quite interesting, but
they must be applied wisely in practice.

[Demuth went on to consider a generalization to an r-register machine (saving a
factor of r), and to a Turing-like machine in which the direction of scan could oscillate
between left-right and right-left at will. He observed that the latter type of machine can
do the straight insertion and the cocktail-shaker sorts; but any such 1-register machine
must go through at least 1

4 (N2 −N) steps on the average, since each step reduces the
total number of inversions by at most one. Finally he considered r-register random-
access machines and the question of minimum-comparison sorting. These portions of
his thesis have been reprinted in IEEE Transactions C-34 (1985), 296–310.]

SECTION 5.4
1. We could omit the internal sorting phase, but that would generally be much slower

since it would increase the number of times each piece of data is read and written on
the external memory.

2. The runs are distributed as in (1), then Tape 3 is set to R1 . . . R2000000; R2000001 . . .
R4000000; R4000001 . . . R5000000. After all tapes are rewound, a “one-way merge” sets T1
and T2 to the respective contents of T3 and T4 in (2). Then T1 and T2 are merged
to T3, and the information is copied back and merged once again, for a total of five
passes. In general, the procedure is like the four-tape balanced merge, but with copy
passes between each of the merge passes, so one less than twice as many passes are
performed.

3. (a) ⌈logP S⌉. (b) logB S, where B =

P (T − P ) is called the “effective power of

the merge.” When T = 2P the effective power is P ; when T = 2P − 1 the effective
power is


P (P − 1) = P − 1

2 −
1
8P

−1 +O(P−2), slightly less than 1
2T.
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4. 1
2T. If T is odd and P must be an integer, both ⌈T/2⌉ and ⌊T/2⌋ give the same

maximum value. It is best to have P ≥ T − P , according to exercise 3, so we should
choose P = ⌈T/2⌉ for balanced merging.

SECTION 5.4.1

1. 087 154 170 426

 503
 503 ∞

908 ∞

426
 426 653 ∞

612 ∞
2. The path 061 —

� �
512� �—� �

087� �—� �
154� �—� �

061� �would be changed to 612 —
� �
612� �—� �

512� �—� �
154� �—� �

087� �. (We are essentially doing a “bubble sort” along the path!)
3. and fourscore our seven years/ ago brought fathers forth on this/

a conceived continent in liberty nation new the to/ and dedicated men
proposition that/ all are created equal.

4. (The problem is slightly ambiguous; in this interpretation we do not clear the
internal memory until the reservoir is about to overflow.)

and fourscore on our seven this years/ ago brought continent fathers
forth in liberty nation new to/ a and conceived dedicated men
proposition that the/ all are created equal.

5. False; the complete binary tree with P external nodes is defined for all P ≥ 1.
6. Insert “If T = LOC(X[0]) then go to R2, otherwise” at the beginning of step R6,

and delete the similar clause from step R7.
7. There is no output, and RMAX stays equal to 0.
8. If any of the first P actual keys were ∞, their records would be lost. To avoid ∞,

we can make two almost-identical copies of the program; the first copy omits the test
involving LASTKEY in step R4, and it jumps to the second copy when RC ̸= 0 in step R3
for the first time. The second copy needs no step R1, and it never needs to test RC in
step R3. (Further optimization is possible because of answer 10.)

9. Assume, for example, that the current run is ascending, while the next should be
descending. Then the steps of Algorithm R will work properly except for one change:
In step R6, if RN(L) = RN(Q) > RC, reverse the test on KEY(L) versus KEY(Q).

When RC changes, the key tests of steps R4 and R6 should change appropriately.
10. Let ·j ≡ LOC(X[j]), and suppose we add the unnecessary assignment ‘LOSER(·0)←
Q’ at the beginning of step R3. The mechanism of Algorithm R ensures that the follow-
ing conditions are true just after we’ve done that assignment: The values of LOSER(·0),
. . . , LOSER(·(P − 1)) are a permutation of {·0, ·1, . . . , ·(P − 1)}; and there exists a
permutation of the pointers {LOSER(·j) | RN(LOSER(·j)) = 0} that corresponds to an
actual tournament. In other words, when RN(·j) is zero, the value of KEY(·j) is irrele-
vant; we may permute such “winners” among themselves. After P iterations all RN(·j)
will be nonzero, so the entire tree will be consistent. (The answer to the hint is “yes.”)

David P. Kanter observes that we can go directly from R6 to R4 as soon as RN(Q) =
0, thereby avoiding all comparisons that involve uninitialized keys when N ≥ P .
11. True. (The proof of Theorem K notes that both keys belong to the same sub-
sequence; hence the probability is 1/2, given that LASTKEY ̸=∞.)
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13. The keys left in memory when the first run has ended tend to be smaller than
average, since they didn’t make it into the first run. Thus the second run can output
more of the smaller keys.

14. Assume that the snow suddenly stops when the snowplow is at a random point x,
0 ≤ x < 1, after it has reached its steady state. Then the next-to-last run contains
(2− (1−x)2)P records, and the last run contains x2P . Integrating this times dx yields
an average of (2− 1

3 )P records in the penultimate run, 1
3P in the last.

15. False; the last run can be arbitrarily long, whenever all records in memory belong
to the same run at the moment the input is exhausted (for example, in a one-pass sort).

16. If and only if each element has fewer than P inversions. (See Sections 5.1.1, 5.4.8.)
The probability is 1 when N ≤ P , PN−PP !/N ! when N ≥ P , by considering inversion
tables. (In actual practice, however, a one-pass sort is not too uncommon, since people
tend to sort a file even when they suspect that it might be in order, as a precautionary
measure.)

17. Exactly ⌈N/P ⌉ runs, all but the last having length P . (The “worst case.”)

18. Nothing changes on the second pass, since it is possible to show that the kth
record of a run is less than at least P + 1 − k records of the preceding run, for 1 ≤
k ≤ P . (However, there seems to be no simple way to characterize the result of P -way
replacement selection followed by P ′-way replacement selection when P ′ > P .)

19. Argue as in the derivation of (2) that h(x, t) dx = KLdt, where this time h(x, t) =
I +Kt for all x, and P = LI. This implies x(t) = L ln((I + Kt)/I), so that when
x(T ) = L we have KT = (e − 1)I. The amount of snowfall since t = 0 is therefore
(e− 1)LI = (e− 1)P .

20. As in exercise 19, we have (I+Kt) dx = K(L−x) dt; hence x(t) = LKt/(I+Kt).
The snow in the reservoir is LI = P = P ′ =

 T

0 x(t)K dt = L(KT − I ln((I +KT )/I));
hence KT = αI, where α ≈ 2.14619 is the root of 1 + α = eα−1. The run length is the
total amount of snowfall during 0 ≤ t ≤ T, namely LKT = αP .

21. Proceed as in the text, but after each run wait for P −P ′ snowflakes to fall before
the plow starts out again. This means that h(x(t), t) is now KT1, instead of KT, where
T1 − T is the amount of time taken by the extra snowfall. The run length is LKT1,
x(t) = L(1− e−t/T1 ), P = LKT1e

−T/T1, and P ′ =
 T

0 x(t)K dt = P + LK(T − T1). In
other words, a run length of eθP is obtained when P ′ = (1− (1−θ)eθ)P , for 0 ≤ θ ≤ 1.

22. For 0 ≤ t ≤ (κ − 1)T, dx · h = K dt (x(t + T ) − x(t)), and for (κ − 1)T ≤ t ≤ T,
dx · h = K dt (L− x(t)), where h is seen to be constantly equal to KT at the position
of the plows. It follows that for 0 ≤ j ≤ k, 0 ≤ u ≤ 1, and t = (κ − j − u)T ,
we have x(t) = L(1 − eu−θFj(u)/F (κ)). The run length is LKT , the amount of
snowfall between the times that consecutive snowplows leave point 0 in the steady
state; P is the amount cleared during each snowplow’s last burst of speed, namely
KT (L − x(κT )) = LKTe−θ/F (κ); and P ′ =

 κT

0 x(t)K dt can be shown to have the
stated form.

Notes: It turns out that the stated formulas are valid also for k = 0. When
k ≥ 1 the number of elements per run that go into the reservoir twice is P ′′ = (κ−1)T

0 x(t)K dt, and it is easy to show that (run length) − P ′ + P ′′ = (e − 1)P ,
a phenomenon noticed by Frazer and Wong. Is it a coincidence that the generating
function for Fk(θ) is so similar to the generating function in exercise 5.1.3–11?
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23. Let P = pP ′ and q = 1 − p. For the first T1 units of time the snowfall comes
from the qP ′ elements remaining in the reservoir after the first pP ′ have been initially
removed in random order; and when the old reservoir is empty, uniform snow begins to
fall again. We choose T1 so that LKT1 = qP ′. For 0 ≤ t ≤ T1, h(x, t) = (p+qt/T1)g(x),
where g(x) is the height of snow put into the reservoir from position x; for T1 ≤ t ≤ T,
h(x, t) = g(x)+(t−T1)K. For 0 ≤ t ≤ T1, g(x(t)) is (q(T1−t)/T1)g(x(t))+(T −T1)K;
and for T1 ≤ t ≤ T, g(x(t)) = (T − t)K. Hence h(x(t), t) = (T − T1)K for 0 ≤ t ≤ T,
and x(t) = L(1 − exp(−t/(T − T1))). The total run length is LK(T − T1); the total
amount “recycled” from the reservoir back again (see exercise 22) is LKT1; and the
total amount cleared after time T is P = KT (L− x(T )).

So the assumptions of this exercise give runs of length (es/s)P when the reservoir
size is (1 + (s − 1)es/s)P . This is considerably worse than the results of exercise 22,
since the reservoir contents are being used in a more advantageous order in that case.

(The fact that h(x(t), t) is constant in so many of these problems is not surprising,
since it is equivalent to saying that the elements of each run obtained during a steady
state of the system are uniformly distributed.)
24. (a) Essentially the same proof works; each of the subsequences has runs in the
same direction as the output runs. (b) The stated probability is the probability that
the run has length n + 1 and is followed by y; it equals (1 − x)n/n! when x > y, and
it is (1 − x)n/n! − (y − x)n/n! when x ≤ y. (c) Induction. For example, if the nth
run is ascending, the (n− 1)st was descending with probability p, so the first integral
applies. (d) We find that f ′(x) = f(x) − c − pf(1 − x) − qf(x), then f ′′(x) = −2pc,
which ultimately leads to f(x) = c(1 − qx − px2), c = 6/(3 + p). (e) If p > eq then
pex + qe1−x is monotone increasing for 0 ≤ x ≤ 1, and

 1
0 |pe

x + qe1−x − e1/2| dx =
(p− q)(e1/2 − 1)2 < 0.43. If q ≤ p < eq then pex + qe1−x lies between 2

√
pqe and

p + qe, so
 1

0 |pe
x + qe1−x − 1

2 (p + qe + 2
√
pqe)| dx ≤ 1

2 (
√
p −
√
qe)2 < 0.4; and if

p < q we may use a symmetrical argument. Thus for all p and q there is a constant
C such that

 1
0 |pe

x + qe1−x−C| dx < 0.43. Let δn(x) = fn(x)−f(x). Then δn+1(y) =
(1 − ey−1)

 1
0 (pex + qe1−x − C)δn(x) dx + p

 1−y

0 ey−1+xδn(x) dx + q
 1

y
ey−xδn(x) dx;

hence if δn(y) ≤ αn, |δn+1(y)| ≤ (1 − ey−1) · 1.43αn < 0.91αn. (f) For all n ≥ 0,
(1−x)n/n! is the probability that the run length exceeds n. (g)

 1
0 (pex+qe1−x)f(x) dx =

6/(3 + p).
26. (a) Consider the number of permutations with n+r+1 elements and n left-to-right
minima, where the rightmost element is not the smallest. (b) Use the fact that

1≤k<n


k

k − r


k =


n

n− r − 1


,

by the definition of Stirling numbers in Appendix B. (c) Add r + 1 to the mean, using
the fact that


n≥0[ n+r

n
](n+ r)/(n+ r + 1)! = 1, to get


n≥0[ n+r

n
]/(n+ r − 1)!.

The formula in (b) is due to P. Appell, Archiv der Math. und Physik 65 (1880),
171–175. We have, incidentally, [[ r

k
]] = (r + k)! [xkzr] exf(z), where f(z) = z/2 +

z2/3 + · · · = −z−1 ln(1 − z) − 1; hence cr = [zr ] (r + 1 + f(z))ef(z). The number of
derangements of n objects having k cycles, sometimes denoted by


n
k


≥2, is [[ n−k

k
]]; see

J. Riordan, An Introduction to Combinatorial Analysis (Wiley, 1958), §4.4.
27. When P ′/P = 2(e−θ−1+θ)/(1−2θ+θ2 +2θe−θ), for 0 ≤ θ ≤ 1, the steady-state
average run length will be 2P/(1−2θ+θ2 +2θe−θ). [See Information Processing Letters
21 (1985), 239–243.]
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Dobosiewicz has also observed that we can continue the replacement selection
mechanism even longer, because we can be inputting from the front of the reservoir
queue while outputting to its rear. For example, if P ′ = .5P and we continue replace-
ment selection until the current run contains .209P records, the average run length
increases from about 2.55P to about 2.61P with this modification. If P ′ = P and we
continue replacement selection until only .314P records remain in the current run, the
average run length increases from eP to about 3.034P . [See Comp. J. 27 (1984), 334–
339, where an even more efficient method called “merge replacement” is also presented.]

28. For multiway merging there is comparatively little problem, since P stays constant
and records are processed sequentially on each file; but when forming initial runs, we
would like to vary the number of records in memory depending on their lengths. We
could keep a heap of as many records as will fit in memory, using dynamic storage
allocation as described in Section 2.5. M. A. Goetz [Proc. AFIPS Joint Computer
Conf. 25 (1964), 602–604] has suggested another approach, breaking each record into
fixed-size parts that are linked together; they occupy space at the leaves of the tree,
but only the leading part participates in the tournament.

29. The top 2k loser nodes go into the corresponding host positions. The remaining
loser nodes consist of 2k subtrees of 2n− 1 nodes each; they are assigned to host nodes
in symmetric order — the leftmost subtree into the leftmost host node, etc. [See K. Efe
and N. Eleser, Acta Informatica 34 (1997), 429–447.]

30. Suppose t of the host nodes hold a connected 2n-node subgraph of the complete
2n+k-node loser tree. That tree has one node at level 0 and 2l−1 nodes at level l for
1 ≤ l ≤ n + k. A subtree rooted at level l ≥ 1 has 2n+k+1−l − 1 nodes; therefore
the roots of t disjoint 2n-node subtrees must all be on levels ≤ k. And each of these
subtrees must contain at least one node on level k, because there are only 2k−1 < 2n

nodes on levels < k. It follows that t ≤ 2k−1. But the number of edges in the host
graph is at least t + 2(2k − t) − 1, by (ii) and (iii), since there are at least this many
loser nodes whose parent has a different image in the host.

[The hypothesis n ≥ k is necessary: When n = k−1 there is a suitable host graph
with 2k + 2k−1 − 2 edges.]

SECTION 5.4.2
1. 1

6 2
10 7 3
13 11 8
18 14 12 4
20 19 15 9
24 21 22 16
29 25 26 23

30 31 27 5
32 17

28
33
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2. After the first merge phase, all remaining dummies are on tape T, and there are
at most an − an−1 ≤ an−1 of them. Therefore they all disappear during the second
merge phase.

3. We have (D[1], D[2], . . . , D[T]) = (an−an−P , an−an−P +1, . . . , an−an), so the
condition follows from the fact that the a’s are nondecreasing. The condition is
important to the validity of the algorithm, since steps D2 and D3 never decrease
D[j + 1] more often than D[j].

4. (1−z−· · ·−z5)a(z) = 1 because of (3). And t(z) =


n≥1(an+bn+cn+dn+en)zn =
(z + · · ·+ z5)a(z) + (z + · · ·+ z4)a(z) + · · ·+ za(z) = (5z + 4z2 + 3z3 + 2z4 + z5)a(z).

5. Let gp(z) = (z−1)fp(z) = zp+1−2zp+1, and let hp(z) = zp+1−2zp. Rouché’s the-
orem [J. École Polytechnique 21, 37 (1858), 1–34] tells us that hp(z) and gp(z) have the
same number of roots inside the circle |z| = 1+ϵ, provided |hp(z)| > |hp(z)−gp(z)| = 1
on the circle. If ϕ−1 > ϵ > 0 we have |hp(z)| ≥ (1+ϵ)p(1−ϵ) > (1+ϕ−1)2(1−ϕ−1) = 1.
Hence gp has p roots of magnitude ≤ 1. They are distinct, since gcd(gp(z), g′p(z)) =
gcd(gp(z), (p+ 1)z − 2p) = 1. [AMM 67 (1960), 745–752.]

6. Let c0 = −αp(α−1)/q′(α−1). Then p(z)/q(z)−c0/(1−αz) is analytic in |z| ≤ R for
some R > |α|−1; hence [zn] p(z)/q(z) = c0α

n + O(R−n). Thus, lnS = n lnα + ln c0 +
O((αR)−n); and n = (lnS/ lnα) +O(1) implies that O((αR)−n) = O(S−ϵ). Similarly,
let c1 = α2p(α−1)/q′(α−1)2 and c2 = −αp′(α−1)/q′(α−1)2 + αp(α−1)q′′(α−1)/q′(α−1)3,
and consider p(z)/q(z)2 − c1/(1− αz)2 − c2/(1− αz).

7. Let αp = 2x and z = −1/2p+1. Then xp+1 = xp + z, so we have the convergent
series αp = 2


k≥0

1−kp
k


zk/(1−kp) = 2−2−p−p2−2p−1+O(p22−3p) by Eq. 1.2.6–(25).

Note: It follows that the quantity ρ in exercise 6 becomes approximately log4 S
as p increases. Similarly, for both Table 5 and Table 6, the coefficient c approaches
1/((ϕ+ 2) lnϕ) on a large number of tapes.

8. Evidently N
(p)
0 = 1, N (p)

m = 0 for m < 0, and by considering the different possi-
bilities for the first summand we have N (p)

m = N
(p)
m−1 + · · ·+N

(p)
m−p when m > 0. Hence

N
(p)
m = F

(p)
m+p−1. [Lehrbuch der Combinatorik (Leipzig: Teubner, 1901), 136–137.]

9. Consider the position of the leftmost 0, if there is one; we find K(p)
m = F

(p)
m+p. Note:

There is a simple one-to-one correspondence between such sequences of 0s and 1s and
the representations of m+ 1 considered in exercise 8: Place a 0 at the right end of the
sequence, and look at the positions of all the 0s.
10. Lemma: If n = F

(p)
j1

+ · · ·+F
(p)

jm
is such a representation, with j1 > · · · > jm ≥ p,

we have n < F
(p)

j1+1. Proof: The result is obvious if m < p; otherwise let k be minimal
with jk > jk+1 + 1; we have k < p, and by induction F (p)

jk+1
+ · · ·+F

(p)
jm

< F
(p)

jk−1, hence
n < F

(p)
j1

+ · · ·+ F
(p)

j1−k−1 ≤ F
(p)

j1+1.
The stated result can now be proved, by induction on n. If n > 0 let j be

maximal such that F (p)
j ≤ n. The lemma shows that each representation of n must

consist of F (p)
j plus a representation of n− F (p)

j . By induction, n− F (p)
j has a unique

representation of the desired form, and this representation does not include all of the
numbers F (p)

j−1, . . . , F
(p)

j−p+1 because j is maximal.
Notes: This number system was implicitly known in 14th-century India (see

Section 7.2.1.7). We have considered the case p = 2 in exercise 1.2.8–34. There is
a simple algorithm to go from the representation of n to that of n+ 1, working on the
sequence cj . . . c1c0 of 0s and 1s such that n =


cjF

(p)
j+p: For example, if p = 3, we
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look at the rightmost digits, changing . . . 0 to . . . 1, . . . 01 to . . . 10, . . . 011 to . . . 100;
then we “carry” to the left if necessary, replacing . . . 0111 . . . by . . . 1000 . . . . (See the
sequences of 0s and 1s in exercise 9, in the order listed.) A similar number system
has been studied by W. C. Lynch [Fibonacci Quarterly 8 (1970), 6–22], who found a
very interesting way to make it govern both the distribution and merge phases of a
polyphase sort.
12. The kth power contains the perfect distributions for levels k − 4 through k, on
successive rows, with the largest elements to the right.
13. By induction on the level.
14. (a) n(1) = 1, so assume that k > 1. The law Tnk = T(n−1)(k−1) + · · ·+T(n−P )(k−1)
shows that Tnk ≤ T(n+1)k if and only if T(n−P )(k−1) ≤ Tn(k−1). Let r be any positive
integer, and let n′ be minimal such that T(n′−r)(k−1) > Tn′(k−1); then T(n−r)(k−1) ≥
Tn(k−1) for all n ≥ n′, since this relation is trivial for n ≥ n(k − 1) + r and otherwise
T(n−r)(k−1) ≥ T(n′−r)(k−1) ≥ Tn′(k−1) ≥ Tn(k−1). (b) The same argument with r =
n − n′ shows that Tn′k′ < Tnk′ implies T(n′−j)k′ ≤ T(n−j)k′ for all j ≥ 0; hence the
recurrence implies that T(n′−j)k ≤ T(n−j)k for all j ≥ 0 and k ≥ k′. (c) Let ℓ(S) be
the least n such that Σn(S) assumes its minimum value. The sequence Mn exists as
desired if and only if ℓ(S) ≤ ℓ(S + 1) for all S. Suppose n = ℓ(S) > ℓ(S + 1) = n′, so
that Σn(S) < Σn′(S) and Σn(S+1) ≥ Σn′(S+1). There is some smallest S′ such that
Σn(S′) < Σn′(S′), and we have m = Σn(S′)−Σn(S′−1) < Σn′(S′)−Σn′(S′−1) = m′.
Then

m
k=1 Tn′k < S′ ≤

m
k=1 Tnk; hence there is some k′ ≤ m such that Tn′k′ < Tnk′ .

Similarly we have l = Σn(S+1)−Σn(S) > Σn′(S+1)−Σn′(S) = l′; hence
l′

k=1 Tn′k ≥
S + 1 >

l′

k=1 Tnk. Since l′ ≥ m′ > m, there is some k > m such that Tn′k > Tnk.
But this contradicts part (b).
15. This theorem has been proved by D. A. Zave, whose article was cited in the text.
16. D. A. Zave has shown that the number of records input (and output) is S logT−1 S+
1
2S logT−1 logT−1 S +O(S).
17. Let T = 3; A11(x) = 6x6 + 35x7 + 56x8 + · · · , B11(x) = x6 + 15x7 + 35x8 + · · · ,
T11(x) = 7x6 + 50x7 + 91x8 + 64x9 + 19x10 + 2x11. The optimum distribution for
S = 144 requires 55 runs on T2, and this forces a nonoptimum distribution for S = 145.
D. A. Zave has studied near-optimum procedures of this kind.
18. Let S = 9, T = 3, and consider the following two patterns.

Optimum Polyphase: Alternative:

T1 T2 T3 Cost T1 T2 T3 Cost

0216 0213 — 0116 0113 —
13 — 0223 6 13 — 0123 6
— 1231 22 5 — 1132 21 7
32 31 — 6 31 32 — 3
31 — 61 6 — 31 61 6
— 91 — 9 91 — — 9

32 31
(Still another way to improve on “optimum” polyphase is to reconsider where dummy
runs appear on the output tape of every merge phase. For example, the result of
merging 0213 with 0213 might be regarded as 2101210121 instead of 0223. Thus, many
unresolved questions of optimality remain.)
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19. Level T1 T2 T3 T4 Total Final output on

0 1 0 0 0 1 T1
1 0 1 1 1 3 T6
2 1 1 1 0 3 T5
3 1 2 1 1 5 T4
4 2 2 2 1 7 T3
5 2 4 3 2 11 T2
6 4 5 4 2 15 T1
7 5 8 6 4 23 T6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n an bn cn dn tn T(k)

n+ 1 bn cn + an dn + an an tn+2an T(k − 1)

20. a(z) = 1/(1 − z2 − z3 − z4), t(z) = (3z + 3z2 + 2z3 + z4)/(1 − z2 − z3 − z4),
n≥1 Tn(x)zn = x(3z + 3z2 + 2z3 + z4)/(1 − x(z2 + z3 + z4)). Dn = An−1 + 1,

Cn = An−1An−2 + 1, Bn = An−1An−2An−3 + 1, An = An−2An−3An−4 + 1.
21. 333343333332322 3333433333323 33334333333 3333433 333323 T5
22. tn− tn−1− tn−2 = −1 + 3[nmod 3 = 1]. (This Fibonacci-like relation follows from
the fact that 1− z2 − 2z3 − z4 = (1− ϕz)(1− ϕz)(1− ωz)(1− ωz), where ω3 = 1.)
23. In place of (25), the run lengths during the first half of the nth merge phase are sn,
and on the second half they are tn, where

sn = tn−2 + tn−3 + sn−3 + sn−4, tn = tn−2 + sn−2 + sn−3 + sn−4.

Here we regard sn = tn = 1 for n ≤ 0. [In general, if vn+1 is the sum of the first 2r terms
of un−1+· · ·+vn−P , we have sn = tn = tn−2+· · ·+tn−r+2tn−r−1+tn−r−2+· · ·+tn−P ; if
vn+1 is the sum of the first 2r−1, we have sn = tn−2+· · ·+tn−r−1+sn−r−1+· · ·+sn−P ,
tn = tn−2 + · · ·+ tn−r + sn−r + · · ·+ sn−P .]

In place of (27) and (28), An = (Un−1Vn−1Un−2Vn−2Un−3Vn−3Un−4Vn−4) + 1,
. . . , Dn = (Un−1Vn−1) + 1, En = (Un−2Vn−2Un−3) + 1; Vn+1 = (Un−1Vn−1Un−2) + 1,
Un = (Vn−2Un−3Vn−3Un−4Vn−4) + 1.
25. 116 18 — 18

112 14 R 1824

18 — 24 R
. . . . . . . . . .
R 81161 81 80

160 R 81 —
161 161 80 R
R 161 — 240

161 161 R 240320

160 160 321 (R)
26. When 2n are sorted, n ·2n initial runs are processed while merging; each half phase
(with a few exceptions) merges 2n−2 and rewinds 2n−1. When 2n + 2n−1 are sorted,
n · 2n + (n− 1) · 2n−1 initial runs are processed while merging; each half phase (with a
few exceptions) merges 2n−2 or 2n−1 and rewinds 2n−1 + 2n−2.
27. It works if and only if the gcd of the distribution numbers is 1. For example,
let there be six tapes; if we distribute (a, b, c, d, e) to T1 through T5, where a ≥
b ≥ c ≥ d ≥ e > 0, the first phase leaves a distribution (a−e, b−e, c−e, d−e, e), and
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gcd(a−e, b−e, c−e, d−e, e) = gcd(a, b, c, d, e), since any common divisor of one set of
numbers divides the others too. The process decreases the number of runs at each
phase until gcd(a, b, c, d, e) runs are left on a single tape.

[Nonpolyphase distributions sometimes turn out to be superior to polyphase under
certain configurations of dummy runs, as shown in exercise 18. This phenomenon was
first observed by B. Sackman about 1963.]
28. We get any such (a, b, c, d, e) by starting with (1, 0, 0, 0, 0) and doing the following
operation exactly n times: Choose x in {a, b, c, d, e}, and add x to each of the other
four elements of (a, b, c, d, e).

To show that a+b+c+d+e ≤ tn, we shall prove that if a ≥ b ≥ c ≥ d ≥ e on level n,
we always have a ≤ an, b ≤ bn, c ≤ cn, d ≤ dn, e ≤ en. The proof follows by induction,
since the level n + 1 distributions are (b+a, c+a, d+a, e+a, a), (a+b, c+b, d+b, e+b, b),
(a+c, b+c, d+c, e+c, c), (a+d, b+d, c+d, e+d, d), (a+e, b+e, c+e, d+e, e).
30. The following table has been computed by J. A. Mortenson.

Level T = 5 T = 6 T = 7 T = 8 T = 9 T = 10
1 2 2 2 2 2 2 M1
2 4 5 6 7 8 9 M2
3 4 5 6 7 8 9 M3
4 8 8 10 12 14 16 M4
5 10 14 18 17 20 23 M5
6 18 20 26 27 32 31 M6
7 26 32 46 47 56 42 M7
8 44 53 74 82 92 92 M8
9 68 83 122 111 138 139 M9

10 112 134 206 140 177 196 M10
11 178 197 317 324 208 241 M11
12 290 350 401 488 595 288 M12
13 466 566 933 640 838 860 M13
14 756 917 1371 769 1064 1177 M14
15 1220 1481 1762 2078 1258 1520 M15
16 1976 2313 4060 2907 3839 1821 M16

31. [Random Structures & Algorithms 5 (1994), 102–104.] Kd(n) = F
(d)

n−2 = N
(d)
n−d−1.

We have n− d− 1 = a1 + · · ·+ ar if the tree has r+ 1 leaves and the (k+ 1)st leaf has
ak − 1 ancestors distinct from the ancestors of the first k leaves. (The seven example
trees correspond respectively to 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 1 + 3, 2 + 1 + 1,
2 + 2, and 3 + 1.)

SECTION 5.4.3
1. The tape-splitting polyphase is superior with respect to the average number of

times each record is processed (Table 5.4.2–6), when there are 6, 7, or 8 tapes.
2. The methods are essentially identical when the number of initial runs is a Fibonacci

number; but the manner of distributing dummy runs in other cases is better with
polyphase. The cascade algorithm puts 1 on T1, then 1 on T2, 1 on T1, 2 on T2,
3 on T1, 5 on T2, etc., and step C8 never finds D[p − 1] = M [p − 1] when p = 2.
In effect, all dummies are on one tape, and this is less efficient than the method of
Algorithm 5.4.2D.
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3. (Distribution stops after putting 12 runs on T3 during Step (3, 3).)

T1 T2 T3 T4 T5 T6
126 121 124 114 115 —
15 — 112 1227 115 22412

84 6293 52 63 11 —
— 91 231 171 251 261

1001 — — — — —

4. Induction. (See exercise 5.4.2–28.)
5. When there are an initial runs, the kth pass outputs an−k runs of length ak, then
bn−k of length bk, etc.

6. 
1 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
1 0 0 0 0

 .

7. We save e2en−2 + e3en−3 + · · · + ene0 initial run lengths (see exercise 5), which
may also be written a1an−3 + a2an−4 + · · ·+ an−2a0; it is [zn−2] (A(z)2 −A(z)).

8. The denominator of A(z) has distinct roots and greater degree than the numerator,
hence A(z) =


q3(ρ)/(1− ρz)ρ(1− q′4(ρ)) summed over all roots ρ of q4(ρ) = ρ. The

special form of ρ is helpful in evaluating q3(ρ) and q′4(ρ).
9. The formulas hold for all large n, by (8) and (12), in view of the value of qm(2 sin θk).

To show that they hold for all n we need to know that qm−1(z) is the quotient when
qr−1(z)qm(z) is divided by qr(z) − z, for 0 ≤ m < r. This can be proved either
by using (10) and noting that cancellations bring down the degree of the polynomial
qr−1(z)qm(z) − qr(z)qm−1(z), or by noting that A(z)2 + B(z)2 + · · · + E(z)2 → 0 as
z → ∞ (see exercise 5), or by finding explicit formulas for the numerators of B(z),
C(z), etc.
10. E(z) = r1(z)A(z); D(z) = r2(z)A(z) − r1(z); C(z) = r3(z)A(z) − r2(z); B(z) =
r4(z)A(z)− r3(z); A(z) = r5(z)A(z) + 1− r4(z). Thus A(z) = (1− r4(z))/(1− r5(z)).
[Notice that rm(2 sin θ) = sin(2mθ)/cos θ; hence rm(z) is the Chebyshev polynomial
(−1)m+1U2m−1(z/2).]
11. Prove that fm(z) = q⌊m/2⌋(z) − r⌈m/2⌉(z) and that fm(z)fm−1(z) = 1 − rm(z).
Then use the result of exercise 10. (This explicit form for the denominator was first
discovered by David E. Ferguson.)
13. See exercise 5.4.6–6.

SECTION 5.4.4
1. When writing an ascending run, first write a sentinel record containing −∞ before

outputting the run. (And a +∞ sentinel should be written at the end of the run as
well, if the output is ever going to be read forward, as on the final pass.) For descending
runs, interchange the roles of −∞ and +∞.

2. The smallest number on level n + 1 is equal to the largest on level n; hence the
columns are nondecreasing, regardless of the way we permute the numbers in any
particular row.
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3. In fact, during the merge process the first run on T2–T6 will always be descending,
and the first on T1 will always be ascending. (By induction.)

4. It requires several “copy” operations on the second and third phases; the approxi-
mate extra cost is (log 2)/(log ρ) passes, where ρ is the “growth ratio” in Table 5.4.2–1.

5. If α is a string, let αR denote its left-right reversal.

Level T1 T2 T3 T4 T5 2
3 2

0 0 — — — — 4 3 2
3 4 3

1 1 1 1 1 1 4 3 4 2
5 4 3 3

2 12 12 12 12 2 4 5 4 4
3 4 5 3

3 1232 1232 1232 232 32 2 3 4 4 2
3 2 3 5 3

4 12323432 12323432 2323432 323432 3432 4 3 2 4 4
3 4 3 3 3. . . . . . . . . . . . . . . . . . . . . . . . . . .
2 3 4 2 4

n An Bn Cn Dn En 3 2 3 3 5
2 3 2 4 4

n+ 1 Bn(AR
n + 1) Cn(AR

n + 1) Dn(AR
n + 1) En(AR

n + 1) AR
n + 1 1 2 3 3 3

We have
En = AR

n−1 + 1,
Dn = AR

n−2A
R
n−1 + 1,

Cn = AR
n−3A

R
n−2A

R
n−1 + 1,

Bn = AR
n−4A

R
n−3A

R
n−2A

R
n−1 + 1, and

An = AR
n−5A

R
n−4A

R
n−3A

R
n−2A

R
n−1 + 1

= n−Qn,

where

QR
n = Qn−1(Qn−2 + 1)(Qn−3 + 2)(Qn−4 + 3)(Qn−5 + 4), n ≥ 1,

Q0 = 0, and Qn = ϵ for n < 0.
These strings An, Bn, . . . contain the same entries as the corresponding strings in

Section 5.4.2, but in another order. Note that adjacent merge numbers always differ
by 1. An initial run must be A if and only if its merge number is even, D if and
only if odd. Simple distribution schemes such as Algorithm 5.4.2D are not quite as
effective at placing dummies into high-merge-number positions; therefore it is probably
advantageous to compute Qn between phases 1 and 2, in order to help control dummy
run placement.

6. y(4) = (+1,+1,−1,+1)
y(3) = (+1, 0,−1, 0)
y(2) = (+1,−1,+1,+1)
y(1) = (−1,+1,+1,+1)
y(0) = ( 1, 0, 0, 0)
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7. (See exercise 15.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

A A

A

A

A

A

B

B

B

B

B

B

B

B

BB

B B

C

C

C

C

C C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AB

B

B

B

B

B

B

B

BC

C

C

C

C

A

Incidentally, 34 is apparently the smallest Fibonacci number Fn for which polyphase
doesn’t produce the optimum read-backward merge for Fn initial runs on three tapes.
This tree has external path length 178, which beats polyphase’s 180.

8. For T = 4, the tree with external path length 13 is not T -lifo, and every tree with
external path length 14 includes a one-way merge.

9. We may consider a complete (T−1)-ary tree, by the result of exercise 2.3.4.5–6; the
degree of the “last” internal node is between 2 and T −1. When there are (T −1)q−m
external nodes, ⌊m/(T − 2)⌋ of them are on level q − 1, and the rest are on level q.
11. True by induction on the number of initial runs. If there is a valid distribution
with S runs and two adjacent runs in the same direction, then there is one with fewer
than S runs; but there is none when S = 1.
12. Conditions (a) and (b) are obvious. If either configuration in (4) is present, for
some tape name A and some i < j < k, node j must be in a subtree below node i
and to the left of node k, by the definition of preorder. Hence the case “j−−− l” can’t
be present, and A must be the “special” name since it appears on an external branch.
But this contradicts the fact that the special name is supposed to be on the leftmost
branch below node i.
13. Nodes now numbered 4, 7, 11, 13 could be external instead of one-way merges.
(This gives an external path length one higher than the polyphase tree.)
15. Let the tape names be A, B, and C. We shall construct several species of trees,
botanically identified by their root and leaf (external node) structure:

Type r(A) Root A
Type s(A,C) Root A, no C leaves
Type t(A) Root A, no A leaves
Type u(A,C) Root A, no C leaves, no compound B leaves
Type v(A,C) Root A, no C leaves, no compound A leaves
Type w(A,C) Root A, no A leaves, no compound C leaves
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A “compound leaf ” is a leaf whose sibling is not a leaf. We can grow a 3-lifo type r(A)
tree by first growing its left subtree as a type s(B,C), then growing the right subtree as
type r(C). Similarly, type s(A,C) comes from a type s(B,C) then t(C); type u(A,C)
from v(B,C) and w(C,B); type v(A,C) from u(B,C) and w(C,A). We can grow a
3-lifo type t(A) tree whose left subtree is type u(B,A) and whose right subtree is type
s(C,A), by first letting the left subtree grow except for its (non-compound) C leaves
and its right subtree; at this point the left subtree has only A and B leaves, so we
can grow the right subtree of the whole tree, then grow off the A leaves of the left
left subtree, and finally grow the left right subtree. Similarly, a type w(A,C) tree can
be fabricated from a u(B,A) and a v(C,A). [The tree of exercise 7 is an r(A) tree
constructed in this manner.]

Let r(n), . . . , w(n) denote the minimum external path length over all n-leaf trees
of the relevant type, when they are constructed by such a procedure. We have r(1) =
s(1) = u(1) = 0, r(2) = t(2) = w(2) = 2, t(1) = v(1) = w(1) = s(2) = u(2) = v(2) =
∞; and for n ≥ 3,

r(n) = n+ mink(s(k) + r(n− k)), u(n) = n+ mink(v(k) + w(n− k)),
s(n) = n+ mink(s(k) + t(n− k)), v(n) = n+ mink(u(k) + w(n− k)),
t(n) = n+ mink(u(k) + s(n− k)), w(n) = n+ mink(u(k) + v(n− k)).

It follows that r(n) ≤ s(n) ≤ u(n), s(n) ≤ v(n), and r(n) ≤ t(n) ≤ w(n) for all n;
furthermore s(2n) = t(2n+ 1) =∞. (The latter is evident a priori.)

Let A(n) be the function defined by the laws A(1) = 0, A(2n) = 2n + 2A(n),
A(2n+1) = 2n+1+A(n)+A(n+1); then A(2n) = 2n+A(n−1)+A(n+1)− (0 or 1)
for all n ≥ 2. Let C be a constant such that, for 4 ≤ n ≤ 8,

i) n even implies that w(n) ≤ A(n) + Cn− 1.
ii) n odd implies that u(n) and v(n) are ≤ A(n) + Cn− 1.

(This actually works for all C ≥ 5
6 .) Then an inductive argument, choosing k to be

⌊n/2⌋ ± 1 as appropriate, shows that the relations are valid for all n ≥ 4. But A(n) is
the lower bound in (9) when T = 3, and r(n) ≤ min(u(n), v(n), w(n)), hence we have
proved that A(n) ≤ K̂3(n) ≤ r(n) ≤ A(n)+ 5

6n−1. [The constant 5
6 can be improved.]

17. [The following method was used in the UNIVAC III sort program, and presented
at the 1962 ACM Sort Symposium.]

Level T1 T2 T3 T4 T5
0 1 0 0 0 0
1 5 4 3 2 1
2 55 50 41 29 15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n an bn cn dn en

n+1 5an +4bn+ 4an +4bn+ 3an +3bn+ 2an +2bn+ an +bn+
3cn +2dn +en 3cn +2dn +en 3cn +2dn +en 2cn +2dn +en cn +dn +en

To get from level n to level n + 1 during the initial distribution, insert k1 “sublevels”
with (4, 4, 3, 2, 1) runs added respectively to tapes (T1,T2, . . . ,T5), k2 “sublevels” with
(4, 3, 3, 2, 1) runs added, k3 with (3, 3, 2, 2, 1), k4 with (2, 2, 2, 1, 1), k5 with (1, 1, 1, 1, 0),
where k1 ≤ an, k2 ≤ bn, k3 ≤ cn, k4 ≤ dn, k5 ≤ en. [If (k1, . . . , k5) = (an, . . . , en) we
have reached level n + 1.] Add dummy runs if necessary to fill out a sublevel. Then
merge k1 + k2 + k3 + k4 + k5 runs from (T1, . . . ,T5) to T6, merge k1 + · · · + k4 from
(T1, . . . ,T4) to T5, . . . , merge k1 from T1 to T2; and merge k1 from (T2, . . . ,T6)
to T1, k2 from (T3, . . . ,T6) to T2, . . . , k5 from T6 to T5.
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18. (Solution by M. S. Paterson.) Suppose record j is written on the sequence of tape
numbers τj . At most C|τ | records can have a given sequence τ , where C depends on
the internal memory size (see Section 5.4.8). Hence |τ1|+ · · ·+ |τN | = Ω(N logT N).
19.

20. A strongly T -fifo tree has a T -fifo labeling in which there are no three branches
having the respective forms

i

k

A ,

j

s

A or
j

A ,

l

t

A or
l

A ,

for some tape name A and some i < j < k < l < s. Informally, when we grow on an A,
we must grow on all other A’s before creating any new A’s.
21. It is very weakly fifo:
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22. This occurs for any tree representations formed by successively replacing all oc-
currences of, for example,

A by
B C D

A
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for some fixed tape names A, B, C, D. Since all occurrences are replaced by the same
pattern, the lifo or fifo order makes no difference in the structure of the tree.

Stating the condition in terms of the vector model: Whenever (y(k+1) ̸= y(k) or
k = m) and y

(k)
j = −1, we have y(k)

j + · · ·+ y
(1)
j + y

(0)
j = 0.

23. (a) Assume that v1 ≤ v2 ≤ · · · ≤ vT ; the “cascade” stage

(1, . . . , 1,−1)vT (1, . . . , 1,−1, 0)vT−1 . . . (1,−1, 0, . . . , 0)v2

takes C(v) into v. (b) Immediate, since C(v)k ≤ C(w)k for all k. (c) If v is obtained
in q stages, we have u → u(1) → · · · → u(q) = v for some unit vector u, and some
other vectors u(1), . . . , u(q−1). Hence u(1) ⪯ C(u), u(2) ⪯ C(C(u)), . . . , v ⪯ C [q](u).
Hence v1 + · · · + vT is less than or equal to the sum of the elements of C [q](u); and
the latter is obtained in cascade merge. [This theorem generalizes the result of exercise
5.4.3–4. Unfortunately the concept of “stage” as defined here doesn’t seem to have any
practical significance.]
24. Let y(m) . . . y(l+1) be a stage that reduces w to v. If we have y(i)

j = −1, y(i−1)
j = 0,

. . . , y(k+1)
j = 0, and y

(k)
j = −1, for some k < i − 1, we can insert y(k) between y(i)

and y(i−1). Repeat this operation until all (−1)’s in each column are adjacent. Then
if y(i)

j = 0 and y
(i−1)
j ̸= 0 it is possible to set y(i)

j ← 1; ultimately each column
consists of +1’s followed by −1’s followed by 0s, and we have constructed a stage that
reduces w′ to v for some w′ ⪰ w. Permuting the columns, this stage takes the form
(1, . . . , 1,−1)aT . . . (1,−1, 0, . . . , 0)a2 (−1, 0, . . . , 0)a1. The sequence of T − 1 relations

(x1, . . . , xT ) ⪯ (x1+xT , . . . , xT−1+xT , 0)
⪯ (x1+xT−1+xT , . . . , xT−2+xT−1+xT , xT , 0)
⪯ (x1+xT−2+xT−1+xT , . . . , xT−3+xT−2+xT−1+xT , xT−1+xT , xT , 0)
⪯ · · ·
⪯ (x1+x2+x3+· · ·+xT , x3+· · ·+xT , . . . , xT−1+xT , xT , 0)

now shows that the best choice of the a’s is aT = vT, aT−1 = vT−1, . . . , a2 = v2,
a1 = 0. And the result is best if we permute columns so that v1 ≤ · · · ≤ vT.
25. (a) Assume that vT−k+1 ≥ · · · ≥ vT ≥ v1 ≥ · · · ≥ vT−k and use

(1, . . . , 1,−1, 0, . . . , 0)vT−k+1 . . . (1, . . . , 1, 0, . . . , 0,−1)vT .

(b) The sum of the l largest elements of Dk(v) is (l − 1)sk + sk+l for 1 ≤ l ≤ T − k.
(c) If v ⇒ w in a phase that uses k output tapes, we may obviously assume that
the phase has the form (1, . . . , 1,−1, 0, . . . , 0)a1 . . . (1, . . . , 1, 0, . . . , 0,−1)ak, with each
of the other T − k tapes used as input in each operation. Choosing a1 = vT−k+1, . . . ,
ak = vT is best. (d) See exercise 22(c). We always have k1 = 1; and k = T − 2 always
beats k = T − 1 since we assume that at least one component of v is zero. Hence for
T = 3 we have k1 . . . kq = 1q and the initial distribution (Fq+1, Fq, 0). For T = 4 the
undominated strategies and their corresponding distributions are found to be

q = 2 12 (3, 2, 0, 0)
q = 3 121 (5, 3, 3, 0); 122 (5, 5, 0, 0)
q = 4 1211 (8, 8, 5, 0); 1222 (10, 10, 0, 0); 1212 (11, 8, 0, 0)
q = 5 12121 (19, 11, 11, 0); 12222 (20, 20, 0, 0); 12112 (21, 16, 0, 0)
q = 6 122222 (40, 40, 0, 0); 121212 (41, 30, 0, 0)
q ≥ 7 12q−1 (5 · 2q−3, 5 · 2q−3, 0, 0)
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So for T = 4 and q ≥ 6, the minimum-phase merge is like balanced merge, with a slight
twist at the very end (going from (3, 2, 0, 0) to (1, 0, 1, 1) instead of to (0, 0, 2, 1)).

When T = 5 the undominated strategies are 1(32)n−12, 1(32)n−13 for q = 2n ≥ 2;
1(32)n−132, 1(32)n−122, 1(32)n−123 for q = 2n + 1 ≥ 3. (The first strategy listed
has most runs in its distribution.) On six tapes they are 13 or 14, 142 or 132 or 133,
1333 or 1423, then 13q−1 for q ≥ 5.

SECTION 5.4.5
1. The following algorithm is controlled by a table A[L− 1] . . . A[1]A[0] that essen-

tially represents a number in radix P notation. As we repeatedly add unity to this
number, the carries tell us when to merge. Tapes are numbered from 0 to P .

O1. [Initialize.] Set (A[L−1], . . . , A[0]) ← (0, . . . , 0) and q ← 0. (During this
algorithm, q will equal (A[L−1] + · · ·+ A[0]) mod T.)

O2. [Distribute.] Write an initial run on tape q, in ascending order. Set l← 0.
O3. [Add one.] If l = L, stop; the output is on tape (−L) mod T, in ascending

order if and only if L is even. Otherwise set A[l]← A[l]+1, q ← (q+1) mod T.
O4. [Carry?] If A[l] < P , return to O2. Otherwise merge to tape (q − l) mod T ,

set A[l]← 0 and q ← (q + 1) mod T, increase l by 1, and return to O3.
2. Keep track of how many runs are on each tape. When the input is exhausted, add

dummy runs if necessary and continue merging until reaching a situation with at most
one run on each tape and at least one tape empty. Then finish the sort in one more
merge, rewinding some tapes first if necessary. (It is possible to deduce the orientation
of the runs from the A table.)

3. Op T0 T1 T2 Op T0 T1 T2
Dist — A1 A1A1 Dist D2A1 A1 A4
Merge D2 — A1 Merge D2 — A4D2
Dist D2A1 — A1 Merge — A4 A4
Merge D2 D2 — Dist — A4 A4A1
Dist D2 D2A1 A1 Copy — A4D1 A4
Merge D2D2 D2 — Copy — A4 A4A1
Merge D2 — A4 Merge D5 — A4

At this point T2 would be rewound and a final merge would complete the sort.
To avoid useless copying in which runs are simply shifted back and forth, we can

say “If the input is exhausted, go to B7” at the end of B3, and add the following new
step:

B7. [Do the endgame.] Set s ← −1, and go to B2 after repeating the following
operations until l = 0: Set s′ ← A[l − 1, q], and set q′ and r′ to the indices
such that A[l − 1, q′] = −1 and A[l − 1, r′] = −2. (We will have q′ = r, and
s′ ≤ A[l − 1, j] ≤ s′ + 1 for j ̸= q′, j ̸= r′.) If s′ − s is odd, promote level l,
otherwise demote it (see below). Then merge to tape r, reading backwards;
set l← l − 1, A[l, q]← −1, A[l, r]← s′ + 1, r ← r′, and repeat.

Here “promotion” means to repeat the following operation until (q+(−1)s) mod T = r:
Set p← (q+ (−1)s) mod T and copy one run from tape p to tape q, then set A[l, q]←
s + 1, A[l, p] ← −1, q ← p. And “demotion” means to repeat the following until
(q − (−1)s) mod T = r: Set p ← (q − (−1)s) mod T and copy one run from tape p to
tape q, then set A[l, q]← s, A[l, p]← −1, q ← p. The copy operation reads backwards
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on tape p, hence it reverses the direction of the run being copied. If D[p] > 0 when
copying from p to q, we simply decrease D[p] and increase D[q] instead of copying.

[The basic idea is that, once the input is exhausted, we want to reduce to at most
one run on each tape. The parity of each nonnegative entry A[l, j] tells us whether
a run is ascending or descending. The smallest S for which this change makes any
difference is P 3 + 1. When P is large, the change hardly ever makes much difference,
but it does keep the computer from looking too foolish in some circumstances. The
algorithm should also be changed to handle the case S = 1 more efficiently.]

4. We can, in fact, omit setting A[0, 0] in step B1, A[l, q] in steps B3 and B5. [But
A[l, r] must be set in step B3.] The new step B7 in the previous answer does need the
value of A[l, q] (unless it explicitly uses the fact that q′ = r, as noted there).

5. P 2k − (P − 1)P 2k−2 < S ≤ P 2k for some k > 0.

SECTION 5.4.6
1. ⌊23000480/(n+ 480)⌋n.
2. At the instant shown, all the records in that buffer have been moved to the output.

Step F2 insists that the test “Is output buffer full?” precede the test “Is input buffer
empty?” while merging, otherwise we would have trouble (unless the changes of exer-
cise 4 were made).

3. No; for example, we might reach a state with P buffers 1/P full and P − 1 buffers
full, if file i contains the keys i, i+ P , i+ 2P , . . . , for 1 ≤ i ≤ P . This example shows
that 2P input buffers would be necessary for continuous output even if we allowed
simultaneous reading, unless we reallocated memory for partial buffers. [Well, we
don’t really need 2P buffers if the blocks contain fewer than P − 1 records; but that is
unlikely.]

4. Set up S sooner (in steps F1 and F4 instead of F3).
5. If, for example, all keys of all files were equal, we couldn’t simply make arbitrary

decisions while forecasting; the forecast must be compatible with decisions made by the
merging process. One safe way is to find the smallest possible m in steps F1 and F4,
namely to consider a record from file C[i] to be less than all records having the same
key on file C[j] whenever i < j. (In essence, the file number is appended to the key.)

6. In step C1 also set TAPE[T + 1] ← T + 1. In step C8 the merge should be to
TAPE[p+ 2] instead of TAPE[p+ 1]. In step C9, set (TAPE[1], . . . , TAPE[T+1]) ←
(TAPE[T+1], . . . , TAPE[1]).

7. The method used in Chart A is (A1D1)4A0D0A1D1(A0D0(A1D1)3)2A0, D1(A1D1)2

A0D0(A1D1)3A0D0αA0D0A0, D1A0D0(A1D1)3A0D0αA1D1A0, D1A1D1αA1D1A0,
where α = (A0D0)2A1D1A0D0(A1D1)2(A0D0)7A1D1(A0D0)3A1D1A0D0. The first
merge phase writes D0A3D3A1D1A4D4A0D0A1D1A1D1A4D4A0D0A1D1A0D0(A1D1)4

on tape 5; the next writes A4D4A4D4A1D1A4D4A0D0A1D1A1D1A7 on tape 1; the
next, D13A4D4A4D4A0D0A10 on tape 4. The final phases are

A4D4A4 — D19A3D3A12 D13A4D4A4 D0A3
A4 D23A11 D19A3 D13A4 —
— D23 D19 D13 D22
A77 — — — —

8. No, since at most S stop/starts are saved, and since the speed of the input tape (not
the output tapes) tends to govern the initial distribution time anyway. The other advan-
tages of the distribution schemes used in Chart A outweigh this minuscule disadvantage.
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9. P = 5, B = 8300, B′ = 734, S = ⌈(3 + 1/P )N/(6P ′)⌉ + 1 = 74, ω ≈ 1.094,
α ≈ 0.795, β ≈ −1.136, α′ = β ′ = 0; Eq. (9) ≈ 855 seconds, to which we add the time
for initial rewind, for a total of 958 seconds. The savings of about one minute in the
merging time does not compensate for the loss of time due to the initial rewinding and
tape changing (unless perhaps we are in a multiprogramming environment).
10. The rewinds during standard polyphase merge involve about 54 percent of the file
(the “pass/phase” column in Table 5.4.2–1), and the longest rewinds during standard
cascade merge involve approximately akan−k/an ≈ (4/(2T −1)) cos2(π/(4T −2)) < 4

11
of the file, by exercise 5.4.3–5 and Eq. 5.4.3–(13).
11. Only initial and final rewinds get to make use of the high-speed feature, since the
reel is only a little more than 10/23 full when it contains the whole example file. Using
π = ⌈.946 lnS − 1.204⌉, π′ = 1/8 in example 8, we get the following estimated totals
for examples 1–9, respectively:

1115, 1296, 1241, 1008, 1014, 967, 891, 969, 856.

12. (a) An obvious solution with 4P+4 buffers simply reads and writes simultaneously
from paired tapes. But note that three output buffers are sufficient: At a given
moment we can be performing the second half of a write from one, the first half
of a write from another, and outputting into a third. This approach suggests a
corresponding improvement in the input buffer situation. It turns out that 3P input
buffers and 3 output buffers are necessary and sufficient, using a slightly weakened
forecasting technique. A simpler and superior approach, suggested by J. Sue, adds a
“lookahead key” to each block, specifying the final key of the subsequent block. Sue’s
method requires 2P + 1 input buffers and 4 output buffers, and it is a straightforward
modification of Algorithm F. (See also Section 5.4.9.)

(b) In this case the high value of α means that we must do between five and six
passes over the data, which wipes out the advantage of double-quick merging. The idea
works out much better on eight or nine tapes.
13. No; consider, for example, the situation just before A16A16A16A16. But two
reelfuls can be handled.

14. det


0 −p0z 0 z − 1
0 1− p1z −p0z z − 1
1 0 0 0
0 0 0 1




det


1− p≥1z −p0z 0 z − 1
−p≥2z 1− p1z −p0z z − 1

0 −1 1 0
0 0 0 1

 .

15. The A matrix has the form

A =


B10z B11z . . . B1nz 1− z

...
...

Bn0z Bn1z . . . Bnnz 1− z
0 . . . 0 1 0 0
0 . . . 0 0 0 0

 ,

B10 +B11 + · · ·+B1n = 1,
...

Bn0 +Bn1 + · · ·+Bnn = 1.
(11)

Therefore

det(I −A) = det


1−B10z −B11z . . . −B1(n−1)z −B1nz

...
...

−Bn0z −Bn1z . . . 1−Bn(n−1)z −Bnnz
0 0 −1 1
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and we can add all columns to the first column, then factor out (1− z). Consequently
gQ(z) has the form hQ(z)/(1 − z), and α(Q) = hQ(1) because we have hQ(1) ̸= 0 and
det(I −A) ̸= 0 for |z| < 1.

SECTION 5.4.7
1. Sort from least significant digit to most significant digit in the number system

whose radices are alternately P and T − P . (If pairs of digits are grouped, we have
essentially the pure radix P · (T − P ). Thus, if P = 2 and T = 7, the number system
is “biquinary,” related to decimal notation in a simple way.)

2. If K is a key between 0 and Fn−1, let the Fibonacci representation of Fn−1−K
be an−2Fn−1 + · · ·+ a1F2, where the aj are 0 or 1, and no two consecutive 1s appear.
After phase j, tape (j+ 1) mod 3 contains the keys with aj = 0, and tape (j−1) mod 3
contains those with aj = 1, in decreasing order of aj−1 . . . a1.

[Imagine a card sorter with two pockets, “0” and “1”, and consider the procedure
of sorting Fn cards that have been punched with the keys an−2 . . . a1 in n− 2 columns.
The conventional procedure for sorting these into decreasing order, starting at the least
significant digit, can be simplified since we know that everything in the “1” pocket at
the end of one pass will go into the “0” pocket on the following pass.]

4. If there were an external node on level 2 we could not construct such a good tree.
Otherwise there are at most three external nodes on level 3, and six on level 4, since
each external node is supposed to appear on the same tape.

5.

1

2 3

4 56 7

8

9

1011 1213

A

A AB B

C

C CC C

C

D

D

0

D

1

D

2

D

3

D

4
D

5
D

6

D

7

D

8

D

9

B

6. 09, 08, . . . , 00, 19, . . . , 10, 29, . . . , 20, 39, . . . , 30, 40, 41, . . . , 49, 59, . . . , 50, 60,
61, . . . , 99.

7. Yes; first distribute the records into smaller and smaller subfiles until obtaining
one-reel files that can be sorted individually. This is dual to the process of sorting
one-reel files and then merging them into larger and larger multireel files.

SECTION 5.4.8
1. Yes. If we alternately use ascending and descending order in the selection tree, we

have in effect an order-P cocktail-shaker sort. (See exercise 9.)
2. Let ZN = YN −XN, and solve the recurrence for ZN by noting that

(N + 1)NZN+1 = N(N − 1)ZN +N2 +N ;
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hence
ZN = 1

3 (N + 1) +

M + 2

3


N (N − 1), for N > M.

Now eliminate YN and obtain
XN

N+1 = 20
3 (HN+1−HM+2)+2

 1
N+1 −

1
M+2


− 2

3


M+2

3

 1
(N+1)N(N−1) −

1
(M+2)(M+1)M


+ 3M+4
M+2 , N > M.

3. Yes; find a median element in O(N) steps, using a construction like that of
Theorem 5.3.3L, and use it to partition the file. Another interesting approach, due
to R. W. Floyd and A. J. Smith, is to merge two runs of N items in O(N) units of
time as follows: Spread the items out on the tapes, with spaces between them, then
successively fill each space with a number specifying the final position of the item just
preceding that space.

4. It is possible to piece together a schedule for floors {1, . . . , p+ 1} with a schedule
for floors {q, . . . , n}: When the former schedule first reaches floor p+ 1, go up to floor
q and carry out the latter schedule (using the current elevator contents as if they were
the “extras” in the algorithm of Theorem K). After finishing that schedule, go back to
floor p+ 1 and resume the previous schedule.

5. Consider b = 2, m = 4 and the following behavior of the algorithm:

Floor 7: 47

Floor 6: 23

Floor 5: 14

Floor 4: 71

Floor 3: 63

Floor 2: 62

Floor 1: 55

�
�.0000
r .00�
�.0055
r .00�
�.2556
r .23�
�.5566
r .15�
�.5667
r .14�
�.5667
r .23�
�.5667
r .77
@
@
.4566r .66
A
A
.2345r .45
@
@
.1234 r .11�

�.2345
r

Now 2 (in the elevator) is less than 3 (on floor 3).
[After constructing an example such as this, the reader should be able to see how

to demonstrate the weaker property required in the proof of Theorem K.]
6. Let i and j be minimal with bi < b′i and bj > b′j . Introduce a new person who

wants to go from i to j. This doesn’t increase max(uk, dk+1, 1) or max(bk, b
′
k) for any k.

Continue this until bj = b′j for all j. Now observe that the algorithm in the text works
also with b replaced by bk in steps K1 and K3.

8. Let the number be Pn, and let Qn be the number of permutations such that uk = 1
for 1 ≤ k < n. Then Pn = Q1Pn−1 + Q2Pn−2 + · · · + QnP0, P0 = 1. It can be shown
that Qn = 3n−2 for n ≥ 2 (see below), hence a generating function argument yields

Pnz
n = (1− 3z)/(1− 4z + 2z2) = 1 + z + 2z2 + 6z3 + 20z4 + 68z5 + · · · ;

2Pn = (2 +
√

2)n−1 + (2−
√

2)n−1
.
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To prove that Qn = 3n−2, consider a ternary sequence x1x2 . . . xn such that x1 = 2,
xn = 0, and 0 ≤ xk ≤ 2 for 1 < k < n. The following rule defines a one-to-one
correspondence between such sequences and the desired permutations a1a2 . . . an:

ak =


max{j | (j < k and xj = 0) or j = 1 }, if xk = 0;
k, if xk = 1;
min{j | (j > k and xj = 2) or j = n }, if xk = 2.

(This correspondence was obtained by the author jointly with E. A. Bender.)
9. The number of passes of the cocktail-shaker sort is 2 max(u1, . . . , un) − (0 or 1),

since each pair of passes (left-right-left) reduces each of the nonzero u’s by 1.
10. Begin with a distribution method (quicksort or radix exchange) until one-reel files
are obtained. And be patient.

SECTION 5.4.9
1. 1

4 − (xmod 1
2 )2 revolutions.

2. The probability that k = aiq and k + 1 = ai′r for fixed k, q, r, and i ̸= i′ is
f(q, r, k)L!L!(PL− 2L)!/(PL)!, where

f(q, r, k) =

k − 1
q − 1


k − q
r − 1


PL− k − 1
L− q


PL− k − 1− L+ q

L− r


=


k − 1
q + r − 2


q + r − 2
q − 1


PL− k − 1
2L− q − r

2L− q − r
L− q


;

and
1≤k<PL
1≤q,r≤L

|q−r|f(q, r, k) =


1≤q,r≤L

|q−r|

PL−1
2L−1


q+r−2
q−1

2L−q−r
L−q


=

PL−1
2L−1


A2L−1.

The probability that k = aiq and k + 1 = ai(q+1) for fixed k, q, and i is

g(k, q)


PL

L


, where g(k, q) =


k − 1
q − 1


PL− k − 1
L− q − 1


;

and 
1≤k<PL
1≤q<L

g(k, q) =


1≤q<L


PL− 1
L− 1


= (L− 1)


PL− 1
L− 1


.

[SICOMP 1 (1972), 161–166.]
3. Take the minimum in (5) over the range 2 ≤ m ≤ min(9, n).

4. (a) (0.000725(
√
P + 1)2 + 0.014)L. (b) Change “αmn + βn” in formula (5) to

“(0.000725(√m+ 1)2 + 0.014)n.” [Computer experiments show that the optimal trees
defined by this new recurrence are very similar to those defined by Theorem K with
α = 0.00145, β = 0.01545; in fact, trees exist that are optimal for both recurrences,
when 30 ≤ n ≤ 100. The change suggested in this exercise saves about 10 percent of
the merging time, when n = 64 or 100 as in the text’s example. This style of buffer
allocation was considered already in 1954 by H. Seward, who found that four-way
merging minimizes the seek time.]
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5. Let Am(n) and Bm(n) be the cost of optimum sets of m trees whose n leaves are
all at (even, odd) levels, respectively. Then A1(1) = 0, B1(1) = α + β ; Am(n) and
Bm(n) are defined as in (4) when m ≥ 2; A1(n) = min1≤m≤n(αmn + βn + Bm(n)),
B1(n) = min1≤m≤n(αmn+βn+Am(n)). The latter equations are well-defined in spite
of the fact that A1(n) and B1(n) are defined in terms of each other!

6.
or ;

A1(23) = B1(23) = 268. [Curiously, n = 23 is the only value ≤ 50 for which no equal-
parity tree with n leaves is optimal in the unrestricted-parity case. Perhaps it is the
only such value, when α = β.]

7. Consider the quantities αd1 + βe1, . . . , αdn + βen in any tree, where dj is the
degree sum and ej is the path length for the jth leaf. An optimum tree for weights
w1 ≤ · · · ≤ wn will have αd1 + βe1 ≥ · · · ≥ αdn + βen. It is always possible to reorder
the indices so that αd1 + βe1 = · · · = αdk + βek where the first k leaves are merged
together.

9. Let d minimize (αm + β)/ lnm. A simple induction using convexity shows that
A1(n) ≥ (αd + β)n logd n, with equality when n = dt. A suitable upper bound comes
from complete d-ary trees, since these have D(T ) = dE(T ), E(T ) = tn + dr for
n = dt + (d− 1)r, 0 ≤ r ≤ dt.

10. See STOC 6 (1974), 216–229.

11. Using exercise 1.2.4–38, fm(n) = 3qn + 2(n − 3qm), when 2 · 3q−1 ≤ n/m ≤ 3q;
fm(n) = 3qn + 4(n − 3qm), when 3q ≤ n/m ≤ 2 · 3q. Thus f2(n) + 2n ≥ f(n), with
equality if and only if 4 · 3q−1 ≤ n ≤ 2 · 3q; f3(n) + 3n = f(n); f4(n) + 4n ≥ f(n), with
equality if and only if n = 4 · 3q; and fm(n) +mn > f(n) for all m ≥ 5.

12. Use the specifications −, 1:1, 1:1:1, 1:1:1:1 or 2:2, 2:3, 2:2:2, . . . , ⌊n/3⌋:⌊(n+1)/3⌋:
⌊(n+ 2)/3⌋, . . . ; this gives trees with all leaves at level q + 2, for 4 · 3q ≤ n ≤ 4 · 3q+1.
(When n = 4 · 3q, two such trees are formed.)

14. The following tree specifications were found for n = 1, 2, 3, . . . by exhaustively
examining all partitions of n: −, 1:1, 1:1:1, 1:1:1:1, 1:1:1:1:1, 1:1:1:1:1:1, 1:1:1:1:3,
1:1:3:3, 3:3:3, 1:3:3:3, 3:4:4, 3:3:3:3, 3:3:3:4, 3:3:4:4, 3:4:4:4, 4:4:4:4, . . . , 5:6:6:6:12,
6:6:6:6:12, 6:6:6:6:13, . . . . (The degrees seem to be always ≤ 6, but such a result
appears to be quite difficult to prove.)

15. If a people initially got on the elevator, the togetherness rating increases by at
most a+ b at the first stop. When it next stops at the initial floor, the rating increases
by at most b+m− a. Hence the rating increases at most kb+ (k − 1)m after k stops.

16. Eleven stops: 123456 to floor 2, 334466 to 3, 444666 to 4, 256666 to 5, 466666
to 6, 123445 to 4, 112335 to 5, 222333 to 3, 122225 to 2, 111555 to 5, 111111 to 1.
[This is minimal, for a 10-stop solution with any elevator capacity can, by symmetry,
be arranged to stop on floors 2, 3, 4, 5, 6, p2, p3, p4, p5, 1 in that order, where p2p3p4p5
is a permutation of {2, 3, 4, 5}; such schedules are possible only when b ≥ 8. See Martin
Gardner, Knotted Doughnuts (New York: Freeman, 1986), Chapter 10.]
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17. There are at least (bn)!/b!n configurations; and the number that can be ob-
tained from a given one after s stops is at most


(n− 1)


b+m

b


s−1, which is less

than (n((b+m)e/b)b)s by exercise 1.2.6–67. Hence some configuration requires

s(lnn+ b(1 + ln(1 +m/b))) > ln(bn)!− n ln b! > bn ln bn− bn− n((b+ 1) ln b− b+ 1)

by exercise 1.2.5–24.
Notes: Using the fact that 1/(x+ y) ≥ 1

2 min(1/x, 1/y) when x and y are positive,
we can express this lower bound in the convenient form

Ω


min

nb,

n log(1 + n)
log(1 +m/b)


.

Related results have been obtained by A. Aggarwal and J. S. Vitter, CACM 31 (1988),
1116–1127, who also established the matching upper bound

O


min

nb,

n log(1 + n)
log(1 +m/b)


.

See also M. H. Nodine and J. S. Vitter, ACM Symposium on Parallel Algorithms and
Architectures 5 (1993), 120–129, for extensions to several disks.
18. The expected number of stops is


s≥1 ps, where ps is the probability that at least

s stops are needed. Let qs = 1 − ps+1 be the probability that at most s stops are
needed. Then exercise 17 shows that qs ≤ f(s− 1 + [s= 0]), where f(s) = b!nαs/(bn)!
and α = n((b+m)e/b)b. If f(t−1) < 1 ≤ f(t) then


s≥1 ps ≥ p1 + · · ·+pt = t− (q0 +

· · ·+qt−1) ≥ t−(f(0)+f(0)+· · ·+f(t−2)) ≥ t−(α1−t+α1−t+· · ·+α−1) ≥ t−1 ≥ L−1.
19. Consider doing step (vii) backwards, distributing the records into bin 1, then bin 2.
This operation is precisely what step (iv) is simulating on the key file. [Princeton
Conference on Information Sciences and Systems 6 (1972), 140–144.]
20. The internal sort must be carefully chosen, with paging in mind; methods such
as shellsort, address calculation, heapsort, and list sorting can be disastrous if the
actual internal memory is small, since they require a large “working set” of pages.
Quicksort, radix exchange, and sequentially allocated merge or radix sorting are much
better suited to a paging environment.

Some things the designer of an external sort can do that are virtually impossible
to include in an automatically paged method are: (i) Forecasting the input file that
should be read next, so that the data is available when it is required; (ii) choosing the
buffer sizes and the order of merge according to hardware and data characteristics.

On the other hand a virtual machine is considerably easier to program, and it can
give results that aren’t bad, if the programmer is careful and knows the properties of
the underlying actual machine. The first substantial study of this question was made
by Brawn, Gustavson, and Mankin [CACM 13 (1970), 483–494.]
21. ⌈(L− j)/D⌉; see CMath, Eq. (3.24).
22. After reading a group of D blocks that contains aj , we might need to know αj+D−1
before reading the next group of D blocks. And if we store αj+D−1 with aj , we also
need the values α0, . . . , αD−2 in some sort of file header to get the process started.

But with this scheme we cannot write blocks a0 . . . aD−1 until we have computed
aD . . . a2D−2, so we will need 3D − 1 output buffers instead of 2D to keep writing
continuously. It is therefore better to put the α’s in a separate (short) file. [The same
analysis applies to randomized striping.]
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23. (a) Algorithm 5.4.6F needs 4 input buffers, each of superblock size DB. (If we
count output buffers as well, we have a total of 6DB buffer records in memory with
Algorithm 5.4.6F and 5DB with SyncSort.)

(b) While we are reading a group of D blocks we need buffer space for the previous
D blocks and one unfinished block, for a total of (2D+ 1)B records. (Output requires
another 2DB. But many data processing operations that do 2-way merging on input
actually produce comparatively little output.)
24. Let the lth block in chronological order be block jl of run kl; in particular, jl = 0
and kl = l for 1 ≤ l ≤ P . We will read that block at time tl =

P
k=1 tlkd, where

tlkd = |{r | 1 ≤ r ≤ l and kr = k and (xk + jr) modD = d}|
is the number of blocks of run k on disk d that are chronologically ≤ l, and d =
(xkl + jl) modD. Let ulk = |{r | 1 ≤ r ≤ l and kr = k}|; then

tlkd =

ulk − (d− xk) modD

D


,

because jr runs through the values 0, 1, . . . , ulk − 1 when 1 ≤ r ≤ l and kr = k. The
sequence tl for the example of (19), (20), and (21) is

11111 22223 43456 34567 82345 67893 . . . .

If l > P , the number of buffer blocks we need as we begin to merge from the lth
block in chronological order is Il +D+ P , where Il is the number of “inversions-with-
equality” of tl, namely |{r | r > l and tr ≤ tl}|, the number of bufferfuls that we’ve
read but aren’t ready to use; D represents the buffers into which the next input is
going, and P represents the partially full buffers from which we are currently merging.
(With special care, using links as in SyncSort, we could reduce the latter requirement
from P to P − 1, but the extra complication is probably not worthwhile.)

So the problem boils down to getting an upper bound on Il. We may assume that
the input runs are infinitely long. Suppose s of the elements {t1, . . . , tl} are greater
than tl; then tl has tlD − l + s inversions-with-equality, because exactly tlD elements
are ≤ tl. It follows that the maximum Il occurs when s = 0 and tl is a left-to-right
maximum. We have

P
k=1 ulk = l; hence by the formulas for tl above,

Il ≤ max
l>P

(tlD − l) ≤
P

k=1

(ulk − (d− xk) modD +D − 1− ulk)

= P (D − 1)−
P

k=1

(d− xk) modD

≤ P (D − 1)− min
0≤d<D

P
k=1

(d− xk) modD,

and there exist chronological orders for which this upper bound is attained.
Suppose rt of the xk are equal to t. We want to choose the xk so that min0≤d<D sd

is maximized, where sd =
P

k=1(d − xk) modD =
D−1

t=0 ((d − t) modD)rt. We can
assume that the minimum occurs at d = 0. Then s1 = s0 +P −r1D, s2 = s1 +P −r2D,
. . . , hence we have r1 ≤ ⌊P/D⌋, r1 + r2 ≤ ⌊2P/D⌋, . . . ; it follows that the minimum is

s0 = (D−1)r1+(D−2)r2+· · ·+rD−1 ≤
D−1
k=1

⌊kP/D⌋ = 1
2 ((P−1)(D−1)+gcd(P,D)−1),
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by exercise 1.2.4–37. This bound is achieved when xj = ⌈jD/P ⌉ − 1 for 1 ≤ j ≤ P .
With such xj we can handle every chronological sequence at full speed if we have

Imax +D+P = 1
2PD+ 3

2D+ 1
2P + 1

2 gcd(P,D)− 1 input buffers containing B records
each. (This is pretty good when D = 2 or 3.)
25. Notice that at Time 4, we go back to reading f1 on disk 0:

Active reading Active merging Scratch Waiting for
Time 1 e0 b0g0a0c0 −−−−−−−− (−−−−−−−) a0
Time 2 f1d0d1d2f0 a0−−−−−−− b0 c0(e0g0−−−) d0
Time 3 a2h0e2g1d3 a0b0 c0d0−−−− e0f0g0(d1d2f1−) h0
Time 4 f1e1 b1g1a1 a0b0 c0d0e0f0g0h0 d1(d2e2d3f1g1a2) e1
Time 5 a2f2h1e3g2 a0b0 c0d1e1f0g0h0 d2e2d3a1f1b1g1() a2
Time 6 d4a3f3b2e4 a2b1 c0d3e2f1g1h0 f2e3(h1g2−−−) d4
Time 7 c1a3f3 ? e4 a2b1 c0d4e3f2g1h0 (h1b2g2a3f3e4−) c1
Time 8 ? d5d6 ? ? a2b1 c1d4e3f2g1h0 h1b2g2a3f3e4( ? ) d5

26. While D blocks are being read and D are being written, the merging procedure
might generate up to P +Q− 1 blocks of output, under the assumptions of (24). (Not
P + Q, since only one merge buffer becomes totally empty.) Reading is as fast as
writing, so D+P +Q− 1 output buffers are necessary and sufficient to prevent output
hangup.

However, at most D blocks are output for every D blocks of input, on the average,
so about 3D output buffers should be adequate in practice.
27. (a) En(m1, . . . ,mp) =

m
t=1 qt, where qt is the probability that some urn contains

at least t balls. Clearly qt ≤ 1 and

qt ≤
n−1
k=0

Pr(urn k contains at least t balls) = nPr(Sn(m1, . . . ,mp) ≥ t).

(b) The probability generating function of Sn(m1, . . . ,mp) is

p(z) =
p

k=1

zqk(1 + (z − 1)rk/n),

where qk = ⌊mk/n⌋ and rk = mk mod n. Now 1 + α ≤ (1 + α/n)n and 1 + αr/n ≤
(1 +α/n)r when α ≥ 0; hence we have Pr(Sn(m1, . . . ,mp) ≥ t) ≤ (1 +α)−tp(1 +α) ≤
(1 + α)−tp

k=1(1 + α/n)mk = (1 + α)−t(1 + α/n)m.
If t ≤ m/n, we use the “1” term in the stated minimum. If t > m/n, the quantity

(1 + α)−t(1 + α/n)m takes its minimum value (n− 1)m−tmm/(nmtt(m− t)m−t) when
α = (nt−m)/(m− t).
28. Numerical evidence seems to support this natural conjecture. For example, we
have
E10(1, 1, 1, 1, 1, 1, 1, 1) = 2.3993180,
E10(2, 1, 1, 1, 1, 1, 1) = 2.364540,
E10(2, 2, 1, 1, 1, 1) = 2.32076,
E10(3, 1, 1, 1, 1, 1) = 2.29958,
E10(2, 2, 2, 1, 1) = 2.2628,
E10(3, 2, 1, 1, 1) = 2.2460,
E10(4, 1, 1, 1, 1) = 2.2076,

E10(2, 2, 2, 2) = 2.178,
E10(3, 2, 2, 1) = 2.166,
E10(3, 3, 1, 1) = 2.152,
E10(4, 2, 1, 1) = 2.138,
E10(5, 1, 1, 1) = 2.090,
E10(3, 3, 2) = 2.02,
E10(4, 2, 2) = 2.01,

E10(4, 3, 1) = 2.00,
E10(5, 2, 1) = 1.98,
E10(6, 1, 1) = 1.94,
E10(4, 4) = 1.7,
E10(5, 3) = 1.7,
E10(6, 2) = 1.7,
E10(7, 1) = 1.7.
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29. (a) At time t, all disks are reading blocks that occur no earlier than the block
marked at time t. The next Q blocks are never removed from the scratch buffers once
they have been read. Thus the relevant blocks on disk j all are read by time ≤ t+Nj ;
they must all participate in the merge by time t+ max(N0, . . . , ND−1).

(b) If the (Q+ 1)st block after a marked block is not removed, the same argument
applies. Otherwise the previous Q are not marked, and the Q+ 2 blocks cannot all be
on different disks.

(c) Divide the chronological order of blocks into groups of size Q+ 2, and consider
any particular group. If there are Mk blocks from run k, then the numbers Nj are
equivalent to the number of balls in the jth urn, in a cyclic occupancy problem with
n = D and m = Q + 2. Thus the expected number of marked cells in any group is
at most the upper bound in exercise 27(b). Calling that upper bound en(m), we may
take r(d,m) = (d/m)ed(m).

[Actually this function r(2,m) is not monotonic in m when m is small. Therefore
the entries listed for r(2, 4) and r(2, 12) in Table 2 are actually the values of r(2, 3) and
r(2, 11); additional buffers cannot increase the number of marked blocks.]
30. Let l = ⌈(s+

√
2s) ln d⌉, α =


2/s. Then

ed(sd ln d) < l +

t>l

d(1 + α/d)sd ln d/(1 + α)t

= l + d(1 + α/d)sd ln d/α(1 + α)l

≤ l + α−1 exp((ln d)(1 + sα− (s+
√

2s) ln(1 + α))),

and (s+
√

2s) ln(1 + α) > sα+ 1− α/3. Therefore

1 ≤ r(d, sd ln d) = ed(sd ln d)
s ln d < 1 +


2
s

+ 1√
2s ln d


1 +


2
9s ln d+O(s−1(log d)2)


,

if s/(log d)2 →∞. Convergence to this asymptotic behavior is rather slow (see Table 2).
31. (When Q = 0, we mark the first block and then repeatedly mark the next
block that shares a disk with one of the blocks in the group starting with the pre-
viously marked block. For example, if the chronological order of disk accesses is
112020121210122, the marking would be 1̄1̄202̄012̄12̄101̄22̄. Therefore as P → ∞,
we read an average of Q(D)n blocks during n units of time, where Q is Ramanujan’s
function, defined in Eq. 1.2.11.3–(2). By contrast, r(d, 2) = (d + 1)/2 gives a much
more pessimistic estimate.)

SECTION 5.5
1. It is difficult to decide which sorting algorithm is best in a given situation.
2. For small N, list insertion; for medium N, say N = 64, list merge; for large N,

radix list sort.
3. (Solution by V. Pratt.) Given two nondecreasing runs α and β to be merged,

determine in a straightforward way the subruns α1α2α3β1β2β3 such that α2 and β2
contain precisely the keys of α and β having the median value of the entire file.
By successive “reversals,” first forming α1α2β

R
1 α

R
3 β2β3, then α1β1α

R
2 β

R
2 α3β3, then

α1β1α2β2α3β3, we can reduce the problem to the merging of subfiles α1β1 and α3β3
that are of length ≤ N/2.
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A considerably more complicated algorithm due to L. Trabb Pardo provides the
best possible asymptotic answer to this problem: We can do stable merging in O(N)
time and stable sorting in O(N logN) time, using only O(logN) bits of auxiliary
memory for a fixed number of index variables, without transforming the records being
sorted in any way [SICOMP 6 (1977), 351–372]. The same time and space bounds have
been achieved with much smaller constant factors by B.-C. Huang and M. A. Langston,
Comp. J. 35 (1992), 643–650. See also A. Symvonis, Comp. J. 38 (1995), 681–690, for
stable merging of M items with N when M is much smaller than N .

4. Only straight insertion, list insertion, and list merge. The variants of quicksort
could be made parsimonious, but only at the expense of extra work in the inner loops
(see exercise 5.2.2–24).

Parsimonious methods are especially useful when the result of a comparison is not
100% reliable; see D. E. Knuth, Lecture Notes in Comp. Sci. 606 (1992), 61–67.

SECTION 6.1
1.


(N2 − 1)/12; see Eq. 1.2.10–(22).
2. S1′. [Initialize.] Set P← FIRST.

S2′. [Compare.] If K = KEY(P), the algorithm terminates successfully.
S3′. [Advance.] Set P← LINK(P).
S4′. [End of file?] If P ̸= Λ, go back to S2′. Otherwise the algorithm terminates

unsuccessfully.
3. KEY EQU 3:5

LINK EQU 1:2
START LDA K 1

LD1 FIRST 1
2H CMPA 0,1(KEY) C

JE SUCCESS C
LD1 0,1(LINK) C − S
J1NZ 2B C − S

FAILURE EQU * 1− S

The running time is (6C − 3S + 4)u.
4. Yes, if we have a way to set “KEY(Λ)” equal to K. [But the technique of loop

duplication used in Program Q′ has no effect in this case.]
5. No; Program Q always does at least as many operations as Program Q′.
6. Replace line 08 by JE *+4; CMPA KEY+N+2,1; JNE 3B; INC1 1; and change lines

03–04 to ENT1 -2-N; 3H INC1 3.
7. Note that CN = 1

2CN−1 + 1.
8. Euler’s summation formula gives

H(x)
n = ζ(x) + n1−x

(1− x) + 1
2n

−x − B2x

2! n−1−x + B3x(x+ 1)
3! n−2−x −O(n−3−x).

[Complex variable theory tells us that

ζ(x) = 2xπx−1 sin( 1
2πx)Γ (1− x)ζ(1− x),

a formula that is particularly useful when x < 0.]
9. (a) Yes: CN = N −N−θH

(−θ)
N−1 = N + 1−N−θH

(−θ)
N = θ

1+θ
N + 1

2 +O(N−θ).
(b) CN = θ

1+θ


1 +N/


1−


N−θ

N


= θ

1+θ
(N +N1−θ/Γ (1− θ) + 1) +O(N1−2θ).

(c) When θ < 0, (11) is not a probability distribution; (16) gives the estimate
CN = − θ

1+θ
Γ (1− θ)N1+θ +O(N1+2θ) +O(1) instead of (15).
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10. p1 ≤ · · · ≤ pN ; (maximum CN ) = (N + 1) − (minimum CN ). [Similarly in the
unequal-length case, the maximum average search time is L1(1+p1)+ · · ·+LN (1+pN )
minus the minimum average search time.]

11. (a) The terms of fm−1(xi1 , . . . , xim−1 )pi are just the probabilities of the possible
sequences of requests that could have preceded, leaving Ri in position m. (b) The
second identity comes from summing


n
m


cases of the first, on the different m-subsets

of X, noting the number of times each Pnk occurs. The third identity is a consequence
of the second, by inversion. [Alternatively, the principle of inclusion and exclusion
could be used.] (c)


m≥0 mPnm = nQnn −Qn(n−1); hence

di = 1 + (N − 1)− pi


j ̸=i

1
pi + pj

;


i

pidi = N −

i<j

p2
i + p2

j

pi + pj
= N −


i<j


pi + pj −

2pipj

pi + pj


= Eq. (17).

Notes: W. J. Hendricks [J. Applied Probability 9 (1972), 231–233] found a simple
formula for the steady-state probability of each permutation of the records. For
example, when N = 4 the sequence will be R3 R1 R4 R2 with limiting probability

p3

p3 + p1 + p4 + p2

p1

p1 + p4 + p2

p4

p4 + p2

p2

p2
.

In fact, this distribution had already been obtained by M. L. Tsetlin in his Ph.D. thesis
at Moscow University in 1964, and published in Chapter 1 of his Russian book Studies
in Automata Theory and Simulation of Biological Systems (1969).

James Bitner [SICOMP 8 (1979), 82–85] proved that, if the list is originally in
random order, the expected search time after t random requests exceeds CN by the
quantity 1

4


i,j(pi − pj)2(1 − pi − pj)t/(pi + pj). Thus, t searches require fewer than
t CN + 1

4


i,j(pi−pj)2/(pi +pj)2 < t CN + 1
2


N
2


comparisons altogether, on the average.
See P. Flajolet, D. Gardy, and L. Thimonier, Discrete Applied Math. 39 (1992), 207–
229, §6, for instructive proofs via generating functions.

12. CN = 21−N + 2
N−2

n=0 1/(2n + 1), which converges rapidly to 2α′ ≈ 2.5290;
exercise 5.2.4–13 gives the value of α′ to 40 decimal places.

13. After evaluating the rather tedious sum
n

k=1

k2Hn+k = n(n+ 1)(2n+ 1)
6 (2H2n −Hn)− n(n+ 1)(10n− 1)

36 ,

we obtain the answer

CN = 4
3N −

2
3 (2N + 1)(H2n −Hn) + 5

6 −
1
3 (N + 1)−1 ≈ .409N.

14. We may assume that x1 ≤ x2 ≤ · · · ≤ xn; then the maximum value occurs when
ya1 ≤ ya2 ≤ · · · ≤ yan , and the minimum when ya1 ≥ · · · ≥ yan , by an argument like
that of Theorem S.

15. Arguing as in Theorem S, the arrangement R1R2 . . . RN is optimum if and only if

P1/L1(1− P1) ≥ · · · ≥ PN/LN (1− PN ).
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16. The expected time T1 + p1T2 + p1p2T3 + · · ·+ p1p2 · · · pN−1TN is minimized if and
only if T1/(1 − p1) ≤ · · · ≤ TN/(1 − pN ). [BIT 3 (1963), 255–256; some interesting
extensions have been obtained by James R. Slagle, JACM 11 (1964), 253–264.]
17. Do the jobs in order of increasing deadlines, regardless of the respective times Tj !
[Management Science Research Report 43, UCLA (1955). Of course in practice some
jobs are more important than others, and we may want to minimize the maximum
weighted tardiness. Or we may wish to minimize the sum

n
i=1 max(Ta1 + · · ·+Tai −

Dai , 0). Neither of these problems appears to have a simple solution.]
18. Let h = [s is present]. Let A = {j | qj < rj}, B = {j | qj = rj}, C = {j | qj > rj},
D = {j | tj > 0}; then the sum


i,j pipjd|i−j| for the (q, r) arrangement minus the

corresponding sum for the (q′, r′) arrangement is equal to

2


i∈A, j∈C

(qi−ri)(qj−rj)(d|i−j|−dh+1+2k−i−j) + 2


i∈C, j∈D

(qi−ri)tj(dh+2k−i+j−di−1+j).

This is positive unless C = ∅ or A ∪ D = ∅. The desired result now follows because
the organ-pipe arrangements are the only permutations that are not improved by this
construction and its left-right dual when m = 0, 1.

[This result is essentially due to G. H. Hardy, J. E. Littlewood, and G. Pólya, Proc.
London Math. Soc. (2), 25 (1926), 265–282, who showed, in fact, that the minimum
of


i,j piqjd|i−j| is achieved, under all independent arrangements of the p’s and q’s,
when both p’s and q’s are in a consistent organ-pipe order. For further commentary
and generalizations, see their book Inequalities (Cambridge University Press, 1934),
Chapter 10.]
19. All arrangements are equally good. Assuming that d(j, j) = 0, we have

i,j

pipj d(i, j) = 1
2


i,j

pipj(d(i, j) + d(j, i))[i ̸= j ] = 1
2 (1− p2

1 − · · · − p2
N )c.

[The special case d(i, j) = 1 + (j − i) modN for i ̸= j is due to K. E. Iverson,
A Programming Language (New York: Wiley, 1962), 138. R. L. Baber, JACM 10
(1963), 478–486, has studied some other problems associated with tape searching when
a tape can read forward, rewind, or backspace k blocks without reading. W. D. Frazer
observes that it is possible to make significant reductions in the search time if we are
allowed to replicate some of the information in the file; see E. B. Eichelberger, W. C.
Rodgers, and E. W. Stacy, IBM J. Research & Development 12 (1968), 130–139, for
an empirical solution to a similar problem.]
20. Going from (q, r) to (q′, r′) as in exercise 18, with m = 0 or m = h = 1, gives a
net change of 

i∈A, j∈C

(qi − ri)(qj − rj)(d|i−j| −min(dh+1+2k−i−j , di+j−1)),

which is positive unless A or C is ∅. By circular symmetry it follows that the only
optimal arrangements are cyclic shifts of the organ-pipe configurations. [For a different
class of problems with the same answer, see T. S. Motzkin and E. G. Straus, Proc.
Amer. Math. Soc. 7 (1956), 1014–1021.]
21. This problem was essentially first solved by L. H. Harper, SIAM J. Appl. Math.
12 (1964), 131–135. For generalizations and references to other work, see J. Applied
Probability 4 (1967), 397–401.
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22. A priority queue of size 1000 (represented as, say, a heap, see Section 5.2.3).
Insert the first 1000 records into this queue, with the element of greatest d(Kj ,K) at
the front. For each subsequent Kj with d(Kj ,K) < d(front of queue,K), replace the
front element by Rj and readjust the queue.

SECTION 6.2.1
1. Prove inductively that Kl−1 < K < Ku+1 whenever we reach step B2; and that
l ≤ i ≤ u whenever we reach B3.

2. (a, c) No; it loops if l = u− 1 and K > Ku. (b) Yes, it does work. But when K is
absent, there will often be a loop with l = u and K < Ku.

3. This is Algorithm 6.1T with N = 3. In a successful search, that algorithm makes
(N + 1)/2 comparisons, on the average; in an unsuccessful search it makes N/2 + 1−
1/(N + 1).

4. It must be an unsuccessful search with N = 127; hence by Theorem B the answer
is 138u.

5. Program 6.1Q′ has an average running time of 1.75N + 8.5− (N mod 2)/4N ; this
beats Program B if and only if N ≤ 44. [It beats Program C only for N ≤ 11.]

7. (a) Certainly not. (b) The parenthesized remarks in Algorithm U will hold true,
so it will work, but only if K0 = −∞ and KN+1 = +∞ are both present when N is
odd.

8. (a) N. It is interesting to prove this by induction, observing that exactly one of the
δ’s increases if we replace N by N + 1. [See AMM 77 (1970), 884 for a generalization.]
(b) Maximum =


j δj = N ; minimum = 2δ1 −


j δj = N mod 2.

9. If and only if N = 2k − 1.
10. Use a “macro-expanded” program with the DELTA’s included; thus, for N = 10:

START ENT1 5
LDA K
CMPA KEY,1
JL C3A

C4A JE SUCCESS C3A EQU *
INC1 3 DEC1 3
CMPA KEY,1 CMPA KEY,1
JL C3B JGE C4B

C4B JE SUCCESS C3B EQU *
INC1 1 DEC1 1
CMPA KEY,1 CMPA KEY,1
JL C3C JGE C4C

C4C JE SUCCESS C3C EQU *
INC1 1 DEC1 1
CMPA KEY,1 CMPA KEY,1
JE SUCCESS JE SUCCESS
JMP FAILURE JMP FAILURE

[Exercise 23 shows that most of the ‘JE’ instructions may be eliminated, yielding a
program about 6 lgN lines long that takes only about 4 lgN units of time; but that
program will be faster only for N ≥ 1000 (approximately).]
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11. Consider the corresponding tree, such as Fig. 6: When N is odd, the left subtree
of the root is a mirror image of the right subtree, so K < Ki occurs just as often as
K > Ki; on the average C1 = 1

2 (C + S) and C2 = 1
2 (C − S), A = 1

2 (1− S). When N
is even, the tree is the same as the tree for N + 1 with all labels decreased by 1, except
that k0 becomes redundant; on the average, letting k = ⌊lgN⌋, we have

C1 = C + 1
2 − k

2N , C2 = C − 1
2 + k

2N , A = 0, if S = 1;

C1 = (k + 1)N
2(N + 1) , C2 = (k + 1)(N + 2)

2(N + 1) , A = N

2(N + 1) , if S = 0.

(The average value of C is stated in the text.)
12. 8

4 9

2 6 7 11

1 3 5 7 8 10 12

0 1 2 3 4 5 6 7 8 9 10 11 12

13. N = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CN = 1 1 1

2 1 2
3 2 1

4 2 1
5 2 2

6 2 3
7 3 1

8 3 3 3 3 2
12 3 3

13 3 3
14 3 4

15 4 1
16

C′
N = 1 1 2

3 2 2 3
5 2 4

6 3 3 3 6
9 3 6

10 3 8
11 3 8

12 4 4 4 4 4 13
17

14. One idea is to find the least M ≥ 0 such that N +M has the form Fk+1 − 1, then
to start with i← Fk−M in step F1, and to insert “If i ≤ 0, go to F4” at the beginning
of F2. A better solution would be to adapt Shar’s idea to the Fibonaccian case: If the
result of the very first comparison is K > KFk , set i← i−M and go to F4 (proceeding
normally from then on). This avoids extra time in the inner loop.
15. The external nodes appear on levels ⌊k/2⌋ through k − 1; the difference between
these levels is greater than unity except when k = 0, 1, 2, 3, 4.
16. The Fibonacci tree of order k, with left and right reversed, is the binary tree corre-
sponding to the lineal chart up to the kth month, under the “natural correspondence”
of Section 2.3.2, if we remove the topmost node of the lineal chart.
17. Let the path length be k−A(n); then A(Fj) = j and A(Fj +m) = 1 +A(m) when
0 < m < Fj−1.
18. Successful search: Ak = 0, Ck = (3kFk+1 + (k − 4)Fk)/5(Fk+1 − 1) − 1, C1k =
Ck−1(Fk − 1)/(Fk+1 − 1). Unsuccessful search: A′

k = Fk/Fk+1, C′
k = (3kFk+1 +

(k − 4)Fk)/5Fk+1, C1′
k = C′

k−1Fk/Fk+1 + Fk−1/Fk+1. C2 = C − C1. (See exercise
1.2.8–12 for the solution to related recurrences.)
20. (a) b = p−pq−q. (b) There are at least two errors. The first blunder is that
division is not a linear function, so it can’t be simply “averaged over.” Actually with
probability p we get pN elements remaining, and with probability q we get qN, so we
can expect to get (p2 + q2)N ; thus the average reduction factor is really 1/(p2 + q2).
Now the reduction factor after k iterations is 1/(p2 + q2)k, but we cannot conclude
that b = 1/(p2 + q2) since the number of iterations needed to locate some of the items
is much more than to locate others. This is a second fallacy. [It is very easy to make
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plausible but fallacious probability arguments, and we must always be on our guard
against such pitfalls!]
21. It’s impossible, since the method depends on the key values.
22. FOCS 17 (1976), 173–177. See also Y. Perl, A. Itai, and H. Avni, CACM 21
(1978), 550–554; G. H. Gonnet, L. D. Rogers, and J. A. George, Acta Informatica
13 (1980), 39–52; G. Louchard, RAIRO Inform. Théor. 17 (1983), 365–385; Comput-
ing 46 (1991), 193–222. The variance is O(log logN). Extensive empirical tests by
G. Marsaglia and B. Narasimhan, Computers and Math. 26, 8 (1993), 31–42, show
that the average number of table accesses is very close to lg lgN , plus about 0.7 if the
search is unsuccessful. When N = 220, for example, a random successful search in
a random table takes about 4.29 accesses, while a random unsuccessful search takes
about 5.05.
23. Go to the right on ≥ , to the left on < ; when reaching node i it follows from (1)
that Ki ≤ K < Ki+1, so a final test for equality will distinguish between success or
failure. (The key K0 = −∞ should always be present.)

Algorithm C would be changed to go to C4 if K = Ki in step C2. In C3 if
DELTA[j] = 0, set i ← i − 1 and go to C5. In C4 if DELTA[j] = 0, go directly to C5.
Add a new step C5: “If K = Ki, the algorithm terminates successfully, otherwise it
terminates unsuccessfully.” [This would not speed up Program C unless N > 226; the
average successful search time changes from (8.5 lgN − 6)u to (8 lgN + 7)u.]
24. The keys can be arranged so that we first set i ← 1, then i ← 2i or 2i + 1
according as K < Ki or K > Ki; the search is unsuccessful when i > N. For example
when N = 12 the necessary key arrangement is

K8 < K4 < K9 < K2 < K10 < K5 < K11 < K1 < K12 < K6 < K3 < K7.

When programmed for MIX this method will take only about 6 lgN units of time, so it
is faster than Program C. The only disadvantage is that it is a little tricky to set up
the table in the first place.
25. (a) Since a0 = 1 − b0, a1 = 2a0 − b1, a2 = 2a1 − b2, etc., we have A(z) + B(z) =
1 + 2zA(z). Several of the formulas derived in Section 2.3.4.5 follow immediately
from this relation by considering A(1), B(1), B( 1

2 ), A′(1), and B′(1). If we use two
variables to distinguish left and right steps of a path we obtain the more general result
A(x, y) + B(x, y) = 1 + (x + y)A(x, y), a special case of a formula that holds in t-ary
trees [see R. M. Karp, IRE Transactions IT-7 (1961), 27–38].

(b) var (g) = ((N + 1)/N) var (h)− ((N + 1)/N2) mean(h)2 + 2.
26. The merge tree for the three-tape polyphase merge with a perfect level k distri-
bution is the Fibonacci tree of order k + 1 if we permute left and right appropriately.
(Redraw the polyphase tree of Fig. 76 in Section 5.4.4, with the left and right subtrees
of A and C reversed, obtaining Fig. 8.)
27. At most k + 1 of the 2k outcomes will ever occur, since we may order the indices
in such a way that Ki1 < Ki2 < · · · < Kik . Thus the search can be described by
a tree with at most (k + 1)-way branching at each node. The number of items that
can be found on the mth step is at most k(k + 1)m−1; hence the average number of
comparisons is at least N−1 times the sum of the smallest N elements of the multiset
{k·1, k(k + 1)·2, k(k + 1)2·3, . . .}. When N ≥ (k + 1)n − 1, the average number of
comparisons is ≥ ((k + 1)n − 1)−1n

m=1 k(k + 1)m−1m > n− 1/k.
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28. [Skrifter udgivne af Videnskabs-Selskabet i Christiania, Mathematisk-Naturviden-
skabelig Klasse (1910), No. 8; reprinted in Thue’s Selected Mathematical Papers (Oslo:
Universitetsforlaget, 1977), 273–310.] (a) Tn has Fn+1+Fn−1 = F2n/Fn leaves. (This is
the so-called Lucas number Ln = ϕn+ ϕ n.) (b) The axiom says that T0(T2(x)) = T1(x),
and we obviously have Tm(Tn(x)) = Tm+n−1(x) when m = 1 or n = 1. By induction
on n, the result holds when m = 0; for example, T0(T3(x)) = T0(T2(x) ∗ T1(x)) =
T0(T1(T2(x))∗T0(T2(x))) = T0(T2(T2(x))) = T2(x). Finally we can use induction on m.
29. Assume that K0 = −∞ and KN+1 = KN+2 = ∞. First do a binary search on
K2 < K4 < · · · ; this takes at most ⌊lgN⌋ comparisons. If unsuccessful, it determines
an interval with K2j−2 < K < K2j ; and K is not present if 2j = N + 2. Otherwise, a
binary search for K2j−1 will determine i such that K2i−2 < K2j−1 < K2i. Then either
K = K2i−1 or K is not present. [See Theor. Comp. Sci. 58 (1988), 67.]
30. Let n = ⌊N/4⌋. Starting with K1 < K2 < · · · < KN , we can put K1, K3,
. . . , K2n−1 into any desired order by swapping them with a permutation of K2n+1,
K2n+3, . . . , K4n−1; this arrangement satisfies the conditions of the previous exercise.
Now we let K1 < K3 < · · · < K2t+1−3 represent the boundaries between all possible
t-bit numbers, and we insert K2t+1−1, K2t+1+1, . . . , K2t+1+2m−3 between these “fence-
posts” according to the values of x1, x2, . . . , xm. For example, if m = 4, t = 3,
x1 = (001)2, x2 = (111)2, and x3 = x4 = (100)2, the desired order is

K1 < K15 < K3 < K5 < K7 < K19 < K21 < K9 < K11 < K13 < K17.

(We could also let K21 precede K19.) A binary search for K2t+1+2j−3 in the subarray
K1 < K3 < · · · < K2t+1−3 will now find the bits of xj from left to right. [See Fiat,
Munro, Naor, Schäffer, Schmidt, and Siegel, J. Comp. Syst. Sci. 43 (1991), 406–424.]

SECTION 6.2.2
1. Use a header node, with say ROOT ≡ RLINK(HEAD); start the algorithm at step T4

with P← HEAD. Step T5 should act as if K > KEY(HEAD). [Thus, change lines 04 and 05
of Program T to ‘ENT1 ROOT; CMPA K’.]

2. In step T5, set RTAG(Q)← 1. Also, when inserting to the left, set RLINK(Q)← P;
when inserting to the right, set RLINK(Q) ← RLINK(P) and RTAG(P) ← 0. In step
T4, change the test “RLINK(P) ̸= Λ” to “RTAG(P) = 0”. [If nodes are inserted into
successively increasing locations Q, and if all deletions are last-in-first-out, the RTAG
fields can be eliminated since RTAG(P) will be 1 if and only if RLINK(P) < P. Similar
remarks apply with simultaneous left and right threading.]

3. We could replace Λ by a valid address, and set KEY(Λ) ← K at the beginning of
the algorithm; then the tests for LLINK or RLINK = Λ could be removed from the inner
loop. However, in order to do a proper insertion we need to introduce another pointer
variable that follows P; this can be done without losing the stated speed advantage, by
duplicating the code as in Program 6.2.1F. Thus the MIX time would be reduced to
about 5.5C units.

4. CN = 1+(0·1+1·2+· · ·+(n−1)2n−1+C′
2n−1+· · ·+C′

N−1)/N = (1+1/N)C′
N−1, for

N ≥ 2n−1. The solution to these equations is C′
N = 2(HN+1−H2n)+n for N ≥ 2n−1,

a savings of 2H2n − n − 2 ≈ n(ln 4 − 1) comparisons. The actual improvement for
n = 1, 2, 3, 4 is, respectively 0, 1

6 , 61
140 , 274399

360360 ; thus comparatively little is gained
for small fixed n. [See Frazer and McKellar, JACM 17 (1970), 502, for a more detailed
derivation related to an equivalent sorting problem.]
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5. (a) The first element must be CAPRICORN; then we multiply the number of ways
to produce the left subtree by the number of ways to produce the right subtree, times10

3

, the number of ways to shuffle those two sequences together. Thus the answer

comes to 10
3

2
0

1
0

0
0

6
3

2
0

1
0

0
0

2
1

0
0

0
0


= 4800.

[In general, the answer is the product, over all nodes, of


l+r
r


, where l and r stand

for the sizes of the left and right subtrees of the node. This is equal to N ! divided by
the product of the subtree sizes. It is the same formula as in exercise 5.1.4–20; indeed,
there is an obvious one-to-one correspondence between the permutations that yield a
particular search tree and the “topological” permutations counted in that exercise, if we
replace ak in the search tree by k (using the notation of exercise 6).] (b) 2N−1 = 1024;
at each step but the last, insert either the smallest or largest remaining key.

6. (a) For each of the Pnk permutations a1 . . . an−1an whose cost is k, construct n+1
permutations a′1 . . . a′n−1ma′n, where a′j = aj or aj +1, according as aj < m or aj ≥ m.
[See Section 1.2.5, Method 2.] If m = an or an +1, this permutation has a cost of k+1,
otherwise it has a cost of k. (b) Gn(z) = (2z + n− 2) (2z + n− 3) . . . (2z). Hence

Pnk =

n− 1
k


2k.

This generating function was, in essence, obtained by W. C. Lynch, Comp. J. 7 (1965),
299–302. (c) The generating function for probabilities is gn(z) = Gn(z)/n!. This is a
product of simple probability generating functions, so the variance of C′

n−1 is

var(gn) =
n−2
k=0

var


2z + k

2 + k


=

n−2
k=0


2

k + 2 −
4

(k + 2)2


= 2Hn − 4H(2)

n + 2.

[By exercise 6.2.1–25(b) we can use the mean and variance of C′
n to compute the

variance of Cn, which is (2 + 10/n)Hn − 4(1 + 1/n)(H(2)
n +H2

n/n) + 4; this formula is
due to G. D. Knott.]

7. A comparison with the kth largest element will be made if and only if that element
occurs before the mth and before all those between the kth and mth; this happens with
probability 1/(|m−k|+1). Summing over k gives the answer Hm+Hn+1−m−1. [CACM
12 (1969), 77–80; see also L. Guibas, Acta Informatica 4 (1975), 293–298.]

8. (a) gn(z) = zn−1n
k=1 gk−1(z)gn−k(z)/n, g0(z) = 1.

(b) 7n2 − 4(n+ 1)2H
(2)
n − 2(n+ 1)Hn + 13n. [P. F. Windley, Comp. J. 3 (1960),

86, gave recurrence relations from which this variance could be computed numerically,
but he did not obtain the solution. Notice that this result is not simply related to the
variance of Cn stated in the answer to exercise 6.]
10. For example, each word x of the key could be replaced by axmodm, where m is
the computer word size and a is a random multiplier relatively prime to m. A value
near to (ϕ−1)m can be recommended (see Section 6.4). The flexible storage allocation
of a tree method may make it more attractive than a hash coding scheme.
11. N − 2; but this occurs with probability 1/(N N !), only in the deletionk1 N N−1 . . . 2.

12. 1
2 (n + 1)(n + 2) of the deletions in the proof of Theorem H belong to Case 1, so

the answer is (N + 1)/2N.
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13. Yes. In fact, the proof of Theorem H shows that if we delete the kth element
inserted, for any fixed k, the result is random. (G. D. Knott [Ph.D. thesis, Stanford,
1975] showed that the result is random after an arbitrary sequence of random insertions
followed by successive deletion of the (k1, . . . , kd)th elements inserted, for any fixed
sequence k1, . . . , kd.)
14. Let NODE(T) be on level k, and let LLINK(T) = Λ, RLINK(T) = R1, LLINK(R1) = R2,
. . . , LLINK(Rd) = Λ, where Rd ̸= Λ and d ≥ 1. Let NODE(Ri) have ni internal nodes in
its right subtree, for 1 ≤ i ≤ d. With step D1.5 the internal path length decreases by
k + d+ n1 + · · ·+ nd; without that step it decreases by k + d+ nd.
15. 11, 13, 25, 11, 12. [If aj is the (smallest, middle, largest) of {a1, a2, a3}, the treeq q@ is obtained (4, 2, 3)× 4 times after the deletion.]
16. Yes; even the deletion operation on permutations, as defined in the proof of
Theorem H, is commutative (if we omit the renumbering aspect). If there is an element
between X and Y , deletion is obviously commutative since the operation is affected only
by the relative positions ofX, Y , and their successors and there is no interaction between
the deletion of X and the deletion of Y . On the other hand, if Y is the successor of X,
and Y is the largest element, both orders of deletion have the effect of simply removing
X and Y . If Y is the successor of X and Z the successor of Y , both orders of deletion
have the effect of replacing the first occurrence of X, Y , or Z by Z and deleting the
second and third occurrences of these elements within the permutation.
18. Use exercise 1.2.7–14.
19. 2HN−1−2

N
k=1(k−1)θ/kNθ = 2HN−1−2/θ+O(N−θ). [The Pareto distribution

6.1–(13) also gives the same asymptotic result, to within O(n−θ logn).]
20. Yes indeed. Assume that K1 < · · · < KN, so that the tree built by Algorithm T is
degenerate; if, say, pk = (1 + ((N + 1)/2− k)ϵ)/N, the average number of comparisons
is (N + 1)/2 − (N2 − 1)ϵ/12, while the optimum tree requires fewer than ⌈lgN⌉
comparisons.
21. 1

8 , 3
20 , 9

20 , 3
20 , 1

8 . (Most of the angles are 30◦, 60◦, or 90◦.)
22. This is obvious when d = 2, and for d > 2 we had r[i, j−1] ≤ r[i+1, j−1] ≤
r[i+1, j].
23.

9

[Increasing the weight of the first node will eventually make it move to the root position;
this suggests that dynamically maintaining a perfectly optimum tree is hard.]
24. Let c be the cost of a tree obtained by deleting the nth node of an optimum tree.
Then c(0, n−1) ≤ c ≤ c(0, n)− qn−1, since the deletion operation always moves n−1
up one level. Also c(0, n) ≤ c(0, n−1) + qn−1, since the stated replacement yields a
tree of the latter cost. It follows that c(0, n−1) = c = c(0, n)− qn−1.
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25. (a) Assume that A ≤ B and B ≤ C, and let a ∈ A, b ∈ B, c ∈ C, c < a. If c ≤ b
then c ∈ B; hence c ∈ A and a ∈ B; hence a ∈ C. If c > b, then a ∈ B; hence a ∈ C
and c ∈ B; hence c ∈ A. (b) Not hard to prove.
26. The cost of every tree has the form y + lx for some real y ≥ 0 and integer l > 0.
The minimum of a finite number of such functions (taken over all trees) always has the
form described.
27. (a) The answer to exercise 24 (especially the fact that c = c(0, n−1)) implies that
R(0, n−1) = R(0, n) \ {n}.

(b) If l = l′, the result in the hint is trivial. Otherwise let the paths to n bemr0 , mr1 , . . . , rl and ms0 , ms1 , . . . , sl′ .

Since r = r0 > s0 = s and rl′ < sl′ = n, we can find a level k ≥ 0 such that rk > sk

and rk+1 ≤ sk+1. We have rk+1 ∈ R(rk, n), sk+1 ∈ R(sk, n), and R(sk, n) ≤ R(rk, n)
by induction, hence rk+1 ∈ R(sk, n) and sk+1 ∈ R(rk, n); the result in the hint follows.

Now to prove that R′
h ≤ Rh, let r ∈ R′

h, s ∈ Rh, s < r, and consider the optimum
trees shown when x = xh; we must have l ≥ lh and we may assume that l′ = lh. To
prove that Rh ≤ R′

h+1, let r ∈ Rh, s ∈ R′
h+1, s < r, and consider the optimum trees

shown when x = xh+1; we must have l′ ≤ lh and we may assume that l = lh.
29. It is a degenerate tree (see exercise 5) with YOU at the top, THE at the bottom,
needing 19.158 comparisons on the average.

Douglas A. Hamilton has proved that some degenerate tree is always worst. There-
fore an O(n2) algorithm exists to find pessimal binary search trees.
30. See R. L. Wessner, Information Processing Letters 4 (1976), 90–94; F. F. Yao,
SIAM J. Algebraic and Discrete Methods 3 (1982), 532–540.
31. See Acta Informatica 1 (1972), 307–310.
32. When M is large enough, the optimum tree must have the stated form and the
minimum cost must be M times the minimum external path length plus the solution
to the stated problem.

[Notes: The paper by Wessner cited in answer 30 explains how to find optimum
binary search trees of height ≤ L. In the special case p1 = · · · = pn = 0, the stated
result is due to T. C. Hu and K. C. Tan, MRC Report 1111 (Univ. of Wisconsin, 1970).
A. M. Garsia and M. L. Wachs proved that in this case all external nodes will appear on
at most two levels if minn

k=1(qk−1 + qk) ≥ maxn
k=0 qk, and they presented an algorithm

that needs only O(n) steps to find an optimum two-level tree.]
33. For the stated problem, see A. Itai, SICOMP 5 (1976), 9–18. For the alternatives,
see D. Spuler, Acta Informatica 31 (1994), 729–740.
34. It equals 2H(p1,...,pn)N (2πN)(1−n)/2(p1 . . . pn)−1/2(1 + O(1/N)), if p1 . . . pn ̸= 0,
by Stirling’s approximation.
35. The minimum value of the right-hand side occurs when 2x = (1 − p)/p, and it
equals 1− p+H(p, 1− p). But H(p, q, r) ≤ 1− p+H(p, 1− p), by (20) with k = 2.
36. First we prove the hint, which is due to Jensen [Acta Math. 30 (1906), 175–193].
If f is concave, the function g(p) = f(px+ (1− p)y)− pf(x)− (1− p)f(y) is concave
and satisfies g(0) = g(1) = 0. If g(p) < 0 and 0 < p < 1 there must be a value p0 < p
with g′(p0) < 0 and a value p1 > p with g′(p1) > 0, by the mean value theorem;
but this contradicts concavity. Therefore f(px + (1 − p)y) ≥ pf(x) + (1 − p)f(y) for
0 ≤ p ≤ 1, a fact that is also geometrically obvious. Now we can prove by induction
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that f(p1x1 + · · · + pnxn) ≥ p1f(x1) + · · · + pnf(xn), since f(p1x1 + · · · + pnxn) ≥
p1f(x1) + · · ·+ pn−2f(xn−2) + (pn−1 + pn)f((pn−1xn−1 + pnxn)/(pn−1 + pn)) if n > 2.

By Lemma E we have

H(XY ) = H(X) +
m

i=1

piH(ri1/pi, . . . , rin/pi);

and the latter sum is
n

j=1
m

i=1 pif(rij/pi) ≤
n

j=1 f(m
i=1 rij) = H(Y ), where

f(x) = x lg(1/x) is concave.
37. By part (a) of exercise 3.3.2–26, we have Pr(P1 ≥ s) = (1 − s)n−1. Therefore
EH(P1, . . . , Pn) = nEP1 lg(1/P1) = n

 1
0 (1 − s)n−1 d(s lg(1/s)) = −(A + B)/ ln 2,

where A = n
 1

0 (1− s)n−1ds = 1 and

B = n

 1

0
(1− s)n−1 ln s ds =

n
k=1


n

k


(−1)ksk

 1
k
− ln s

1
0

= −Hn

by exercise 1.2.7–13. Thus the answer is (Hn − 1)/ ln 2. (This is lgn+ (γ − 1)/ ln 2 +
O(n−1), very near the maximum entropy H( 1

n
, . . . , 1

n
) = lgn. Therefore H(p1, . . . , pn)

is Ω(logn) with high probability.)
38. If sk−1 = sk we have qk−1 = pk = qk = 0; see (26). Construct a tree for the
n − 1 probabilities (p1, . . . , pk−1, pk+1, . . . , pn; q0, . . . , qk−1, qk+1, . . . , qn), and replace
leaf k−1 by a 2-leaf subtree.
39. We can argue as in Theorem M, if 0 < w1 ≤ w2 ≤ · · · ≤ wn and sk = w1 + · · ·+wk,
because wk ≥ 2−t implies that sk−1 + 2−t ≤ sk ≤ sk+1 − 2−t when the weights are
ordered; hence we have |σk| < 1 + lg(1/wk). [This result, together with the matching
lower bound H(w1, . . . , wn), was Theorem 9 in Shannon’s original paper of 1948.]
40. If k = s+3, the stated rearrangement changes the cost from qk−1l+qkl+qk−2lk−2
to qk−2l + qk−1l + qklk−2, so the net change is (qk−2 − qk)(l− lk−2); this is negative if
l < lk−2, because qk−2 > qk.

Similarly, if k ≥ s+ 4 the rearrangement changes the cost by

δ = qs+1(l − ls+1) + qs+2(l − ls+2) + qs+3(ls+1 − ls+3) + · · ·+ qk−2(lk−4 − lk−2)
+ qk−1(lk−3 − l) + qk(lk−2 − l).

We have qs+1 > qs+3, qs+2 > qs+4, . . . , qk−2 > qk. Therefore we find

δ ≤ (qk−2 − qk)(l − lk−2) + (qk−3 − qk−1)(l − lk−3) ≤ 0;

for example, when k − s is even we have

δ ≤ qk−3(l − ls+1) + qk−2(l − ls+2) + qk−3(ls+1 − ls+3) + · · ·+ qk−2(lk−4 − lk−2)
+ qk−1(lk−3 − l) + qk(lk−2 − l)

and a similar derivation works when k − s is odd. It follows that δ is negative unless
lk−2 = l.
41. E F G H T U X Y Z V W B C D A P Q R J K L M I N O S ␣.
42. Let qj = WT(Pj). Steps C1–C4, which move qk−1 + qk into position between qj−1
and qj , can spoil (31) only at the point i = j − 1.
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43. Invoke the recursive procedure mark (P1, 0), where mark (P, l) means the following:

LEVEL(P)← l;
if LLINK(P) ̸= Λ then mark (LLINK(P), l + 1);
if RLINK(P) ̸= Λ then mark (RLINK(P), l + 1).

44. Set the global variables t ← 0, m ← 2n, and invoke the recursive subroutine
build (1), where build (l) means the following:

Set j ← m;
if LEVEL(Xt) = l then set LLINK(Xj)← Xt and t← t+ 1,

otherwise set m← m− 1, LLINK(Xj)← Xm, and build (l + 1);
if LEVEL(Xt) = l then set RLINK(Xj)← Xt and t← t+ 1,

otherwise set m← m− 1, RLINK(Xj)← Xm, and build (l + 1).

The variable j is local to the build routine. [This elegant solution is due to R. E. Tarjan,
SICOMP 6 (1977), 639.] Caution: If the numbers l0, . . . , ln do not correspond to any
binary tree, the algorithm will loop forever.
45. Maintain the working array P0, . . . , Pt as a doubly linked list that also has the
links of a balanced tree (see Section 6.2.3). If the 2-descending weights are q0, . . . , qt,
with qh at the root of the tree, we can decide whether to proceed left or right in the
tree based on the values of qh and qh+1; the double linking provides instant access to
qh+1. (No RANK fields are needed; rotation preserves symmetric order, so it does not
require any changes to the double links.)

Several families of weights for which the problem can be solved in O(n) time have
been presented by Hu and Morgenthaler, Lecture Notes in Comp. Sci. 1120 (1996),
234–243; it is unknown whether O(n) steps are sufficient in general.
46. See IEEE Trans. C-23 (1974), 268–271; see also exercise 6.2.3–21.
47. See Altenkamp and Mehlhorn, JACM 27 (1980), 412–427.
48. Don’t let the complicated analyses of the cases N = 3 [Jonassen and Knuth,
J. Comp. Syst. Sci. 16 (1978), 301–322] or N = 4 [Baeza-Yates, BIT 29 (1989), 378–
394] scare you; think big! Some progress has been reported by Louchard, Randrianari-
manana, and Schott, Theor. Comp. Sci. 93 (1992), 201–225.
49. This question was first investigated by J. M. Robson [Australian Comp. J. 11
(1979), 151–153], B. Pittel [J. Math. Anal. Applic. 103 (1984), 461–480], and Luc
Devroye [JACM 33 (1986), 489–498; Acta Inf. 24 (1987), 277–298], who obtained limit
formulas that hold with probability → 1 as n → ∞; see the exposition by H. M.
Mahmoud, Evolution of Random Search Trees (Wiley, 1992), Chapter 2. Sharper
results were subsequently found by Bruce Reed [JACM 50 (2003), 306–332] and Michael
Drmota [JACM 50 (2003), 333–374], who proved that the average height is α lnn −
(3α ln lnn)/(2α− 2) +O(1) and the variance is O(1), where

α = 1/T ( 1
2e ) ≈ 4.31107 04070 01005 03504 70760 96446 89027 83916−

and T (z) =
∞

n=1 n
n−1zn/n! is the tree function.

SECTION 6.2.3
1. The symmetric order of nodes must be preserved by the transformation, otherwise

we wouldn’t have a binary search tree.
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2. B(S) = 0 can happen only when S points to the root of the tree (it has never
been changed in steps A3 or A4), and all nodes from S to the point of insertion were
balanced.

3. Let ρh be the largest possible ratio of unbalanced nodes in balanced trees of
height h. Thus ρ1 = 0, ρ2 = 1

2 , ρ3 = 1
2 . We will prove that ρh = (Fh+1−1)/(Fh+2−1).

Let Th be a tree that maximizes ρh; then we may assume that its left subtree has height
h− 1 and its right subtree has height h− 2, for if both subtrees had height h− 1 the
ratio would be less than ρh−1. Thus the ratio for Th is at most (ρh−1Nl +ρh−2Nr + 1)/
(Nl +Nr + 1), where there are (Nl, Nr) nodes in the (left, right) subtree. This formula
takes its maximum value when (Nl, Nr) take their minimum values; hence we may
assume that Th is a Fibonacci tree. And ρh < ϕ− 1 by exercise 1.2.8–28.

4. When h = 7,

has greater path length. [Note: C. C. Foster, Proc. ACM Nat. Conf. 20 (1965), 197–
198, gave an incorrect procedure for constructing N -node balanced trees of maximum
path length; Edward Logg has observed that Foster’s Fig. 3 gives a nonoptimal result
after 24 steps (node number 22 can be removed in favor of number 25).]

The Fibonacci tree of order h does, however, minimize the value of (h + a)N −
(external path length(T )) over all balanced trees T of height h − 1, when a is any
nonnegative constant; this is readily proved by induction on h. Its external path length
is 3

5hFh−1 + 4
5 (h−1)Fh = (ϕ/

√
5)hFh+1 +O(Fh+1) = Θ(hϕh). Consequently the path

length of any N -node balanced tree is at most

min
h

(hN −Θ(hϕh) +O(N)) ≤ N logϕ N −N logϕ logϕ N +O(N).

Moreover, if N is large and k = ⌈lgN⌉, h = ⌊k/ lg ϕ− logϕ k⌋ = logϕ N − logϕ logϕ N +
O(1), we can construct a balanced tree of path length hN + O(N) as follows: Write
N + 1 = Fh + Fh−1 + · · ·+ Fk+1 +N ′ = Fh+2 − Fk+2 +N ′, and construct a complete
binary tree on N ′ nodes; then successively join it with Fibonacci trees of orders k, k+1,
. . . , h− 1. [See R. Klein and D. Wood, Theoretical Comp. Sci. 72 (1990), 251–264.]

5. This can be proved by induction; if TN denotes the tree constructed, we have

TN =


T2n−1−1 TN−2n−1

, if 2n ≤ N < 2n + 2n−1;

T2n−1 TN−2n

, if 2n + 2n−1 ≤ N < 2n+1.

6. The coefficient of zn in zBj(z)Bk(z) is the number of n-node binary trees whose
left subtree is a balanced binary tree of height j and whose right subtree is a balanced
binary tree of height k.
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7. Cn+1 = C2
n + 2Bn−1Bn−2; hence if we let α0 = ln 2, α1 = 0, and αn+2 =

ln(1 + 2Bn+1Bn/C
2
n+2) = O(1/BnCn+2), and θ = exp(α0/2 + α1/4 + α2/8 + · · · ),

we find that 0 ≤ θ2n−Cn = Cn(exp(αn/2 + αn+1/4 + · · · )− 1) < 1; thus Cn = ⌊θ2n⌋.
For general results on doubly exponential sequences, see Fibonacci Quarterly 11 (1973),
429–437. The expression for θ converges rapidly to the value

θ = 1.43687 28483 94461 87580 04279 84335 54862 92481+.

8. Let bh = B′
h(1)/Bh(1) + 1, and let ϵh = 2BhBh−1(bh − bh−1)/Bh+1. Then b1 = 2,

bh+1 = 2bh − ϵh, and ϵh = O(bh/Bh−1); hence bh = 2hβ + rh, where

β = 1− 1
4 ϵ1 − 1

8 ϵ2 − · · · = 0.70117 98151 02026 33972 44868 92779 46053 74616+

and rh = ϵh/2 + ϵh+1/4 + · · · is extremely small for large h. [Zhurnal Vychisl. Matem.
i Matem. Fiziki 6, 2 (1966), 389–394. Analogous results for 2-3 trees were obtained by
E. M. Reingold, Fib. Quart. 17 (1979), 151–157.]

9. Andrew Odlyzko has shown that the number of balanced trees is asymptotically

cnf(log(
√

10+2)/3 n)/n,

where c ≈ 1.916067 and f(x) = f(x + 1). His techniques will also yield the average
height. [See Congressus Numerantium 42 (1984), 27–52, a paper in which he also
discusses the enumeration of 2-3 trees.]
10. [Inf. Proc. Letters 17 (1983), 17–20.] Let X1, . . . , XN be nodes whose balance
factors B(Xk) are given. To construct the tree, set k ← 0 and compute TREE(∞), where
TREE(hmax) is the following recursive procedure with local variables h, h′, and Q: Set
h ← 0, Q ← Λ; then while h < hmax and k < N set k ← k + 1, h′ ← h + B(Xk),
LEFT(Xk)← Q, RIGHT(Xk)← TREE(h′), h← max(h, h′) + 1, Q← Xk; return Q. (Tree Q
has height h and corresponds to the balance factors that have been read since entry to
the procedure.) The algorithm works even if |B(Xk)| > 1.
11. Clearly there are as many +A’s as --B’s and +-B’s, when n ≥ 2, and there is
symmetry between + and -. If there are M nodes of types +A or -A, consideration of
all possible cases when n ≥ 1 shows that the next random insertion results in M − 1
such nodes with probability 3M/(n+ 1), otherwise it results in M + 1 such nodes. The
result follows. [SICOMP 8 (1979), 33–41; Kurt Mehlhorn extended the analysis to
deletions in SICOMP 11 (1982), 748–780. See R. A. Baeza-Yates, Computing Surveys
27 (1995), 109–119, for a summary of later developments in such “fringe analyses,”
which typically use the methods illustrated in exercise 6.2.4–8.]
12. The maximum occurs when inserting into the second external node of (12); C = 4,
C1 = 3, D = 3, A = C2 = F = G1 = H1 = U1 = 1, for a total time of 132u.
The minimum occurs when inserting into the third-last external node of (13); C = 2,
C1 = C2 = 1, D = 2, for a total time of 61u. [The corresponding figures for Program
6.2.2T are 74u and 26u.]
13. When the tree changes, only O(logN) RANK values need to be updated; the
“simple” system might require very extensive changes.
14. Yes. (But typical operations on lists are sufficiently nonrandom that degenerate
trees would probably occur.)
15. Use Algorithm 6.2.2T with m set to zero in step T1, and m ← m + RANK(P)
whenever K ≥ KEY(P) in step T2.
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16. Delete E; do Case 3 rebalancing at D. Delete G; replace F by G; do Case 2 rebalancing
at H; adjust balance factor at K.
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17. (a)
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(b)
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18.
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19. (Solution by Clark Crane.) There is one case that can’t be handled by a single or
double rotation at the root, namely

−
+

−
A

B

C

. Change it to

+

++A C

B

and then resolve the imbalance by applying a single or double rotation at C.



6.2.3 ANSWERS TO EXERCISES 717

20. It is difficult to insert a new node at the extreme left of the tree

,

but K.-J. Räihä and S. H. Zweben have devised a general insertion algorithm that takes
O(logN) steps. [CACM 22 (1979), 508–512.]
21. Algorithm A does the job in order N logN steps (see exercise 5); the following
algorithm creates the same trees in O(N) steps, using an interesting iterative rendition
of a recursive method. We use three auxiliary lists:

D1, . . . , Dl (a binary counter that essentially controls the recursion);
J1, . . . , Jl (a list of pointers to juncture nodes);
T1, . . . , Tl (a list of pointers to trees).

Here l = ⌈lg(N+1)⌉. For convenience the algorithm also sets D0 ← 1, J0 ← Jl+1 ← Λ.
G1. [Initialize.] Set l← 0, J0 ← J1 ← Λ, D0 ← 1.
G2. [Get next item.] Let P point to the next input node. (We may invoke another

coroutine in order to obtain P.) If there is no more input, go to G5. Otherwise,
set k ← 1, Q← Λ, and interchange P↔ J1.

G3. [Carry.] If k > l (or, equivalently, if P = Λ), set l ← l + 1, Dk ← 1, Tk ← Q,
Jk+1 ← Λ, and return to G2. Otherwise set Dk ← 1−Dk, interchange Q↔ Tk,
P↔ Jk+1, and increase k by 1. If now Dk−1 = 0, repeat this step.

G4. [Concatenate.] Set LLINK(P) ← Tk, RLINK(P) ← Q, B(P) ← 0, Tk ← P, and
return to G2.

G5. [Finish up.] Set LLINK(Jk)← Tk, RLINK(Jk)← Jk−1, B(Jk)← 1− Dk−1, for
1 ≤ k ≤ l. Then terminate the algorithm; Jl points to the root of the desired
tree.

Step G3 is executed 2N − ν(N) times, where ν(N) is the number of 1s in the binary
representation of N.
22. The height of a weight-balanced tree with N internal nodes always lies between
lg(N + 1) and 2 lg(N + 1). To get this upper bound, note that the heavier subtree of
the root has at most (N + 1)/

√
2 external nodes.

23. (a) Form a tree whose right subtree is a complete binary tree with 2n − 1 nodes,
and whose left subtree is a Fibonacci tree with Fn+1 − 1 nodes. (b) Form a weight-
balanced tree whose right subtree is about 2 lgN levels high and whose left subtree is
about lgN levels high (see exercise 22).
24. Consider a smallest tree that satisfies the condition but is not perfectly balanced.
Then its left and right subtrees are perfectly balanced, so they have 2l and 2r external
nodes, respectively, where l ̸= r. But this contradicts the stated condition.
25. After inserting a node at the bottom of the tree, we work up from the bottom to
check the weight balance at each node on the search path. Suppose imbalance occurs
at node A in (1), after we have inserted a new node in the right subtree, where B and



718 ANSWERS TO EXERCISES 6.2.3

its subtrees are weight-balanced. Then a single rotation will restore the balance unless
(|α| + |β|)/|γ| >

√
2 + 1, where |x| denotes the number of external nodes in a tree x.

But in this case it can be shown that a double rotation will suffice. [See SICOMP 2
(1973), 33–43; N. Blum and K. Mehlhorn, Theoretical Comp. Sci. 11 (1980), 303–320.]
27. It is sometimes necessary to make two comparisons in nodes that contain two keys.
The worst case occurs in a tree like the following, which sometimes needs 2 lg(N+2)−2
comparisons:

29. Partial solution by A. Yao: With N ≥ 6 keys the lowest level will contain an
average of 2

7 (N + 1) one-key nodes and 1
7 (N + 1) two-key nodes. The average total

number of nodes lies between 0.70N and 0.79N , for large N . [Acta Informatica 9
(1978), 159–170.]
30. For best-fit, arrange the records in order of size, with an arbitrary rule to break
ties in case of equality. (See exercise 2.5–9.) For first fit, arrange the records in order
of location, with an extra field in each node telling the size of the largest area in
the subtree rooted at that node. This extra field can be maintained under insertions
and deletions. (Although the running time is O(logn), it probably still doesn’t beat
the “ROVER” method of exercise 2.5–6 in practice; but the memory distribution may
be better without ROVER, since there will usually be a nice large empty region for
emergencies.)

An improved method has been developed by R. P. Brent, ACM Trans. Prog.
Languages and Systems 11 (1989), 388–403.
31. Use a nearly balanced tree, with additional upward links for the leftmost part,
plus a stack of postponed balance factor adjustments along this path. (Each insertion
does a bounded number of these adjustments.)

This problem can be generalized to require O(logm) steps to find, insert, and/or
delete items that are m steps away from any given “finger,” where any key once located
can serve as a finger in later operations. [See S. Huddleston and K. Mehlhorn, Acta
Inf. 17 (1982), 157–184.]
32. Each right rotation increases one of the r’s and leaves the others unchanged; hence
rk ≤ r′k is necessary. To show that it is sufficient, suppose rj = r′j for 1 ≤ j < k but
rk < r′k. Then there is a right rotation that increases rk to a value ≤ r′k, because the
numbers r1r2 . . . rn satisfy the condition of exercise 2.3.3–19(a).

Notes: This partial ordering, first introduced by D. Tamari in 1951, has many
interesting properties. Any two trees have a greatest lower bound T ∧ T ′, determined
by the right-subtree sizes min(r1, r

′
1) min(r2, r

′
2) . . .min(rn, r

′
n), as well as a least upper

bound T ∨ T ′ determined by the left-subtree sizes min(l1, l′1) min(l2, l′2) . . .min(ln, l′n).
The left-subtree sizes are, of course, one less than the RANK fields of Algorithms B and C.
For further information, see H. Friedman and D. Tamari, J. Combinatorial Theory 2
(1967), 215–242, 4 (1968), 201; C. Greene, Europ. J. Combinatorics 9 (1988), 225–
240; D. D. Sleator, R. E. Tarjan, and W. P. Thurston, J. Amer. Math. Soc. 1 (1988),
647–681; J. M. Pallo, Theoretical Informatics and Applic. 27 (1993), 341–348; M. K.
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Bennett and G. Birkhoff, Algebra Universalis 32 (1994), 115–144; P. H. Edelman and
V. Reiner, Mathematika 43 (1996), 127–154.
33. First, we can reduce the storage to one bit A(P) in each node P, so that B(P) =
A(RLINK(P))− A(LLINK(P)) whenever LLINK(P) and RLINK(P) are both nonnull; oth-
erwise B(P) is known already. Moreover, we can assume that A(P) = 0 whenever
LLINK(P) and RLINK(P) are both null. Then A(P) can be eliminated in all other nodes
by swapping LLINK(P) with RLINK(P) whenever A(P) = 1; a comparison of KEY(P) with
KEY(LLINK(P)) or KEY(RLINK(P)) will determine A(P).

Of course, on machines for which pointers are always even, two unused bits are
present already in every node. Further economies are possible as in exercise 2.3.1–37.

SECTION 6.2.4
1. Two nodes split:

2
2
3

4
4
9
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7
7

4
9
9

5
9
9

6
3
1

7
7
3

8
2
9

8
8
3

6
0
7

6
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3

6
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7

6
4
3

6
5
3

6
6
1

2. Altered nodes:
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(Of course a B∗-tree would have no nonroot 3-key nodes, although Fig. 30 does.)
3. (a) 1 + 2 · 50 + 2 · 51 · 50 + 2 · 51 · 51 · 50 = 2 · 513 − 1 = 265301.

(b) 1+2 ·50+(2 ·51 ·100−100)+((2 ·51 ·101−100) ·100−100) = 1013 = 1030301.
(c) 1 + 2 · 66 + (2 · 67 · 66 + 2) + (2 · 67 · 67 · 66 + 2 · 67) = 601661. (Less than (b)!)

4. Before splitting a nonroot node, make sure that it has two full siblings, then
split these three nodes into four. The root should split only when it has more than
3⌊(3m− 3)/4⌋ keys.

5. Interpretation 1, trying to maximize the stated minimum: 450. (The worst case
occurs if we have 1005 characters and the key to be passed to the parent must be 50
characters long: 445 chars + ptr + 50-char key + ptr + 50-char key + ptr + 445 chars.)

Interpretation 2, trying to equalize the number of keys after splitting, in order to
keep branching factors high: 155 (15 short keys followed by 16 long ones).

See E. M. McCreight, CACM 20 (1977), 670–674, for further comments.
6. If the key to be deleted is not on level l− 1, replace it by its successor and delete

the successor. To delete a key on level l− 1, we simply erase it; if this makes the node
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too empty, we look at its right (or left) sibling, and “underflow,” that is, move keys in
from the sibling so that both nodes have approximately the same amount of data. This
underflow operation will fail only if the sibling was minimally full, but in that case the
two nodes can be collapsed into one (together with one key from their parent); such
collapsing may cause the parent in turn to underflow, etc. With variable-length keys
as in exercise 5, a parent node may need to split when one of its keys becomes longer.

8. Given a tree T with N internal nodes, let there be a(j)
k external nodes that require

k accesses and whose parent node belongs to a page containing j keys; and let A(j)(z) be
the corresponding generating function. Thus A(1)(1) + · · ·+A(M)(1) = N + 1. (Note
that a(j)

k is a multiple of j + 1, for 1 ≤ j < M.) The next random insertion leads to
N + 1 equally probable trees, whose generating functions are obtained by decreasing
some coefficient a(j)

k by j + 1 and adding j + 2 to a(j+1)
k ; or (if j = M) by decreasing

some a(M)
k by 1 and adding 2 to a(1)

k+1. Now B
(j)
N (z) is (N+1)−1 times the sum, over all

trees T , of the generating function A(j)(z) for T times the probability that T occurs;
the stated recurrence relations follow.

The recurrence has the form

(B(1)
N (z), . . . , B(M)

N (z))T = (I + (N + 1)−1W (z))(B(1)
N−1(z), . . . , B(M)

N−1(z))T

= · · · = gN (W (z))(0, . . . , 0, 1)T ,

where
gn(x) =


1 + x

n+ 1


. . .


1 + x

2


= 1
x+ 1


x+ n+ 1
n+ 1


.

It follows that C′
N = (1, . . . , 1)(B(1)′

N (1), . . . , B(M)′
N (1))T = 2B(M)

N−1(1)/(N+1)+C′
N−1 =

2fN (W )MM , where fn(x) = gn−1(x)/(n + 1) + · · · + g0(x)/2 = (gn(x) − 1)/x, and
W = W (1). (The subscript MM denotes the lower right corner element of the matrix.)
Now W = S−1 diag (λ1, . . . , λM )S, for some matrix S, where diag (λ1, . . . , λM ) denotes
the diagonal matrix whose entries are the roots of χ(λ) = (λ+2) . . . (λ+M+1)−(M+1)!.
(The roots are distinct, since χ(λ) = χ′(λ) = 0 implies 1/(λ+2)+ · · ·+1/(λ+M+1) =
0; the latter can hold only when λ is real, and −M − 1 < λ < −2, which implies
that |λ + 2| . . . |λ + M + 1| < (M + 1)!, a contradiction.) If p(x) is any polynomial,
p(W ) = p(S−1 diag (λ1, . . . , λM )S) = S−1 diag (p(λ1), . . . , p(λM ))S; hence the lower
right corner element of p(W ) has the form c1p(λ1) + · · ·+ cMp(λM ) for some constants
c1, . . . , cM independent of p. These constants may be evaluated by setting p(λ) =
χ(λ)/(λ−λj); since (W k)MM = (−2)k for 0 ≤ k ≤M−1, we have p(W )MM = p(−2) =
(M+1)!/(λj +2) = cjp(λj) = cjχ

′(λj) = cj(M+1)! (1/(λj +2)+ · · ·+1/(λj +M+1));
hence cj = (λj + 2)−1(1/(λj + 2) + · · ·+ 1/(λj +M + 1))−1. This yields an “explicit”
formula C′

N =
M

j=1 2cjfN (λj); and it remains to study the roots λj . Note that
|λj +M+1| ≤M+1 for all j, otherwise we would have |λj +2| . . . |λj +M+1| > (M+1)!.
Taking λ1 = 0, this implies that ℜ(λj) < 0 for 2 ≤ j ≤ M. By Eq. 1.2.5–(15),
gn(x) ∼ (n+ 1)x/Γ (x+ 2) as n→∞; hence gn(λj)→ 0 for 2 ≤ j ≤M . Consequently
C′

N = 2c1fN (0) +O(1) = HN/(HM+1 − 1) +O(1).
Notes: The analysis above is relevant also to the “samplesort” algorithm dis-

cussed briefly in Section 5.2.2. The calculations may readily be extended to show that
B

(j)
N (1) ∼ (HM+1− 1)−1/(j+ 2) for 1 ≤ j < M, B(M)

N (1) ∼ (HM+1− 1)−1/2. Hence the
total number of interior nodes on unfilled pages is approximately 1

3× 2 + 2
4× 3 + · · ·+ M − 1

(M + 1)×M


N

HM+1 − 1 =


1− M

(M + 1)(HM+1 − 1)


N ;
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and the total number of pages used is approximately 1
3× 2 + 1

4× 3 + · · ·+ 1
(M + 1)×M + 1

M + 1


N

HM+1 − 1 = N

2(HM+1 − 1) ,

yielding an asymptotic storage utilization of 2(HM+1 − 1)/M.
This analysis has been extended by Mahmoud and Pittel [J. Algorithms 10 (1989),

52–75], who discovered that the variance of the storage utilization undergoes a sur-
prising phase transition: When M ≤ 25, the variance is Θ(N); but when M ≥ 26 it is
asymptotically f(N)N1+2α where f(eπ/βN) = f(N), if − 1

2 + α+ βi and − 1
2 + α− βi

are the nonzero roots λj with largest real part.
The height of such trees has been analyzed by L. Devroye [Random Structures &

Algorithms 1 (1990), 191–203]; see also B. Pittel, Random Structures & Algorithms 5
(1994), 337–347.

9. Yes; for example we could replace each Ki in (1) by i plus the number of keys in
subtrees P0, . . . , Pi−1. The search, insertion, and deletion algorithms can be modified
appropriately.
10. Brief sketch: Extend the paging scheme so that exclusive access to buffers is given
to one user at a time; the search, insertion, and deletion algorithms must be carefully
modified so that such exclusive access is granted only for a limited time when absolutely
necessary, and in such a way that no deadlocks can occur. For details, see B. Samadi,
Inf. Proc. Letters 5 (1976), 107–112; R. Bayer and M. Schkolnick, Acta Inf. 9 (1977),
1–21; Y. Sagiv, J. Comp. Syst. Sci. 33 (1986), 275–296.

SECTION 6.3
1. Lieves (the plural of “lief”).
2. Perform Algorithm T using the new key as argument; it will terminate unsuccess-

fully in either step T3 or T4. If in T3, simply set table entry k of NODE(P) to K and
terminate the insertion algorithm. Otherwise set this table entry to the address of a
new node Q ⇐ AVAIL, containing only null links, then set P ← Q. Now set k and k′ to
the respective next characters of K and X; if k ̸= k′, store K in position k of NODE(P)
and store X in position k′, but if k = k′ again make the k position point to a new
node Q⇐ AVAIL, set P← Q, and repeat the process until eventually k ̸= k′. (We must
assume that no key is a prefix of another.)

3. Replace the key by a null link, in the node where it appears. If this node is now
useless because all its entries are null except one that is a key X, delete the node and
replace the corresponding pointer in its parent by X. If the parent node is now useless,
delete it in the same way.

4. Successful searches take place exactly as with the full table, but unsuccessful
searches in the compressed table may go through several additional iterations. For
example, an input argument such as TRASH will make Program T take six iterations
(more than five!); this is the worst case. It is necessary to verify that no infinite looping
on blank sequences is possible. (This remarkable 49-place packing is due to J. Scot
Fishburn, who also showed that 48 places do not suffice.)

A slower but more versatile way to economize on trie storage has been proposed
by Kurt Maly, CACM 19 (1976), 409–415.

In general, if we want to compress n sparse tables containing respectively x1,
. . . , xn nonzero entries, a first-fit method that offsets the jth table by the minimum
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amount rj that will not conflict with the previously placed tables will have rj ≤
(x1 + · · · + xj−1)xj , since each previous nonzero entry can block at most xj offsets.
This worst-case estimate gives rj ≤ 93 for the data in Table 1, guaranteeing that any
twelve tables of length 30 containing respectively 10, 5, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2 nonzero
entries can be packed into 93 + 30 consecutive locations regardless of the pattern of
the nonzeros. Further refinements of this method have been developed by R. E. Tarjan
and A. C. Yao, CACM 22 (1979), 606–611. A dynamic implementation of compressed
tries, due to F. M. Liang, is used for hyphenation tables in the TEX typesetting system.
[See D. E. Knuth, CACM 29 (1986), 471–478; Literate Programming (1992), 206–233.]

5. In each family, test for the most probable outcome first, by arranging the letters
from left to right in decreasing order of probability. The optimality of this arrangement
can be proved as in Theorem 6.1S. [See CACM 12 (1969), 72–76.]

A

 N RS T

B

E UY

F

O R

H

AE I

DV R

I

 N S T

NO

F N R

T

H O

AE I

W

A HI

Y

AA
N
D

A
R
E

A
S

A
T

B
E

B
U
T

B
Y

F
O
R

F
R
O
M

H
A
D

H
A
V
E

H
E

H
E
R

H
I
S

II
N

I
S

I
T

N
O
T

O
F

O
N

O
R

T
H
A
T

T
H
E

T
H
I
S

T
O

W
A
S

W
H
I
C
H

W
I
T
H

Y
O
U

6. 1

2

3 4

5 6

7

8

9

10

11

12

13 14

15

7. For example, 8, 4, 1, 2, 3, 5, 6, 7, 12, 9, 10, 11, 13, 14, 15. (No matter what
sequence is used, the left subtree cannot contain more than two nodes on level 4, nor
can the right subtree.) Even this “worst” tree is within 4 of the best possible tree, so
we see that digital search trees aren’t very sensitive to the order of insertion.

8. Yes. The KEY fields now contain only a truncated key; leading bits implied by the
node position are chopped off. (A similar modification of Algorithm T is possible.)

9. START LDX K 1 D1. Initialize. (rX ≡ K)
LD1 ROOT 1 P← ROOT. (rI1 ≡ P)
JMP 2F 1

4H LD2 0,1(RLINK) C2 D4. Move right. Q← RLINK(P).
J2Z 5F C2 To D5 if Q = Λ.

1H ENT1 0,2 C − 1 P← Q.
2H CMPX 1,1 C D2. Compare.

JE SUCCESS C Exit if K = KEY(P).
SLB 1 C − S Shift K left one bit.
JAO 4B C − S To D4 if the detached bit was 1.
LD2 0,1(LLINK) C1 D3. Move left. Q← LLINK(P).
J2NZ 1B C1 To D2 with P← Q if Q ̸= Λ.

5H Continue as in Program 6.2.2T, interchanging the roles of rA and rX.
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The running time for the searching phase of this program is (10C−3S+4)u, where
C − S is the number of bit inspections. For random data, the approximate average
running times are therefore:

Successful Unsuccessful
Program 6.2.2T 15 lnN − 12.34 15 lnN − 2.34
This program 14.4 lnN − 6.17 14.4 lnN + 1.26

(Consequently Program 6.2.2T is a shade faster unless N is very large.)
10. Let ⊕ denote the exclusive or operation on n-bit numbers, and let f(x) = n −
⌈lg(x + 1)⌉ be the number of leading zero bits of x. One solution: (b) If a search
via Algorithm T ends unsuccessfully in step T3, K is one less than the number of
bit inspections made so far; otherwise if the search ends in step T4, k = f(K ⊕ X).
(a, c) Do a regular search, but also keep track of the minimum value, x, of K ⊕ KEY(P)
over all KEY(P) compared with K during the search. Then k = f(x). (Prove that no
other key can have more bits in common with K than those compared to K. In case (a),
the maximum k occurs for either the largest key ≤ K or the smallest key > K.)
11. No; eliminating a node with only one empty subtree will “forget” one bit in the
keys of the nonempty subtree. To delete a node, we should replace it by one of its
terminal descendants, for example by searching to the right whenever possible.
12. Insert three random numbers α, β, γ between 0 and 1 into an initially empty tree;
then delete α with probability p, β with probability q, γ with probability r, using the
algorithm suggested in the previous exercise. The tree

is obtained with probability 1
4p+ 1

2q + 1
2r, and this is 1

2 only if p = 0.
13. Add a KEY field to each node, and compare K with this key before looking at
the vector element in step T2. Table 1 would change as follows: Nodes (1), . . . , (12)
would contain the respective keys THE, AND, BE, FOR, HIS, IN, OF, TO, WITH, HAVE, HE,
THAT (if we inserted them in order of decreasing frequency), and these keys would be
deleted from their previous positions. [The corresponding program would be slower and
more complicated than Program T, in this case. A more direct M -ary generalization of
Algorithm D would create a tree with N nodes, having one key and M links per node.]
14. If j ≤ n, there is only one place, namely KEY(P). But if j > n, the set of all
occurrences is found by traversing the subtree of node P: If there are r occurrences, this
subtree contains r−1 nodes (including node P), and so it has r link fields with TAG = 1;
these link fields point to all the nodes that reference TEXT positions matching K. (It isn’t
necessary to check the TEXT again at all.)
15. To begin forming the tree, set KEY(HEAD) to the first TEXT reference, and set
LLINK(HEAD) ← HEAD, LTAG(HEAD) ← 1. Further TEXT references can be entered into
the tree using the following insertion algorithm:

Set K to the new key that we wish to enter. (This is the first reference the
insertion algorithm makes to the TEXT array.) Perform Algorithm P; it must terminate
unsuccessfully, since no key is allowed to be a prefix of another. (Step P6 makes the
second reference to the TEXT; no more references will be needed!) Now suppose that
the key located in step P6 agrees with the argument K in the first l bits, but differs
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from it in position l+ 1, where K has the digit b and the key has 1− b. (Even though
the search in Algorithm P might have let j get much greater than l, it is possible to
prove that the procedure specified here will find the longest match between K and any
existing key. Thus, all keys of the text that start with the first l bits of K have 1− b
as their (l+ 1)st bit.) Now repeat Algorithm P with K replaced by these leading l bits
(thus, n← l). This time the search will be successful, so we needn’t perform step P6.
Now set R ⇐ AVAIL, KEY(R) ← position of the new key in TEXT. If LLINK(Q) = P, set
LLINK(Q)← R, t← LTAG(Q), LTAG(Q)← 0; otherwise set RLINK(Q)← R, t← RTAG(Q),
RTAG(Q)← 0. If b = 0, set LTAG(R)← 1, LLINK(R)← R, RTAG(R)← t, RLINK(R)← P;
otherwise set RTAG(R) ← 1, RLINK(R) ← R, LTAG(R) ← t, LLINK(R) ← P. If t = 1, set
SKIP(R)← 1+ l−j; otherwise set SKIP(R)← 1+ l−j+SKIP(P) and SKIP(P)← j−l−1.
16. The tree setup requires precisely one dotted link coming from below a node to that
node; it comes from that part of the tree where this key first differs from all others. If
there is no such part of the tree, the algorithms break down. We could simply drop
keys that are prefixes of others, but then the algorithm of exercise 14 wouldn’t have
enough data to find all occurrences of the argument.
17. If we define a0 = a1 = 0, then

xn = an +

k≥2


n

k


(−1)kâk/(mk−1 − 1) =


k≥2


n

k


(−1)kâkm

k−1/(mk−1 − 1).

18. To solve (4) we need the transform of an = [n> 1], namely ân = [n= 0]− 1 + n;
hence for N ≥ 2 we obtain AN = 1 − UN + VN, where UN = K(N, 0,M) and VN =
K(N, 1,M) in the notation of exercise 19. Similarly, to solve (5), take an = n−[n= 1] =
ân and obtain CN = N + VN for N ≥ 2.
19. For s = 1, we have Vn = K(n, 1,m) = n((lnn+ γ)/ lnm− 1

2 − δ0(n− 1)) +O(1),
and for s ≥ 2 we have K(n, s,m) = (−1)sn(1/ lnm + δs−1(n − s))/s(s − 1) + O(1),
where

δs(n) = 2
lnm


k≥1

ℜ(Γ (s− 2πik/ lnm) exp(2πik logm n))

is a periodic function of logn. [In this derivation we have

K(n+s, s,m)/(−1)s

n+ s

s


= n−s+1

2πi

 1/2+i∞

1/2−i∞

Γ (z)ns−1−z dz

ms−1−z − 1 +O(n−s).

For small m and s, the δ’s will be negligibly small; see exercise 5.2.2–46. Note that
δs(n− a) = δs(n) +O(n−1) for fixed a.]
20. For (a), let an = [n>s] = 1−

s
k=0[n= k ]; for (b), let an = n−

s
k=0 k [n= k ];

and for (c), we want to solve the recurrence

yn =

m1−n

k


n
k


(m− 1)n−kyk for n > s,

n+1
2


for n ≤ s.

Setting xn = yn − n yields a recurrence of the form of exercise 17, with

an = (1−M−1)
s

k=0


k

2


[n= k ].

Therefore, in the notation of previous exercises, the answers are (a) 1−K(N, 0,M) +
K(N, 1,M) − · · · + (−1)s−1K(N, s,M) = N/(s lnM) − N(δ−1(N) + δ0(N − 1) +
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δ1(N − 2)/2·1 + · · · + δs−1(N − s)/s(s − 1)) + O(1); (b) N−1(N + K(N, 1,M) −
2K(N, 2,M) + · · · + (−1)s−1sK(N, s,M)) = (lnN + γ − Hs−1)/ lnM + 1/2 −
(δ0(N−1)+δ1(N−2)/1+· · ·+δs−1(N−s)/(s−1))+O(N−1); (c) N−1(N+(1−M−1)×s

k=2(−1)k


k
2

K(N, k,M)) = 1 + 1

2 (1 − M−1)((s − 1)/ lnM + δ1(N − 2) + · · · +
δs−1(N − s)) +O(N−1).
21. Let there be AN nodes in all. The number of nonnull pointers is AN − 1, and the
number of nonpointers is N, so the total number of null pointers is MAN −AN +1−N.
To get the average number of null pointers in any fixed position, divide by M. [The
average value of AN appears in exercise 20(a).]
22. There is a node for each of the M l sequences of leading bits such that at least two
keys have this bit pattern. The probability that exactly k keys have a particular bit
pattern is 

N

k


M−lk(1−M−l)N−k,

so the average number of trie nodes on level l is M l(1−(1−M−l)N )−N(1−M−l)N−1.
23. More generally, consider the case of arbitrary s as in exercise 20. If there are al

nodes on level l, they contain al+1 links and Mal − al+1 places where the search
might be unsuccessful. The average number of digit inspections will therefore be

l≥0(l+ 1)M−l−1(Mal − al+1) =


l≥0 M
−lal. Using the formula for al in a random

trie, this equals

1 + K(N+1, 1,M)− 2K(N+1, 2,M) + · · ·+ (−1)s(s+1)K(N+1, s+1,M)
N + 1

= lnN + γ −Hs

lnM + 1
2 − δ0(N)− δ1(N−1)

1 − · · · − δs(N−s)
s

+O(N−1).

24. We must solve the recurrences x0 = x1 = y0 = y1 = 0,

xn = m−n


n1+···+nm=n


n

n1, . . . , nm


xn1 + · · ·+ xnm +


1≤j≤m

[nj ̸= 0]


= an +m1−n


k


n

k


xk,

yn = m−n


n1+···+nm=n


n

n1, . . . , nm


yn1 + · · ·+ ynm +


1≤i<j≤m

[ni ̸= 0]nj


= bn +m1−n


k


n

k


yk,

for n ≥ 2, where an = m(1− (1− 1/m)n) and bn = 1
2 (m− 1)n(1− (1− 1/m)n−1). By

exercises 17 and 18 the answers are (a) xN = N + VN − UN − [N = 1] = AN + N − 1
(a result that could have been obtained directly, since the number of nodes in the forest
is always N − 1 more than the number in the corresponding trie!); and (b) yN/N =
1
2 (M − 1)VN/N = 1

2 (M − 1)((lnN + γ)/ lnM − 1
2 − δ0(N − 1)) +O(N−1).

25. (a) Let AN = M(N−1)/(M−1)−EN ; then for N ≥ 2, we have (1−M1−N )EN =
M − 1 − M(1 − 1/M)N−1 + M1−N 

0<k<N


N
k


(M − 1)N−kEk. Since M − 1 ≥

M(1 − 1/M)N−1, we have EN ≥ 0 by induction. (b) By Theorem 1.2.7A with
x = 1/(M − 1) and n = N − 1, we find DN = aN + M1−N 

k


N
k


(M − 1)N−kDk,
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where a1 = 0 and 0 < aN < M(1−1/M)N/ lnM ≤ (M −1)2/M lnM for N ≥ 2. Hence
0 ≤ DN ≤ (M − 1)2AN/M lnM ≤ (M − 1)(N − 1)/ lnM.
26. Taking q = 1

2 , z = − 1
2 in the second identity of exercise 5.1.1–16, we get 1/3 −

1/(3 ·7)+1/(3 ·7 ·15)−· · · = 0.28879; it’s slightly faster to use z = − 1
4 and take half of

the result. Alternatively, Euler’s formula from exercise 5.1.1–14 can be used, involving
only negative powers of 2. (John Wrench has computed the value to 40 decimal digits,
namely 0.28878 80950 86602 42127 88997 21929 23078 00889+.)
27. (For fun, the following derivation goes to O(N−1).) In the notation of exercises
5.2.2–38 and 5.2.2–48, we have

CN = UN +N−1+ VN+1

N + 1 −αN−β+

n≥2

(−1)n2−n(n+1)/2


m≥0(21−n)m(1− 2−m)Nn

r=1(1− 2−r)
,

where

α = 2/(1 · 1)− 4/(3 · 3 · 1) + 8/(7 · 7 · 3 · 1)− 16/(15 · 15 · 7 · 3 · 1) + · · · ≈ 1.60670;
β = 2/(1 · 3 · 1)− 4/(3 · 7 · 3 · 1) + 8/(7 · 15 · 7 · 3 · 1)− · · · ≈ 0.60670.

This numerical evaluation suggests that α = β + 1, a fact that is not hard to prove.
Moreover, α turns out to be identical to the constant defined quite differently in 5.2.3–
(19); see Karl Dilcher, Discrete Math. 145 (1995), 83–93. We have VN+1/(N + 1) =
UN+1−UN, and the value of


m≥0(21−n)m(1− 2−m)N is O(N1−n), by exercise 5.2.2–

46. Hence CN = UN+1−(α−1)N−α+O(N−1) = (N+1) lg(N+1)+N((γ−1)/ ln 2+
1
2 − α+ δ−1(N)) + 1

2 − 1/ ln 4− α− 1
2δ1(N) +O(N−1), by exercise 5.2.2–50.

The variance of the internal path length of a digital search tree has been computed
by Kirschenhofer, Prodinger, and Szpankowski, SICOMP 23 (1994), 598–616.
28. The derivations in the text and exercise 27 apply to general M ≥ 2, if we sub-
stitute M for 2 in the obvious places. Hence the average number of digit inspections
in a random successful search is CN/N = UN+1 − αM + 1 + O(N−1) = logM N +
(γ − 1)/ lnM + 1

2 − αM + δ−1(N) + (logM N)/N + O(N−1); and for the unsuccessful
case it is CN+1 −CN = VN+2/(N + 2)− αM + 1 +O(N−1) = logM N + γ/ lnM + 1

2 −
αM − δ0(N + 1) +O(N−1). Here δs(n) is defined in exercise 19, and

αM =

j≥0

(−1)jM j+1/(M j+1 − 1)2(M j − 1) . . . (M − 1).

29. Flajolet and Sedgewick [SICOMP 15 (1986), 748–767] have shown that the approx-
imate average number of such nodes is .372N when M = 2 and .689N when M = 16.
See also the generalization by Flajolet and Richmond, Random Structures & Algorithms
3 (1992), 305–320.
30. By iterating the recurrence, hn(z) is the sum of all possible terms of the form

n

p1


z

2p1 − 1


p1

p2


z

2p2 − 1 . . .
z

2pm − 1


pm

1


, for n > p1 > · · · > pm > 1.

31. h′
n(1) = Vn; see exercise 5.2.2–36(b). [For the variance and limiting distributions

of M -ary generalizations of Patrician trees, see P. Kirschenhofer and H. Prodinger,
Lecture Notes in Comp. Sci. 226 (1986), 177–185; W. Szpankowski, JACM 37 (1990),
691–711; B. Rais, P. Jacquet, and W. Szpankowski, SIAM J. Discrete Math. 6 (1993),
197–213.]
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32. The sum of the SKIP fields is the number of nodes in the corresponding binary
trie, so the answer is AN (see exercise 20).

33. Here’s how (18) was discovered: A(2z) − 2A(z) = e2z − 2ez + 1 + A(z)(ez − 1)
can be transformed into A(2z)/(e2z − 1) = (ez − 1)/(ez + 1) + A(z)/(ez − 1). Hence
A(z) = (ez − 1)


j≥1(ez/2j

− 1)/(ez/2j

+ 1). Now if f(z) =

cnz

n,


j≥1 f(z/2j) =
cnz

n/(2n − 1). In this case f(z) = (ez − 1)/(ez + 1) = tanh (z/2), which equals
1 − 2z−1(z/(ez − 1) − 2z/(e2z − 1)) =


n≥1 Bn+1z

n(2n+1 − 1)/(n + 1)!. From this
formula the route is apparent.

34. (a) Consider


j≥1
n−1

k=2


n
k


Bk/2j(k−1); 1n−1+· · ·+(m−1)n−1 = (Bn(m)−Bn)/n

by exercise 1.2.11.2–4. (b) Let Sn(m) =
m−1

k=1 (1− k/m)n and Tn(m) = 1/(en/m − 1).
If k ≤ m/2 we have e−kn/m > exp(n ln(1 − k/m)) > exp(−kn/m − k2n/m2) >
e−kn/m(1− k2/m2), hence (1− k/m)n = e−kn/m +O(e−kn/mk2n/m2). Since Sn(m) =m/2

k=1 (1− k/m)n +O(2−n) and Tn(m) =
m/2

k=1 e
−kn/m +O(e−n/2), we have Sn(m) =

Tn(m)+O(e−n/mn/m2). The sum of O(exp(−n/2j)n/22j) is O(n−1), because the sum
for j ≤ lgn is of order n−1(1 + 2/e+ (2/e)2 + · · · ) and the sum for j ≥ lgn is of order
n−1(1 + 1/4 + (1/4)2 + · · · ). (c) Argue as in Section 5.2.2 when |x| < 2π, then use
analytic continuation. (d) 1

2 lg(n/π) + γ/(2 ln 2)− 3
4 + δ(n) + 2/n, where

δ(n) = (2/ ln 2)


k≥1ℜ(ζ(−2πik/ ln 2)Γ (−2πik/ ln 2) exp(2πik lgn))
= (1/ ln 2)


k≥1 ℜ(ζ(1 + 2πik/ ln 2) exp(2πik lg(n/π)))/ cosh(π2k/ ln 2).

The variance and higher moments have been calculated by W. Szpankowski, JACM 37
(1990), 691–711.

35. The keys must be {α0β0ω1, α0β1ω2, α1γ0ω3, α1γ1δ0ω4, α1γ1δ1ω5}, where α, β, . . .
are strings of 0s and 1s with |α| = a − 1, |β| = b − 1, etc. The probability that
five random keys have this form is 5! 2a−1+b−1+c−1+d−1/2a+b+a+b+a+c+a+c+d+a+c+d =
5!/24a+b+2c+d+4.

36. Let there be n internal nodes. (a) (n!/2I)
(1/s(x)) = n!

(1/2s(x)−1s(x)), where
I is the internal path length of the tree. (b) ((n+ 1)!/2n)(1/(2s(x) − 1)). (Consider
summing the answer of exercise 35 over all a, b, c, d ≥ 1.)

37. The smallest modified external path length is actually 2 − 1/2N−2, and it occurs
only in a degenerate tree (whose external path length is maximal). [One can prove that
the largest modified external path length occurs if and only if the external nodes appear
on at most two adjacent levels! But it is not always true that a tree whose external
path length is smaller than another has a larger modified external path length.]

38. Consider as subproblems the finding of k-node trees with parameters (α,β), (α, 1
2β),

. . . , (α, 2k−nβ).

39. See Miyakawa, Yuba, Sugito, and Hoshi, SICOMP 6 (1977), 201–234.

40. Let N/r be the true period length of the sequence. Form a Patricia-like tree, with
a0a1 . . . as the TEXT and with N/r keys starting at positions 0, 1, . . . , N/r− 1. (No key
is a prefix of another, because of our choice of r.) Also include in each node a SIZE
field, containing the number of tagged link fields in the subtree below that node. To do
the specified operation, use Algorithm P; if the search is unsuccessful, the answer is 0,
but if it is successful and j ≤ n the answer is r. Finally if it is successful and j > n,
the answer is r · SIZE(P).
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43. The expected height is asymptotic to (1 + 1/s) logM N , and the variance is O(1).
See H. Mendelson, IEEE Transactions SE-8 (1982), 611–619; P. Flajolet, Acta Infor-
matica 20 (1983), 345–369; L. Devroye, Acta Informatica 21 (1984), 229–237; B. Pittel,
Advances in Applied Probability 18 (1986), 139–155; W. Szpankowski, Algorithmica
6 (1991), 256–277.

The average height of a random digital search tree with M = 2 is asymptotically
lgn +

√
2 lgn [Aldous and Shields, Probability Theory and Related Fields 79 (1988),

509–542], and the same is true for a random Patricia tree [Pittel and Rubin, Journal
of Combinatorial Theory A55 (1990), 292–312].
44. See SODA 8 (1997), 360–369; this search structure is closely related to the multikey
quicksort algorithm discussed in the answer to exercise 5.2.2–30. J. Clément, P. Flajolet,
and B. Vallée have shown that the ternary representation makes trie searching about
three times faster than the binary representation of (2), with respect to nodes accessed
[see SODA 9 (1998), 531–539].
45. The probability of {THAT, THE, THIS} before {BUILT, HOUSE, IS, JACK}, {HOUSE, IS,
JACK} before {BUILT}, {HOUSE, IS} before {JACK}, {IS} before {HOUSE}, {THIS} before
{THAT, THE}, and {THE} before {THAT} is 3

7 ·
3
4 ·

2
3 ·

1
2 ·

1
3 ·

1
2 = 1

56 .

SECTION 6.4
1. −37 ≤ rI1 ≤ 46. Therefore the locations preceding and following TABLE must be

guaranteed to contain no data that matches any given argument; for example, their
first byte could be zero. It would certainly be bad to store K in this range! [Thus we
might say that the method in exercise 6.3–4 uses less space, since the boundaries of
that table are never exceeded.]

2. TOW. [Can the reader find ten common words of at most 5 letters that fill all the
remaining gaps between −10 and 30?]

3. The alphabetic codes satisfy A + T = I + N and B − E = O − R, so we would have
either f(AT) = f(IN) or f(BE) = f(OR). Notice that instructions 4 and 5 of Table 1
resolve this dilemma rather well, while keeping rI1 from having too wide a range.

4. Consider cases with k pairs. The smallest n such that

m−nn!


k


m

n− k


n− k
k


2−k <

1
2 , for m = 365,

is 88. If you invite 88 people (including yourself), the chance of a birthday trio is
.511065, but if only 87 people come it is lowered to .499455. See C. F. Pinzka, AMM
67 (1960), 830.

5. The hash function is bad since it assumes at most 26 different values, and some
of them occur much more often than the others. Even with double hashing (letting
h2(K) = 1 plus the second byte of K, say, and M = 101) the search will be slowed
down more than the time saved by faster hashing. Also M = 100 is too small, since
FORTRAN programs often have more than 100 distinct variables.

6. Not on MIX, since arithmetic overflow will almost always occur (dividend too large).
[It would be nice to be able to compute (wK) modM, especially if linear probing
were being used with c = 1, but unfortunately most computers disallow this since the
quotient overflows.]
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7. If R(x) is a multiple of P (x), then R(αj) = 0 in GF(2k) for all j ∈ S. Let
R(x) = xa1 + · · · + xas, where a1 > · · · > as ≥ 0 and s ≤ t, and select t − s further
values as+1, . . . , at such that a1, . . . , at are distinct nonnegative integers less than n.
The Vandermonde matrix 

αa1 . . . αat

α2a1 . . . α2at

...
...

αta1 . . . αtat


is singular, since the sum of its first s columns is zero. But this contradicts the fact
that αa1 , . . . , αat are distinct elements of GF(2k). (See exercise 1.2.3–37.)

[The idea of polynomial hashing originated with M. Hanan, S. Muroga, F. P.
Palermo, N. Raver, and G. Schay; see IBM J. Research & Development 7 (1963),
121–129; U.S. Patent 3311888 (1967).]

8. By induction. The strong induction hypotheses can be supplemented by the fact
that {(−1)k(rqk + qk−1)θ} = (−1)k(r(qkθ− pk) + (qk−1θ− pk−1)) for 0 ≤ r ≤ ak. The
“record low” values of {nθ} occur for n = q1, q2 +q1, 2q2 +q1, . . . , a2q2 +q1 = 0q4 +q3,
q4 + q3, . . . , a4q4 + q3 = 0q6 + q5, . . . ; the “record high” values occur for n = q0,
q1 + q0, . . . , a1q1 + q0 = 0q3 + q2, . . . . These are the steps when interval number 0 of a
new length is formed. [Further structure can be deduced by generalizing the Fibonacci
number system of exercise 1.2.8–34; see L. H. Ramshaw, J. Number Theory 13 (1981),
138–175.]

9. We have ϕ−1 = //1, 1, 1, . . . // and ϕ−2 = //2, 1, 1, . . . //. Let θ = //a1, a2, . . . //
and θk = //ak+1, ak+2, . . . //, and let Qk = qk + qk−1θk−2 in the notation of exercise 8.
If a1 > 2, the very first break is bad. The three sizes of intervals in exercise 8 are,
respectively, (1 − rθk−1)/Qk, θk−1/Qk, and (1 − (r − 1)θk−1)/Qk, so the ratio of the
first length to the second is (ak − r) + θk. This will be less than 1

2 when r = ak and
ak+1 ≥ 2; hence {a2, a3, . . .} must all equal 1 if there are to be no bad breaks. [For
related theorems, see R. L. Graham and J. H. van Lint, Canadian J. Math. 20 (1968),
1020–1024, and the references cited there.]

10. See F. M. Liang’s elegant proof in Discrete Math. 28 (1979), 325–326.

11. There would be a problem if K = 0. If keys were required to be nonzero as
in Program L, this change would be worthwhile, and we could also represent empty
positions by 0.

12. We can store K in KEY[0], replacing lines 14–19 by

STA TABLE(KEY) A− S1
CMPA TABLE,2(KEY) A− S1
JE 3F A− S1

2H ENT1 0,2 C − 1− S2
LD2 TABLE,1(LINK) C − 1− S2

CMPA TABLE,2(KEY) C − 1− S2
JNE 2B C − 1− S2

3H J2Z 5F A− S1
ENT1 0,2 S2
JMP SUCCESS S2

The time “saved” is C−1−5A+S+4S1 units, which is actually a net loss because
C is rarely more than 5. (An inner loop shouldn’t always be optimized!)

13. Let the table entries be of two distinguishable types, as in Algorithm C, with an
additional one-bit TAG[i] field in each entry. This solution uses circular lists, following
a suggestion of Allen Newell, with TAG[i] = 1 in the first word of each list.
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A1. [Initialize.] Set i← j ← h(K) + 1, Q← q(K).
A2. [Is there a list?] If TABLE[i] is empty, set TAG[i]← 1 and go to A8. Otherwise

if TAG[i] = 0, go to A7.
A3. [Compare.] If Q = KEY[i], the algorithm terminates successfully.
A4. [Advance to next.] If LINK[i] ̸= j, set i← LINK[i] and go back to A3.
A5. [Find empty node.] Decrease R one or more times until finding a value such

that TABLE[R] is empty. If R = 0, the algorithm terminates with overflow;
otherwise set LINK[i]← R.

A6. [Prepare to insert.] Set i← R, TAG[R]← 0, and go to A8.
A7. [Displace a record.] Repeatedly set i ← LINK[i] one or more times until

LINK[i] = j. Then do step A5. Then set TABLE[R] ← TABLE[j], i ← j,
TAG[j]← 1.

A8. [Insert new key.] Mark TABLE[i] as an occupied node, with KEY[i] ← Q,
LINK[i]← j.

(Note that if TABLE[i] is occupied it is possible to determine the corresponding full
key K, given only the value of i. We have q(K) = KEY[i], and then if we set i← LINK[i]
zero or more times until TAG[i] = 1 we will have h(K) = i− 1.)
14. According to the stated conventions, the notation “X ⇐ AVAIL” of 2.2.3–(6) now
stands for the following operations: “Set X ← AVAIL; then set X ← LINK(X) zero
or more times until either X = Λ (an OVERFLOW error) or TAG(X) = 0; finally set
AVAIL← LINK(X).”

To insert a new key K: Set Q ⇐ AVAIL, TAG(Q) ← 1, and store K in this word.
[Alternatively, if all keys are short, omit this and substitute K for Q in what follows.]
Then set R⇐ AVAIL, TAG(R)← 1, AUX(R)← Q, LINK(R)← Λ. Set P← h(K), and

if TAG(P) = 0, set TAG(P)← 2, AUX(P)← R;
if TAG(P) = 1, set S ⇐ AVAIL, CONTENTS(S) ← CONTENTS(P), TAG(P) ← 2,

AUX(P)← R, LINK(P)← S;
if TAG(P) = 2, set LINK(R)← AUX(P), AUX(P)← R.

To retrieve a key K: Set P← h(K), and
if TAG(P) ̸= 2, K is not present;
if TAG(P) = 2, set P ← AUX(P); then set P ← LINK(P) zero or more times until

either P = Λ, or TAG(P) = 1 and either AUX(P) = K (if all keys are short)
or AUX(P) points to a word containing K (perhaps indirectly through words
with TAG = 2).

Elcock’s original scheme [Comp. J. 8 (1965), 242–243] actually used TAG = 2 and
TAG = 3 to distinguish between lists of length one (when we can save one word of
space) and longer lists. This is a worthwhile improvement, since we presumably have
such a large hash table that almost all lists have length one.

Another way to place a hash table “on top of” a large linked memory, using
coalescing lists instead of separate chaining, has been suggested by J. S. Vitter [Inf.
Proc. Letters 13 (1981), 77–79].
15. Knowing that there is always an empty node makes the inner search loop faster,
since we need not maintain a counter to determine how many times step L2 is per-
formed. The shorter program amply compensates for this one wasted cell. [On the
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other hand, there is a neat way to avoid the variable N and to allow the table to
become completely full, in Algorithm L, without slowing down the method appreciably
except when the table actually does overflow: Simply check whether i < 0 happens
twice! This trick does not apply to Algorithm D.]
16. No: 0 always leads to SUCCESS, whether it has been inserted or not, and SUCCESS
occurs with different values of i at different times.
17. The second probe would then always be to position 0.
18. The code in (31) costs about 3(A − S1) units more than (30), and it saves 4u
times the difference between (26), (27), and (28), (29). For a successful search, (31)
is advantageous only when the table is more than about 94 percent full, and it never
saves more than about 1

2u of time. For an unsuccessful search, (31) is advantageous
when the table is more than about 71 percent full.
20. We want to show that

j

2


≡

k

2


(modulo 2m) and 1 ≤ j ≤ k ≤ 2m

implies j = k. Observe that the congruence j(j−1) ≡ k(k−1) (modulo 2m+1) implies
(k− j)(k+ j − 1) ≡ 0. If k− j is odd, k+ j − 1 must be a multiple of 2m+1, but that’s
impossible since 2 ≤ k + j − 1 ≤ 2m+1 − 2. Hence k− j is even, so k + j − 1 is odd, so
k − j is a multiple of 2m+1, so k = j. [Conversely, if M is not a power of 2, this probe
sequence does not work.]

The probe sequence has secondary clustering, and it increases the running time of
Program D (as modified in (30)) by about 1

2 (C−1)−(A−S1) units since B ≈


C+1
3

/M

will now be negligible. This is a small improvement, until the table gets about 60
percent full.
21. If N is decreased, Algorithm D can fail since it might reach a state with no empty
spaces and loop indefinitely. On the other hand, if N isn’t decreased, Algorithm D
might signal overflow when there still is room. The latter alternative is the lesser of the
two evils, because rehashing can be used to get rid of deleted cells. (In the latter case
Algorithm D should increase N and test for overflow only when inserting an item into
a previously empty position, since N represents the number of nonempty positions.)
We could also maintain two counters.
22. Suppose that positions j − 1, j − 2, . . . , j − k are occupied and j − k− 1 is empty
(modulo M). The keys that probe position j and find it occupied before being inserted
are precisely those keys in positions j − 1 through j − k whose hash address does not
lie between j − 1 and j − k; such problematical keys appear in the order of insertion.
Algorithm R moves the first such key into position j, and repeats the process on a
smaller range of problematical positions until no problematical keys remain.
23. A deletion scheme for coalesced chaining devised by J. S. Vitter [J. Algorithms 3
(1982), 261–275] preserves the distribution of search times.
24. We have P (P − 1)(P − 2)P (P − 1)P (P − 1)/(MP (MP − 1) . . . (MP − 6)) =
M−7(1 − (5 − 21/M)P−1 + O(P−2)). In general, the probability of a hash sequence
a1 . . . aN is (M−1

j=0 P bj )/(MP )N = M−N +O(P−1), where bj is the number of ai that
equal j.
25. Let the (N + 1)st key hash to location a; Pk is M−N times the number of hash
sequences that leave the k locations a, a− 1, . . . , a− k + 1 (modulo M) occupied and
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a−k empty. The number of such sequences with a+1, . . . , a+ t occupied and a+ t+1
empty is g(M,N, t+k), by circular symmetry of the algorithm.

26. 9!
2! 2! 4! 1!f(3, 2)f(3, 2)f(5, 4)f(2, 1) = 2235547 = 4252500.

27. Following the hint,

s(n, x, y) =


k


n

k


x(x+k)k(y−k)n−k−1(y−n)+n


k


n−1
k−1


(x+k)k(y−k)n−k−1(y−n).

In the first sum, replace k by n− k and apply Abel’s formula; in the second, replace k
by k + 1. Now

g(M,N, k) =

N

k


(k + 1)k−1(M − k − 1)N−k−1(M −N − 1),

with 0/0 = 1 when k = N = M − 1, and

MN


(k + 1)Pk =

k≥0


k + 2

2


g(M,N, k)

= 1
2


k≥0

(k + 1)g(M,N, k) +

k≥0

(k + 1)2g(M,N, k)

.

The first sum is MN Pk = MN, and the second is s(N, 1,M−1) = MN +2NMN−1 +
3N(N − 1)MN−2 + · · · = MNQ1(M,N). [See J. Riordan, Combinatorial Identities
(New York: Wiley, 1968), 18–23, for further study of sums like s(n, x, y).]
28. Let t(n, x, y) =


k≥0


n
k


(x+ k)k+2(y− k)n−k−1(y− n); then as in exercise 27 we

find t(n, x, y) = xs(n, x, y) + nt(n−1, x+1, y−1), t(N, 1,M−1) = MN (3Q3(M,N) −
2Q2(M,N)). Thus


(k+1)2Pk = M−N ( 1

3 (k+1)3+ 1
2 (k+1)2+ 1

6 (k+1))g(M,N, k) =
Q3(M,N)− 2

3Q2(M,N)+ 1
2Q1(M,N)+ 1

6 . Subtracting (C′
N )2 gives the variance, which

is approximately 3
4 (1−α)−4− 2

3 (1−α)−3− 1
12 . The standard deviation is often larger

than the mean; for example, when α = .9 the mean is 50.5 and the standard deviation
is 1

2

√
27333 ≈ 82.7.

29. LetM = m+1, N = n; the safe parking sequences are precisely those in which loca-
tion 0 is empty when Algorithm L is applied to the hash sequence (M−a1) . . . (M−an).
Hence the answer is f(m+1, n) = (m + 1)n − n(m + 1)n−1. [This problem originated
with A. G. Konheim and B. Weiss, SIAM J. Applied Math. 14 (1966), 1266–1274; see
also R. Pyke, Annals of Math. Stat. 30 (1959), 568–576, Lemma 1.]
30. Obviously if the cars get parked they define such a permutation. Conversely, if
p1p2 . . . pn exists, let q1q2 . . . qn be the inverse permutation (qi = j if and only if pj = i),
and let bi be the number of aj that equal i. Every car will be parked if we can prove
that bn ≤ 1, bn−1 +bn ≤ 2, etc.; equivalently b1 ≥ 1, b1 +b2 ≥ 2, etc. But this is clearly
true, since the k elements aq1 , . . . , aqk are all ≤ k.

[Let rj be the “left influence” of qj , namely rj = k if and only if qj−1 < qj , . . . ,
qj−k−1 < qj and either j = k or qj−k > qj . Of all permutations p1 . . . pn that dominate
a given wakeup sequence a1 . . . an, the “park immediately” algorithm finds the smallest
one (in lexicographic order). Konheim and Weiss observed that the number of wakeup
sequences leading to a given permutation p1 . . . pn is

n
j=1 rj ; it is remarkable that the

sum of these products, taken over all permutations q1 . . . qn, is (n+ 1)n−1.]
31. Many interesting connections are possible, and the following three are the author’s
favorites [see also Foata and Riordan, Æquat. Math. 10 (1974), 10–22]:
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a) In the notation of the previous answer, the counts b1, b2, . . . , bn correspond to a
full parking sequence if and only if (b1, b2, . . . , bn, 0) is a valid sequence of degrees of tree
nodes in preorder. (Compare with 2.3.3–(9), which illustrates postorder.) Every such
tree corresponds to n!/b1! . . . bn! distinct labeled free trees on {0, . . . , n}, since we can let
0 be the label of the root, and for k = 1, 2, . . . , n we can successively choose the labels
of the children of the kth node in preorder in (bk + · · ·+ bn)!/bk! (bk+1 + · · ·+ bn)! ways
from the remaining unused labels, attaching labels from left to right in increasing order.
And every such sequence of counts corresponds to n!/b1! . . . bn! wakeup sequences.

b) Dominique Foata has given the following pretty one-to-one correspondence: Let
a1 . . . an be a safe parking sequence, which leaves car qj parked in space j. A labeled
free tree on {0, 1, . . . , n} is constructed by drawing a line from j to 0 when aj = 1, and
from j to qaj−1 otherwise, for 1 ≤ j ≤ n. (Think of the tree nodes as cars; car j is
connected to the car that eventually winds up parked just before where wife j woke
up.) For example, the wakeup times 3 1 4 1 5 9 2 6 5 lead to the free tree

r0 ��
@@

r2
r
4

r
1
r
7

r
3
��
@@

r9 r6
r
5

r
8

by Foata’s rule. Conversely, the sequence of parked cars may be obtained from the tree
by topological sorting, assuming that arrows emanate from the root 0 and choosing the
smallest “source” at each step. From this sequence, a1 . . . an can be reconstructed.

c) First construct an auxiliary tree by letting the parent of node k be the first
element > k that follows k in the permutation q1 . . . qn; if there’s no such element,
let the parent be 0. Then make a copy of the auxiliary tree and relabel the nonzero
nodes of the new tree by proceeding as follows, in preorder: If the label of the current
node was k in the auxiliary tree, swap its current label with the label that is currently
(1 + pk − ak)th smallest in its subtree. For example,

auxiliary tree final tree

r0 ��
@@

r6
r
9

r
8

r
7

r
5
��
@@

r3 r1
r
4

r
2

r0 ��
@@

r6
r
4

r
2

r
8

r
1
��
@@

r3 r5
r
9

r
7

To reverse the procedure, we can reconstruct the auxiliary tree by proceeding in
preorder to swap the label of each node with the largest label currently in its subtree.

Constructions (a) and (b) are strongly related, but construction (c) is quite dif-
ferent. It has the interesting property that the sum of displacements of cars from their
preferred locations is equal to the number of inversions in the tree — the number of pairs
of labels a > b where a is an ancestor of b. This relation between parking sequences
and tree inversions was first discovered by G. Kreweras [Periodica Math. Hung. 11
(1980), 309–320]. The fact that tree inversions are intimately related to connected
graphs [Mallows and Riordan, Bull. Amer. Math. Soc. 74 (1968), 92–94] now makes
it possible to deduce that the sum of


D(p)

k


taken over all parking sequences, where

D(p) = (p1 − a1) + · · · + (pn − an), is equal to the total number of connected graphs
with n+ k edges on the labeled vertices {0, 1, . . . , n}. [See equations (2.11), (3.5), and
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(8.13) in the paper by Janson, Łuczak, Knuth, and Pittel, Random Struct. & Alg. 4
(1993), 233–358.]
32. Let

sj =
j

k=0

(bk mod M − 1).

Then, as observed by Svante Janson, we have cj = maxk≥j(sk − sj), a quantity that is
well defined because limk→∞ sk = −∞.

The solution can be found by defining cM−1, cM−2, . . . on the assumption that
c0 = 0; then if c0 turns out to be greater than 0, it suffices to redefine cM−1, cM−2,
. . . until no more changes are made.
33. The individual probabilities are not independent, since the condition b0 +b1 + · · ·+
bM−1 = N was not taken into account; the derivation allows a nonzero probability that
bj has any given nonnegative value. Equations (46) are not strictly correct; they

imply, for example, that qk is positive for all k, contradicting the fact that cj can never
exceed N − 1.

Gaston Gonnet and Ian Munro [J. Algorithms 5 (1984), 451–470] have found an
interesting way to derive the exact result from the argument leading up to (51) by
introducing a useful operation called the Poisson transform of a sequence ⟨Amn⟩: We
have e−mz 

n Amn(mz)n/n! =


k akz
k if and only if Amn =


k akn

k/mk.
34. (a) There are


N
k


ways to choose the set of j such that aj has a particular value,

and (M − 1)N−k ways to assign values to the other a’s. Therefore

PNk =

N

k


(M − 1)N−k/MN .

(b) PN (z) = B(z) in (50). (c) Consider the total number of probes to find all keys, not
counting the fetching of the pointer in the list head table of Fig. 38 if such a table is
used. A list of length k contributes


k+1

2


to the total; hence

CN = M


k + 1
2


PNk/N = (M/N)( 1

2P
′′
N (1) + P ′

N (1)).

(d) In case (i) a list of length k requires k probes (not counting the list-head fetch), while
in case (ii) it requires k+δk0. Thus in case (ii) we get C′

N =


(k+δk0)PNk = P ′
N (1)+

PN (0) = N/M + (1 − 1/M)N ≈ α + e−α, while case (i) has simply C′
N = N/M = α.

The formula MC′
N = M −N +NCN applies in case (iii), since M −N hash addresses

will discover an empty table position while N will cause searching to the end of some
list from a point within it; this yields (18).
35. (i)

(1 + 1
2k− (k+ 1)−1)PNk = 1 +N/(2M)−M(1− (1− 1/M)N+1)/(N + 1) ≈

1 + 1
2α − (1 − e−α)/α. (ii) Add


δk0PNk = (1 − 1/M)N ≈ e−α to the result of (i).

(iii) Assume that when an unsuccessful search begins at the jth element of a list of
length k, the given key has random order with respect to the other k elements, so
the expected length of search is (j · 1 + 2 + · · · + (k + 1 − j) + (k + 1 − j))/(k + 1).
Summing on j now gives MC′

N = M − N + M


(k3 + 9k2 + 2k)PNk/(6k + 6) =
M −N +M( 1

6N(N − 1)/M2 + 3
2N/M − 1 + (M/(N + 1))(1− (1− 1/M)N+1)); hence

C′
N ≈ 1

2α+ 1
6α

2 + (1− e−α)/α.
36. (i) N/M − N/M2. (ii)


(δk0 + k)2PNk =


(δk0 + k2)PNk = PN (0) + P ′′

N (1) +
P ′

N (1). Subtracting (C′
N )2 gives the answer, (M − 1)N/M2 + (1− 1/M)N (1− 2N/M −

(1− 1/M)N ) ≈ α+ e−α(1− 2α− e−α) ≤ 1− e−1 − e−2 = 0.4968. [For data structure
(iii), a more complicated analysis like that in exercise 37 would be necessary.]
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37. Let SN be the average value of (C − 1)2, considering all MNN choices of hash
sequences and keys to be equally likely. Then

MNNSN = 1
3


N

k1, . . . , kM


(k1(k1 − 1

2 )(k1 − 1) + · · ·+ kM (kM − 1
2 )(kM − 1))

= 1
3M


k


N

k


(M − 1)N−kk(k − 1

2 )(k − 1)

= 1
3MN(N − 1)(N − 2)


k


N − 3
k − 3


(M − 1)N−k

+ 1
2MN(N − 1)


k


N − 2
k − 2


(M − 1)N−k

= 1
3MN(N − 1)(N − 2)MN−3 + 1

2MN(N − 1)MN−2.

The variance is SN − ((N − 1)/2M)2 = (N − 1)(N + 6M − 5)/12M2 ≈ 1
2α+ 1

12α
2.

See CMath §8.5 for interesting connections between the total variance calculated
here and two other notions of variance: the variance (over random hash tables) of the
average number of probes (over all items present), and the average (over random hash
tables) of the variance of the number of probes (over all items present). The total
variance is always the sum of the other two; and in this case the variance of the average
number of probes is (M − 1)(N − 1)/(2M2N).

38. The average number of probes is

PNk(2Hk+1 − 2 + δk0) in the unsuccessful

case, (M/N)

PNkk(2(1 + 1/k)Hk − 3) in the successful case, by Eqs. 6.2.2–(5) and

6.2.2–(6). These sums are 2f(N) + 2M(1− (1− 1/M)N+1)/(N + 1) + (1− 1/M)N − 2
and 2(M/N)f(N) + 2f(N − 1) + 2M(1 − (1 − 1/M)N )/N − 3, respectively, where
f(N) =


PNkHk. Exercise 5.2.1–40 tells us that f(N) = lnα+ γ +E1(α) +O(M−1)

when N = αM, M →∞.
[Tree hashing was first proposed by P. F. Windley, Comp. J. 3 (1960), 84–88. The

analysis in the previous paragraph shows that tree hashing is not enough better than
simple chaining to justify the extra link fields; the lists are short anyway. Moreover,
when M is small, tree hashing is not enough better than pure tree search to justify the
hashing time.]

39. (This approach to the analysis of Algorithm C was suggested by J. S. Vitter.)
We have cN+1(k) = (M − k)cN (k) + (k − 1)cN (k − 1) for k ≥ 2, and furthermore
kcN (k) = NMN . Hence

SN+1 =

k≥2


k

2


cN+1(k) =


k≥2


k

2


((M − k)cN (k) + (k − 1)cN (k − 1))

=

k≥1


(M + 2)


k

2


+ k


cN (k) = (M + 2)SN +NMN .

Consequently SN = (N − 1)MN−1 + (N − 2)MN−2(M + 2) + · · · + M(M + 2)N−2 =
1
4 (M(M + 2)N −MN+1 − 2NMN ).

Consider the total number of probes in unsuccessful searches, summed over all
M values of h(K); each list of length k contributes k + δk0 +


k
2


to the total, hence
MN+1C′

N = MN+1 + SN.
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40. Define UN to be like SN in exercise 39, but with


k
2


replaced by


k+1
3

. We find

UN+1 = (M + 3)UN + SN +NMN, hence

UN = 1
36 (MN (M − 6N)− 9M(M + 2)N + 8M(M + 3)N ).

The variance is 2UN/M
N+1 + C′

N − (C′
N )2, which approaches

35
144 −

1
12α−

1
4α

2 + ( 1
4α−

5
8 )e2α + 4

9e
3α − 1

16e
4α

for N = αM, M → ∞. When α = 1 this is about 2.65, so the standard deviation is
bounded by 1.63. [Svante Janson, in Combinatorics, Prob. and Comp. 17 (2008), 799–
814, has found the asymptotic moments of all orders, also when the search is successful.]
41. Let VN be the average length of the block of occupied cells at the “high” end of
the table. The probability that this block has length k is ANk(M − 1 − k)N−k/MN,
where ANk is the number of hash sequences (35) such that Algorithm C leaves the first
N−k and the last k cells occupied and such that the subsequence 1 2 . . . N−k appears
in increasing order. Therefore

MNVN =


k kANk(M − 1− k)N−k = MN+1 −


k(M − k)ANk(M − 1− k)N−k

= MN+1 − (M −N)


k ANk(M − k)N−k = MN+1 − (M −N)(M + 1)N .

Now TN = (N/M)(1+VN−T0−· · ·−TN−1), since T0+· · ·+TN−1 is the average number
of times R has previously decreased and N/M is the probability that it decreases on
the current step. The solution to this recurrence is TN = (N/M)(1 + 1/M)N. (Such a
simple formula deserves a simpler proof!)
42. S1N is the number of items that were inserted with A = 0, divided by N.
43. Let N = αM ′ and M = βM ′, and let e−λ +λ = 1/β, ρ = α/β. Then CN ≈ 1+ 1

2ρ

and C′
N ≈ ρ+e−ρ, if ρ ≤ λ; CN ≈ 1

8ρ
(e2ρ−2λ−1−2ρ+2λ)(3−2/β+2λ)+ 1

4 (ρ+2λ−λ2/ρ)
and C′

N ≈ 1/β+ 1
4 (e2ρ−2λ− 1)(3− 2/β+ 2λ)− 1

2 (ρ−λ), if ρ ≥ λ. For α = 1 we get the
smallest CN ≈ 1.69 when β ≈ .853; the smallest C′

N ≈ 1.79 occurs when β ≈ .782. The
setting β = .86 gives near-optimal search performance for a wide range of α. So it pays
to put the first collisions into an area that doesn’t conflict with hash addresses, even
though a smaller range of hash addresses will cause more collisions to occur. These
results are due to Jeffrey S. Vitter, JACM 30 (1983), 231–258.
44. (The following brute-force approach was the solution found by the author in 1972;
a much more elegant solution by M. S. Paterson is explained in Mathematics for the
Analysis of Algorithms by Greene and Knuth (Birkhäuser Boston, 1980), §3.4. Paterson
also found significant ways to simplify several other analyses in this section.)

Number the positions of the array from 1 to m, left to right. Considering the set of
all


n
k


sequences of operations with k “p steps” and n−k “q steps” to be equally likely,

let g(m,n+1, k, r) be


n
k


times the probability that the first r − 1 positions become

occupied and the rth remains empty. Thus g(m, l, k, r) is (m − 1)−(l−1−k) times the
sum, over all configurations

1 ≤ a1 < · · · < ak < l, (c1, . . . , cl−1−k), 2 ≤ ci ≤ m,

of the probability that the first empty location is r, when the ajth operation is a p step
and the remaining l − 1 − k operations are q steps that begin by selecting positions
c1, . . . , cl−1−k, respectively. By summing over all configurations subject to the further
condition that the ajth operation occupies position bj , given 1 ≤ b1 < · · · < bk < r, we
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obtain the recurrence

g(m, l, k+1, r) =

a<l
b<r

1≤b≤a

(l − b− 1)!
(l − r)!

(m− r)!
(m− b)! (m− l + 1)g(m,a, k, b);

g(m, l, 0, r) = (l − 1)!
(l − r)!

(m− r)!
m! (m− l + 1)


Pl + [r ̸= 1] m

l − 1(1− Pl)

,

where Pl = (m/(m−1))l−1. Letting G(m, l, k) =
l

r=1(m+1−r)g(m, l, k, r), it follows
that

G(m, l, k+1) = m− l + 1
m− l + 2

l−1
a=1

G(m,a, k); G(m, l, 0) = m− l + 1
m− l + 2(m+ Pl).

The answer to the stated problem is m−
n

k=0 p
kqn−kG(m, n+1, k), which (after some

maneuvering) equals m− ((m− n)/(m− n+ 1))(Qn +mR+ pSR), where

Qj = Pj+1q
j ,

R =


1− p

m+ 1


1− p

m


. . .


1− p

m− n+ 2


=

n−1
j=0


1− p

m+ 1− j


,

S =


1− 1

m+ 1


Q0

1− p

m+ 1

 +


1− 1

m


Q1

1− p

m+ 1


1− p

m

 + · · ·+
1−

 1
m− n+ 2


Qn−1

R

=
n−1
k=0

(1− 1/(m+ 1− k))Qkk
j=0(1− p/(m+ 1− j))

.

When p = 1/m, Qj = 1 for all j. Letting w = m + 1, n = αw, w → ∞, we find
lnR = −(Hw − Hw(1−α))p + O(p2); hence R = 1 + w−1 ln(1 − α) + O(w−2); and
similarly S = αw +O(1). Thus the answer is (1− α)−1 − 1− α− ln(1− α) +O(w−1).

Notes: The simpler problem “with probability p occupy the leftmost, otherwise
occupy any randomly chosen empty position” is solved by taking Pj = 1 in the formulas
above, and the answer is m − (m + 1)(m − n)R/(m − n + 1). To get C′

N for random
probing with secondary clustering, set n = N, m = M and add 1 to the answer above.
45. Yes. See L. Guibas, JACM 25 (1978), 544–555.
46. Define the numbers [[ n

k
]] for k ≥ 0 by the rule

k


x+ k

k


n

k


= (x+ n+ 1)n

for all x and all nonnegative integers n. Setting x = −1,−2, . . . ,−n− 1 implies that
n

k


=


j


k

j


(−1)j(n− j)n for 0 ≤ k ≤ n;

then setting x = 0 implies that we may take [[ n
k
]] = 0 for all k > n, so the two sides of

the defining equation are polynomials in x of degree n that agree on n + 1 points. It
follows that the numbers [[ n

k
]] have the stated property.
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Let f(N, r) be the number of hash sequences a1 . . . aN that leave the first r
locations occupied and the next one empty. There are


M−r−1

N−r


possible patterns of

occupied cells, and each pattern occurs as many times as there are sequences a′1 . . . a′N ,
1 ≤ a′i ≤ N , that contain each of the numbers r + 1, r + 2, . . . , N at least once. By
inclusion-exclusion, there are [[ N

N−r
]] such sequences; hence

f(N, r) =

M − r − 1
N − r


N

N − r


.

Now

C′
N = 1 +M−N−1

N
r=0

f(N, r)
 r−1

a=0

r +
M−1

a=r+1

N − r
M − r − 1(r + 1)


= 1 +M−N−1

N
r=0

f(N, r)(N + (N − 1)r).

Let Sn(x) =


k k


x+k
k


[[ n

k
]]; we have

(x+ 1)−1Sn(x) +


k


x+ k

k


n

k


=


k


x+ 1 + k

k


n

k


;

hence Sn(x) = (x+ 1)((x+n+ 2)n− (x+n+ 1)n). It follows that C′
N = N(1 + 1/M)−

(N − 1)(1−N/M)(1 + 1/M)N ≈ N(1− (1−α)eα); and CN = (N − 1)((1 + 1/M)/2 +
(1 + 1/M)N ) + (3M2 + 6M + 2)((1 + 1/M)N − 1)/N − (3M + 2)(1 + 1/M)N, which is
(e− 2.5)M +O(1) when N = M − 1.

For further properties of the numbers [[ n
k
]], see John Riordan, Combinatorial

Identities (New York: Wiley, 1968), 228–229.

47. The analysis of Algorithm L applies, almost word for word! Any probe sequence
with cyclic symmetry, and which explores only positions adjacent to those previously
examined, will have the same behavior.

48. C′
N = 1 + p+ p2 + · · · , where p = N/M is the probability that a random location

is filled; hence C′
N = M/(M −N), and CN = N−1N−1

k=0 C′
k = N−1M(HM −HM−N ).

These values are approximately equal to those for uniform probing, but slightly higher
because of the chance of repeated probes in the same place. Indeed, for 4 = N < M ≤
16, linear probing is better!

In practice we wouldn’t use infinitely many hash functions; some other scheme
like linear probing would ultimately be used as a last resort. This method is inferior
to those described in the text, but it is of historical importance because it suggested
Morris’s method, which led to Algorithm D. See CACM 6 (1963), 101, where M. D.
McIlroy credits the idea to V. A. Vyssotsky; the same technique had been discovered
as early as 1956 by A. W. Holt, who used it successfully in the GPX system for the
UNIVAC.

49. C′
N − 1 =


k>b(k − b)PNk ≈


k>b(k − b)e−αb(αb)k/k! = αbtb(α). [Note: We

have 
b≥0


k>b

(k − b)Pk


zb = P ′(1)

1− z + z(P (z)− 1)
(1− z)2
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in general, if P (z) = P0 + P1z + · · · is any probability generating function.] And

CN − 1 = M

N


k>b


k − b+ 1

2


PNk

= M

2N

k>b

(k(k − 1)− 2k(b− 1) + b(b− 1))PNk

= 1
2e

−bα(bα)bb!−1(b+ bα− 2b+ 2 + (bα2 − 2α(b− 1) + b− 1)R(α, b)).

[The analysis of successful search with chaining was first carried out by W. P. Heis-
ing in 1957. The simple expressions in (57) and (58) were found by J. A. van der Pool in
1971; he also considered how to minimize a function that represents the combined cost of
storage space and number of accesses. We can determine the variance of C′

N and of the
number of overflows per bucket, since


k>b(k−b)2PNk = (2N/M)(CN−1)−(C′

N−1).
The variance of the total number of overflows may be approximated by M times the
variance in a single bucket, but this is actually too high because the total number of
records is constrained to be N. The true variance can be found as in exercise 37. See
also the derivation of the chi-square test in Section 3.3.1C.]

50. And next that Q0(M,N − 1) = (M/N)(Q0(M,N)− 1). In general, rQr(M,N) =
MQr−2(M,N) − (M − N − r)Qr−1(M,N) = M(Qr−1(M,N + 1) − Qr−1(M,N));
Qr(M,N − 1) = (M/N)(Qr(M,N)−Qr−1(M,N)).

51. R(α, n) = α−1(n! eαn(αn)−n −Q0(αn, n)).

52. See Eq. 1.2.11.3–(9) and exercise 3.1–14.

53. By Eq. 1.2.11.3–(8), α(αn)nR(α, n) = eαnγ(n+1, αn); hence by the suggested
exercise R(α, n) = (1− α)−1 − (1− α)−3n−1 +O(n−2). [This asymptotic formula can
be obtained more directly by the method of (43), if we note that the coefficient of αk

in R(α, n) is

1−

k + 2

2


n−1 +O(k4n−2).

In fact, the coefficient of αk is
r≥0

(−1)rn−r


r + k + 1
k + 1


by Eq. 1.2.9–(28).]

54. Using the hint together with Eqs. 1.2.6–(53) and 1.2.6–(49), we have
b≥1

tb(α) =

m≥1

αm

(m+ 1)(m)m!


k


m

k


(−1)m−kkm+1 =


m≥1

αm/2.

The hint follows from Kummer’s well-known hypergeometric identity e−zF (a; b; z) =
F (b− a; b;−z), since (n+ 1)! tn(α) = e−nα(αn)nF (2;n+ 2;αn); see Crelle 15 (1836),
39–83, 127–172, Eq. 26.4.

55. If B(z)C(z) =

siz

i, we have c0 = s0 + · · ·+ sb, c1 = sb+1, c2 = sb+2, . . . ; hence
B(z)C(z) = zbC(z)+Q(z). Now P (z) = zb has b−1 roots qj with |qj | < 1, determined
as the solutions to eα(qj−1) = ω−jqj , ω = e2πi/b. To solve eα(q−1) = ω−1q, let t = αq
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and z = αωe−α so that t = zet. By Lagrange’s formula we get

1
1− q = 1 +


r≥0

r

n≥r

nn−r−1ωnαn−re−nα

(n− r)!

= 1 +

r≥1

r

m≥0

αm

m! (−1)m

n≥r


m

n− r


(−1)n−rωnnm−1.

By Abel’s limit theorem, letting |ω| → 1 from inside the unit circle, this can be
rearranged to equal

1− αω
1− ω +


m≥2

αm

m! (−1)m

n≥0


m− 2
n


(−1)nωn+1(n+ 1)m−1.

Now replacing ω by ωj and summing for 1 ≤ j < b yields

b− 1
2 + α

b− 1
2 +


m≥2

αm


− 1

2 + (−1)m

m! b

n≥1


m− 2
nb− 1


(−1)nb−1(nb)m−1


and the desired result follows after some more juggling using the hint of exercise 54.

This analysis, applied to a variety of problems, was begun by N. T. J. Bailey,
J. Roy. Stat. Soc. B16 (1954), 80–87; M. Tainiter, JACM 10 (1963), 307–315; A. G.
Konheim and B. Meister, JACM 19 (1972), 92–108.
56. See Blake and Konheim, JACM 24 (1977), 591–606. Alfredo Viola and Patricio
Poblete [Algorithmica 21 (1998), 37–71] have shown that

CMb = 1 + M − 1
2Mb

+ 1
b


j≥2


bm− 1
j


m−j


k≥1


j − 2
bk − 1


(−1)j+bk−1kj−1

=

πM

8b + 1
3b + 1

b

b−1
j=1

1
(1− T (e2πij/b−1)) + 1

24


π

2b3M
+O(b−2M−1),

where T is the tree function of Eq. 2.3.4.4–(30).
58. 0 1 2 3 4 and 0 2 4 1 3, plus additive shifts of 1 1 1 1 1 mod 5, each with
probability 1

10 . Similarly, for M = 6 we need 30 permutations, and a solution exists
starting with

1
20 × 0 1 2 3 4 5, 1

60 × 0 1 3 2 5 4, 1
60 × 0 2 4 3 1 5, 1

20 × 0 2 3 4 5 1, 1
30 × 0 3 4 1 2 5.

For M = 7 we need 49, and a solution is generated by
1

35 × 0 1 2 3 4 5 6, 2
105 × 0 1 5 3 2 4 6, 1

35 × 0 2 4 3 5 1 6, 2
105 × 0 2 6 3 1 4 5,

1
35 × 0 3 6 1 4 2 5, 1

105 × 0 3 2 6 4 1 5, 1
105 × 0 3 1 5 4 2 6.

59. No permutation can have a probability larger than 1/


M
⌊M/2⌋


, so there must be at

least


M
⌊M/2⌋


= exp(M ln 2 +O(logM)) permutations with nonzero probability.

60. Preliminary results have been obtained by Ajtai, Komlós, and Szemerédi, Infor-
mation Processing Letters 7 (1978), 270–273.
62. See the discussion in AMM 81 (1974), 323–343, where the best cyclic hashing
sequences are exhibited for M ≤ 9.
63. MHM, by exercise 3.3.2–8; the standard deviation is ≈ πM/

√
6.
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64. The average number of moves is equal to 1
2 (N − 1)/M + 2

3 (N − 1)(N − 2)/M2 +
3
4 (N − 1)(N − 2)(N − 3)/M3 + · · · ≈ 1

1−α
− 1

α
ln 1

1−α
. [An equivalent problem is solved

in Comp. J. 17 (1974), 139–140.]
65. The keys can be stored in a separate table, allocated sequentially (assuming that
deletions, if any, are LIFO). The hash table entries point to this “names table”; for
example, TABLE[i] might have the form

Li KEY[i] ,

where Li is the number of words in the key stored at locations KEY[i], KEY[i] + 1, . . . .
The rest of the hash table entry might be used in any of several ways: (i) as a

link for Algorithm C; (ii) as part of the information associated with the key; or (iii) as
a “secondary hash code.” The latter idea, suggested by Robert Morris, sometimes
speeds up a search [we take a careful look at the key in KEY[i] only if h2(K) matches
its secondary hash code, for some function h2(K)].
66. Yes; and the arrangement of the records is unique. The average number of probes
per unsuccessful search is reduced to CN−1, although it remains C′

N when the Nth
term is inserted. This important technique is called ordered hashing. See Comp. J. 17
(1974), 135–142; D. E. Knuth, Literate Programming (1992), 144–149, 216–217.
67. (a) If cj = 0 in (44), an optimum arrangement is obtained by sorting the a’s into
nonincreasing “cyclic order,” assuming that j − 1 > · · · > 0 > M − 1 > · · · > j.
(b) Between steps L2 and L3, exchange the record-in-hand with TABLE[i] if the latter is
closer to home than the former. [This algorithm, called “Robin Hood hashing” by Celis,
Larson, and Munro in FOCS 26 (1985), 281–288, is equivalent to a variant of ordered
hashing.] (c) Let h(m,n, d) be the number of hash sequences that make c0 ≤ d. It can
be shown [Comp. J. 17 (1974), 141] that (h(m,n, d) − h(m,n, d − 1))M is the total
number of occurrences of displacement d > 0 among all MN hash sequences, and that
we can write h(M,N, d) = a(M,N, d+ 1) − Na(M,N − 1, d+ 1) where a(m,n, d) =d

k=0


n
k


(m+d−k)n−k(k−d)k. An elaborate calculation using the methods of exercises

28 and 50 now shows that the average value of

d2

j is

M1−N
N

d=1

d2(h(M,N, d)− h(M,N, d− 1))

= M2

2 + 2M
3 + N

6 + N2

6M − N

6M −M

M

2 −
N

2 + 2
3


Q0(M,N)

= M


1

2(1− α)2 −
7

6(1− α) + 2
3 + α

6 + α2

6


+O(1)

when N = αM . Without the modification (see exercise 28), E

d2

j comes to

M

3 (Q2(M,N)−Q1(M,N))− M

2 (Q0(M,N)− 1) + N

6

= M


1

3(1− α)3 −
1

3(1− α)2 −
1

2(1− α) + 1
2 + α

6


+O(1).

If the records all have approximately the same displacement d, and if successful
searches are significantly more common than unsuccessful ones, it is advantageous to
start at position h′ = h(K)+d and then to probe h′−1, h′+1, h′−2, etc. P. V. Poblete,
A. Viola, and J. I. Munro have shown [Random Structures & Algorithms 10 (1997),
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221–255] that

d2

j can be made almost as small as in the Robin Hood method by using
a much simpler approach called “last-come-first-served” hashing, in which every newly
inserted key is placed in its home position; all other keys move one step away until
an empty slot is found. The Robin Hood and last-come-first-served techniques apply
to double hashing as well as to linear probing, but the reduction in probes does not
compensate for the increased time per probe with respect to double hashing unless the
table is extremely full. (See Poblete and Munro, J. Algorithms 10 (1989), 228–248.)
68. The average value of (d1 + · · ·+ dN )2 can be shown to equal
N

12 ((M −N)3 + (N + 3)(M −N)2 + (8N + 1)(M −N) + 5N2 + 4N − 1
− ((M −N)3 + 4(M −N)2 + (6N + 3)(M −N) + 8N)Q0(M,N − 1))

using the connection between the parking problem and connected graphs mentioned in
the answer to exercise 31. To get the variance of the average number of probes in a
successful search, divide byN2 and subtract 1

4 (Q0(M,N−1)−1)2; this is asymptotically
1

12 ((1 + 2α)/(1− α)4 − 1)/N +O(N−2). (See P. Flajolet, P. V. Poblete, and A. Viola,
Algorithmica 22 (1998), 490–515; D. E. Knuth, Algorithmica 22 (1998), 561–568.
The variance calculated here should be distinguished from the total variance, which is
E

d2

j/N − 1
4 (Q0(M,N − 1)− 1)2; see the answers to exercises 37 and 67.)

69. Let qk = pk + pk+1 + · · · ; then the inequality qk ≥ max(0, 1− (k− 1)(M − n)/M)
gives a lower bound on C′

N =


k≥1 qk.
70. A remarkably simple proof by Lueker and Molodowitch [Combinatorica 13 (1993),
83–96] establishes a similar result but with an extra factor (logM)2 in the O-bound; the
stated result follows in the same way by using sharper probability estimates. A. Siegel
and J. P. Schmidt have shown, in fact, that the expected number of probes in double
hashing is 1/(1 − α) + O(1/M) for fixed α = N/M . [Computer Science Tech. Report
687 (New York: Courant Institute, 1995).]
72. [J. Comp. Syst. Sci. 18 (1979), 143–154.] (a) Given keys K1, . . . , KN and K, the
probability that Kj is in the same list as K is ≤ 1/M if K ̸= Kj . Hence the expected
list size is ≤ 1 + (N − 1)/M .

(b) Suppose there are Q possible characters; then there are MQ possible choices
for each hj . Choosing each hj at random is equivalent to choosing a random row from
a matrix H of MQl rows and Ql columns, with the entry h(x1 . . . xl) = (h1(x1) + · · ·+
hl(xl)) modM in column x1 . . . xl. In columns K = x1 . . . xl and K′ = x′1 . . . x

′
l with

xj ̸= x′j for some j, we have h(K) = (s + hj(xj)) modM and h(K′) = (s′ + hj(x′j))
modM , where s =


i ̸=j hi(xi) and s′ =


i̸=j hi(x′i) are independent of hj . The value

of hj(xj) − hj(x′j) is uniformly distributed modulo M ; hence we have h(K) = h(K′)
with probability 1/M , regardless of the values of s and s′.

(c) Yes; adding any constant to hj(xj) changes h(x) by a constant, modulo M .
73. (i) This is the special case of exercise 72(c) when each key is regarded as a sequence
of bits, not characters. [It was invented as early as 1970 by Alfred L. Zobrist, whose
original technical report has been reprinted in ICCA Journal 13 (1990), 69–73.] (ii) The
proof of (b) shows that it suffices to show that hj(xj) − hj(x′j) is uniform modulo M
when xj ̸= x′j . And in fact, the probability that hj(xj) = y and hj(x′j) = y′ is 1/M2,
for any given y and y′, because the congruences ajxj + bj ≡ y and ajx

′
j + bj ≡ y′ have

a unique solution (aj , bj) for any given (y, y′), modulo the prime M .
When M is not prime and p is a prime > M , a similar result holds if we let

hj(xj) = ((ajxj + bj) mod p) modM , where aj and bj are chosen randomly mod p.
In this case the family is not quite universal, but it comes close enough for practical
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purposes: The probability that different keys collide is at most 1/M+r(M−r)/Mp2 ≤
1/M +M/4p2, where r = pmodM .
74. The statement is false in general. For example, suppose M = N = n2, and consider
the matrix H with


N
n


rows, one for every way to put n zeros in different columns;

the nonzero entries are 1, 2, . . . , N − n from left to right in each row. This matrix is
universal because there are


N−2
n−2


=


N
n


n
N

n−1
N−1 <


N
n

 
n
N

 2 = R/M matches in every
pair of columns. But the number of zeros in every row is

√
N ̸= O(1) +O(N/M).

Notes: This exercise points out that expected list size is quite different from the
expected number of collisions when a new key is inserted. Consider letting h(x1 . . . xl) =
h1(x1), where h1 is chosen at random. This family of hash functions makes the expected
size of every list N/M ; yet it is certainly not universal, because a set of N keys that
have the same first character x1 will lead to one list of size N and all other lists empty.
The expected number of collisions will be N(N−1)/2, but with a universal hash family
this number is at most N(N − 1)/2M , regardless of the set of keys.

On the other hand we can show that the expected size of every list is O(1) +
O(N/

√
M ) in a universal family. Suppose there are zh zeros in row h. Then that row

contains at least


zh
2


pairs of equal elements. The maximum of
R

h=1 xh subject toR
h=1


zh
2

≤


N
2

R/M occurs when each zh is equal to z where


z
2


=


N
2

/M , namely

z = 1
2 +


1
4 + N(N − 1)

M
< 1 +


N(N − 1)

M
.

75. (a) Obviously true, even if h2, . . . , hl are identically zero. (b) True, by the
answer to 72(b). (c) True. The result is clear if K, K′, and K′′ all differ in some
character position. Otherwise, say xj = x′j ̸= x′′j and xk ̸= x′k = x′′k . Then the
quantities hj(xj) + hk(xk), hj(xj) + hk(x′k), and hj(x′′j ) + hk(x′k) are independent of
each other, uniformly distributed, and independent of the other l− 2 characters of the
keys. (d) False. Consider, for example, the case M = l = 2 with 1-bit characters. Then
all four keys hash to the same location with probability 1/4.
76. Use h(K) = (h0(l)+h1(x1)+ · · ·+hl(xl)) modM, where each hj is chosen as in ex-
ercise 73. Generate the random coefficients for hj (and, if desired, precompute its array
of values) when a key of length ≥ j occurs for the first time. Since l is unbounded, the
matrix H is infinite; but only a finite portion is relevant in any particular program run.
77. Let p ≤ 2−16 be the probability that two 32-bit keys have the same image under H.
The worst case occurs when two given keys agree in seven of their eight 32-bit subkeys;
then the probability of collision is 1−(1−p)4 < 4p. [See Wegman and Carter, J. Comp.
Syst. Sci. 22 (1981), 265–279.]
78. Let g(x) = ⌊x/2k⌋mod 2n−k and δ(x, x′) =

2k−1
b=0 [g(x+ b) = g(x′ + b)]. Then

δ(x + 1, x′ + 1) = δ(x, x′) + [g(x+ 2k) = g(x′ + 2k)] − [g(x) = g(x′)] = δ(x, x′). Also
δ(x, 0) = (2k .− (xmod 2n)) + (2k .− ((−x) mod 2n)) when 0 < x < 2n, where a .− b =
max(a− b, 0). These formulas characterize δ(x, x′) when x ̸≡ x′ (modulo 2n).

Now let A = {a | 0 < a < 2n, a odd} and B = {b | 0 ≤ b < 2k}. We want to
show that


a∈A


b∈B [g(ax+ b) = g(ax′ + b)] ≤ R/M = 2n−1+k/2n−k = 22k−1 when

0 ≤ x < x′ < 2n. And indeed, if x′ − x = 2pq with q odd, then we have
a∈A


b∈B

[g(ax+ b) = g(ax′ + b)] =

a∈A

δ(ax, ax′) = 2

a∈A

(2k .− ((2paq) mod 2n))

= 2p+1
2n−p−1−1

j=0

(2k .−2p(2j+1)) = 2p+1
2k−p−1−1

j=0

(2k−2p(2j+1))[p<k ] = 22k−1[p<k ].
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[See Lecture Notes in Computer Science 1672 (1999), 262–272.]

SECTION 6.5
1. The path described in the hint can be converted by changing each downward step

that runs from (i− 1, j) to a “new record low” value (i, j− 1) into an upward step. If c
such changes are made, the path ends at (m,n− 2t+ 2c), where c ≥ 0 and c ≥ 2t− n;
hence n − 2t + 2c ≥ n − 2k. In the permutation corresponding to the changed path,
the smallest c elements of list B correspond to the downward steps that changed, and
list A contains the t− c elements corresponding to downward steps that didn’t change.

When t = k it is not difficult to see that the construction is reversible; hence
exactly


n
k


permutations are constructed. Incidentally, according to this proof, the

contents of lists A and C may appear in arbitrary order.
Notes: We have counted these paths in another way in exercise 2.2.1–4. When

k = ⌊n/2⌋ this construction proves Sperner’s Theorem, which states that it is impossible
to have more than


n

⌊n/2⌋


subsets of {1, 2, . . . , n} with no subset contained in another.
[Emanuel Sperner, Math. Zeitschrift 27 (1928), 544–548.] For if we have such a
collection of subsets, each of the


n
k


permutations can have at most one of the subsets

appearing in the initial positions, yet each subset appears in some permutation. The
construction used here is a disguised form of a more general construction by which
N. G. de Bruijn, C. van Ebbenhorst Tengbergen, and D. Kruyswijk [Nieuw Archief
voor Wiskunde (2) 23 (1951), 191–193] proved the multiset generalization of Sperner’s
Theorem: “Let M be a multiset containing n elements (counting multiplicities). The
collection of all ⌊n/2⌋-element submultisets of M is the largest possible collection such
that no submultiset is contained in another.” For example, the largest such collection
when M = {a, a, b, b, c, c} consists of the seven submultisets {a, a, b}, {a, a, c}, {a, b, b},
{a, b, c}, {a, c, c}, {b, b, c}, {b, c, c}. This would correspond to seven permutations of
six attributes A1, B1, A2, B2, A3, B3 in which all queries involving Ai also involve Bi.
Further comments appear in a paper by C. Greene and D. J. Kleitman, J. Combinatorial
Theory A20 (1976), 80–88.

2. Let aijk be a list of all references to records having (i, j, k) as the respective values
of the three attributes, and assume that a011 is the shortest of the three lists a011, a101,
a110. Then a minimum-length list is a001a011a111a101a100a110a111a011a010. However, if
a011 is empty and so is either of a001, a010, or a100, the length can be shortened by
deleting one of the two occurrences of a111 [CACM 15 (1972), 802–808].

3. (a) Anise seed and/or honey, possibly in combination with nutmeg and/or vanilla
extract. (b) None.

4. Let pt be the probability that the query involves exactly t bit positions, and let Pt

be the probability that t given positions are all 1 in a random record. Then the answer
is


t ptPt, minus the probability that a particular record is a “true drop”; the latter
probability is


N−q
r−q


/


N
r


, where N =


n
k


. By the principle of inclusion and exclusion,

Pt =

j≥0

(−1)j

t

j


f(n−j, k, r)/f(n, k, r),

where f(n, k, r) is the number of possible choices of r distinct k-bit attribute codes in
an n-bit field, namely


N
r


where N =


n
k


. And if q = r we have, by exercise 1.3.3–26,

pt =

l≥0

(−1)l

t+ l

t


n

t+ l


Pt+l =


n

t


j≥0

(−1)j

t

j


f(t−j, k, q)/f(n, k, q).
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Notes: The calculations above were first carried out, in more general form, by
G. Orosz and L. Takács, J. of Documentation 12 (1956), 231–234. The mean


tpt is

easily shown to be n(1−f(n−1, k, q)/f(n, k, q)). Another assumption, that the random
attribute codes in records and queries are not necessarily distinct, as in the techniques
of Harrison and Bloom, can be analyzed by the same method, setting f(n, k, r) =


n
k

r.
When the parameters are in appropriate ranges, we have Pt ≈ (1 − e−kr/n)t and
ptPt ≈ Pn(1−exp(−kq/n)).

6. L(t) =


j


m1

j


m2
t−j


L1(j)L2(t − j)/


m1+m2

t


. [Hence if L1(t) ≈ N1α

−t and
L2(t) ≈ N2α

−t, then L(t) ≈ N1N2α
−t.]

7. (a) L(1) = 3, L(2) = 1 3
4 . (b) L(1) = 3 3

4 , L(2) = 2 1
3 , L(3) = 1 9

16 . [Note: A trivial
projection mapping such as 0 0 ∗ ∗ → 0, 0 1 ∗ ∗ → 1, 1 0 ∗ ∗ → 2, 1 1 ∗ ∗ → 3, has a
worse worst-case behavior; but it has a better average case, because of the exercise that
follows: L(1) = 3, L(2) = 2 1

6 , L(3) = 1 1
2 .]

8. (a) When S = S00 ∪ S11, we have ft(S) = ft(S0 ∪ S1) + ft−1(S0) + ft−1(S1).
Therefore ft(s,m) is the minimum of ft(s0,m−1)+ft−1(s0,m−1)+ft−1(s1,m−1) over
all s0 and s1 such that 2m−1 ≥ s0 ≥ s1 ≥ 0 and s0 +s1 = s. To prove that the minimum
occurs for s0 = ⌈s/2⌉ and s1 = ⌊s/2⌋, we can use induction on m, the result being clear
for m = 1: Given m ≥ 2, let gt(s) = ft(s,m − 1) and ht(s) = ft(s,m − 2). Then, by
induction, gt(s0) + gt−1(s0) + gt−1(s1) = ht(⌈s0/2⌉) + ht−1(⌈s0/2⌉) + ht−1(⌊s0/2⌋) +
ht−1(⌈s0/2⌉)+ht−2(⌈s0/2⌉)+ht−2(⌊s0/2⌋)+ht−1(⌈s1/2⌉)+ht−2(⌈s1/2⌉)+ht−2(⌊s1/2⌋),
which is ≥ gt(⌈s0/2⌉+ ⌈s1/2⌉) + gt−1(⌈s0/2⌉+ ⌈s1/2⌉) + gt−1(⌊s0/2⌋+ ⌊s1/2⌋). And if
s0 > s1+1, we have ⌈s0/2⌉+⌈s1/2⌉ < s0, except in the case s0 = 2k+1 and s1 = 2k−1.
In the latter case, however, gt(s0) + gt−1(s0) + gt−1(s1) ≥ ht(2k + 1) + 2ht−1(2k) ≥
ht(2k) + 2ht−1(2k).

(b) Observe that the set S containing the numbers 0, 1, . . . , s − 1 in binary
notation has the property that S0 ∪ S1 = S0, and S0 contains ⌈s0/2⌉ elements. It
follows, incidentally, that ft(2m−n,m) = [zt ] (1 + z)n(1 + 2z)m−n.
10. (a) There must be 1

6v(v−1) triples, and xv must occur in 1
2v of them. (b) Since v

is odd, there is a unique triple {xi, yj , z} for each i, and so S′ is readily shown to be a
Steiner triple system. The pairs missing in K′ are {z, x2}, {x2, y2}, {y2, x3}, {x3, y3},
. . . , {xv−1, yv−1}, {yv−1, xv}, {xv, z}. (d) Starting with the case v = 1 and applying
the operations v → 2v − 2, v → 2v + 1 yields all nonnegative numbers not of the
form 3k+ 2, because the cases 6k+ (0, 1, 3, 4) come respectively from the smaller cases
3k + (1, 0, 1, 3).

Incidentally, “Steiner triple systems” should not have been named after Steiner,
although that name has become deeply entrenched in the literature. Steiner’s publica-
tion [Crelle 45 (1853), 181–182] came several years after Kirkman’s, and Felix Klein has
noted [Vorlesungen über die Entwicklung der Math. im 19. Jahrhundert 1 (Springer,
1926), 128] that Steiner quoted English authors without giving them credit, during the
later years of his life. Moreover, the concept had appeared already in two well-known
books of J. Plücker [System der analytischen Geometrie (1835), 283–284; Theorie der
algebraischen Curven (1839), 245–247]. Kirkman wrote his paper in response to a
substantially more general problem posed by W. S. B. Woolhouse, namely to find
the maximum number of t-element subsets of {1, . . . , n} in which no q-element subset
appears more than once; that problem remains unsolved. [See Lady’s and Gentleman’s
Diary (1844), 84; (1845), 63–64; (1846), 76, 78; (1847), 62–67.]
11. Take a Steiner triple system on 2v+ 1 objects. Call one of the objects z and name
the others in such a way that the triples containing z are {z, xi, x̄i}; delete those triples.
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12. {k, (k+1) mod 14, (k+4) mod 14, (k+6) mod 14}, for 0 ≤ k < 14, where (k + 7)
mod 14 is the complement of k. [Complemented systems are a special case of group
divisible block designs; see Bose, Shrikhande, and Bhattacharya, Ann. Math. Statistics
24 (1953), 167–195.]
14. Deletion is easiest in k-d trees (a replacement for the root can be found in about
O(N1−1/k) steps). In quadtrees, deletion seems to require rebuilding the entire subtree
rooted at the node being removed (but this subtree contains only about logN nodes
on the average). In post-office trees, deletion is almost hopeless.
16. Let each triple correspond to a codeword, where each codeword has exactly three
1-bits, identifying the elements of the corresponding triple. If u, v, w are distinct
codewords, u has at most two 1 bits in common with the superposition of v and w,
since it had at most one in common with v or w alone. [Similarly, from quadruple
systems of order v we can construct v(v− 1)/12 codewords, none of which is contained
in the superposition of any three others, etc.]
17. (a) Let c0 = b0 and, for 1 ≤ k ≤ n, let ck = (if bk−1 = 0 then ∗ else bk), c−k = (if
bk−1 = 1 then ∗ else bk). Then the basic query c−n . . . c0 . . . cn describes the contents of
bucket b0 . . . bn. [Consequently this scheme is a special case of combinatorial hashing,
and its average query time matches the lower bound in exercise 8(b).]

(b) Let dk = [bit k is specified], for −n ≤ k ≤ n. We can assume that d−k ≤ dk

for 1 ≤ k ≤ n. Then the maximum number of buckets examined occurs when the
specified bits are all 0, and it may be computed as follows: Set x ← y ← 1. Then for
k = n, n− 1, . . . , 0, set (x, y)← (x, y)Md−k+dk , where

M0 =


1 1
1 1


, M1 =


1 1
1 0


, M2 =


1 1
0 0


.

Finally, output x (which also happens to equal y, after k = 0).
Say that (x, y) ⪰ (x′, y′) if x ≥ x′ and x+ y ≥ x′ + y′. Then if (x, y) ⪰ (x′, y′) we

have (x, y)Md ⪰ (x′, y′)Md for d = 0, 1, 2. Now

(x, y)M2M
j
1M0 = (Fj+3x, Fj+3x),

(x, y)M1M
j
1M1 = (Fj+3x+ Fj+2y, Fj+2x+ Fj+1y),

(x, y)M0M
j
1M2 = (Fj+2x+ Fj+2y, Fj+2x+ Fj+2y);

therefore we have (x, y)M1M
j
1M1 ⪰ (x, y)M2M

j
1M0, because 2y ≥ x; and similarly

(x, y)M1M
j
1M1 ⪰ (x, y)M0M

j
1M2, because x ≥ y. It follows that the worst case occurs

when either d−k + dk ≤ 1 for 1 ≤ k ≤ n or d−k + dk ≥ 1 for 1 ≤ k ≤ n. We also have

(x, y)M0M
j
1 = (Fj+2x+ Fj+2y, Fj+1x+ Fj+1y),

(x, y)M j
1M0 = (Fj+2x+ Fj+1y, Fj+2x+ Fj+1y);

(x, y)M2M
j
1 = (Fj+2x, Fj+1x),

(x, y)M j
1M2 = (Fj+1x+ Fjy, Fj+1x+ Fjy).

Consequently the worst case requires the following number of buckets:

2n−tFt+3, if 0 ≤ t ≤ n [from M t
1M

n+1−t
0 ];

2t−nF3n−2t+3, if n ≤ t ≤ ⌈3n/2⌉ [from M3n−2t
1 (M1M2)t−nM0];

22n+1−t, if ⌈3n/2⌉ ≤ t ≤ 2n [from M2t−3n
2 (M1M2)2n−tM0].
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[These results are essentially due to W. A. Burkhard, BIT 16 (1976), 13–31, generalized
in J. Comp. Syst. Sci. 15 (1977), 280–299; but Burkhard’s more complicated mapping
from a0 . . . a2n to b0 . . . bn has been simplified here as suggested by P. Dubost and
J.-M. Trousse, Report STAN-CS-75-511 (Stanford Univ., 1975).]
18. (a) There are 2n(m−n) ∗’s altogether, hence 2nn digits, with 2nn/m digits in each
column. Half of the digits in each column must be 0. Hence 2n−1n/m is an integer,
and each column contains (2n−1n/m)2 mismatches. Since each pair of rows has at least
one mismatch, we must have 2n(2n − 1)/2 ≤ (2n−1n/m)2m.

(b) Consider the 2n m-bit numbers that are 0 in m− n specified columns. Half of
these have odd parity. A row with ∗ in any of the unspecified columns covers as many
evens as odds.

(c) ∗ 0 0 0, ∗ 1 1 1, 0 ∗ 1 0, 1 ∗ 1 0, 0 0 ∗ 1, 1 0 ∗ 1, 0 1 0 ∗, 1 1 0 ∗. This one isn’t as
uniform as (13), because a query like *01* hits four rows while *10* hits only two.
Notice that (13) has cyclic symmetry.

(d) Generate 43 rows from each row of (13) by replacing each ∗ by ∗ ∗ ∗ ∗, each 0
by any one of the first four rows, and each 1 by any one of the last four rows. (A similar
construction makes an ABD(mm′, nn′) from any ABD(m,n) and ABD(m′, n′).)

(e) Given an ABD(16, 9), we can encircle one ∗ in each row in such a way that
there are equally many circles in each column. Then we can split each row into two
rows, with the circled element replaced by 0 and 1. To show that such encirclement
is possible, note that the asterisks of each column can be arbitrarily divided into 32
groups of 7 each; then the 512 rows each contain asterisks of 7 different groups, and the
32× 16 = 512 groups each appear in 7 different rows. Theorem 7.5.1E (the “marriage
theorem”) now guarantees the existence of a perfect matching with exactly one circled
element in each row and each group.

References: R. L. Rivest, SICOMP 5 (1976), 19–50; A. E. Brouwer, Combinatorics,
edited by Hajnal and Sós, Colloq. Math. Soc. János Bolyai 18 (1978), 173–184. Brouwer
went on to prove that an ABD(2n, n) exists for all n ≥ 32. The method of part (d)
also yields an ABD(32, 15) when (13) is combined with (15).
19. By exercise 8, the average number with 8− k specified bits is 2k−3f8−k(8, 8)/

8
k


,

which has the respective values (32, 22, 104
7 , 69

7 ,
45
7 ,

33
8 ,

73
28 ,

13
8 , 1) ≈ (32, 22, 14.9, 9.9, 6.4,

4.1, 2.6, 1.6, 1) for 8 ≥ k ≥ 0. These are only slightly higher than the values of 32k/8 ≈
(32, 20.7, 13.5, 8.7, 5.7, 3.7, 2.4, 1.5, 1). The worst-case numbers are (32, 22, 18, 15, 11,
8, 4, 2, 1).
20. J. A. La Poutré [Disc. Math. 58 (1986), 205–208] showed that an ABD(m,n)
cannot exist when m >


n
2


and n > 3; therefore no ABD(16, 6) exists. La Poutré
and van Lint [Util. Math. 31 (1987), 219–225] proved that there is no ABD(10, 5). We
get an ABD(8, 6) from an ABD(8, 5) or ABD(4, 3) using the methods of exercise 18;
this produces several nonisomorphic solutions, and additional examples of ABD(8, 6)
might also exist. The only remaining possibilities (besides the trivial ABD(5, 5) and
ABD(6, 6)) are ABD(8, 5) distinct from (15), and perhaps one or more ABD(12, 6).

All right — I’m glad we found it out detective fashion;
I wouldn’t give shucks for any other way.

— TOM SAWYER (1884)
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TABLES OF NUMERICAL QUANTITIES

Table 1
QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES

AND IN ANALYSIS OF COMPUTER PROGRAMS (40 DECIMAL PLACES)
√

2 = 1.41421 35623 73095 04880 16887 24209 69807 85697−√
3 = 1.73205 08075 68877 29352 74463 41505 87236 69428+√
5 = 2.23606 79774 99789 69640 91736 68731 27623 54406+√

10 = 3.16227 76601 68379 33199 88935 44432 71853 37196−
3√2 = 1.25992 10498 94873 16476 72106 07278 22835 05703−
3√3 = 1.44224 95703 07408 38232 16383 10780 10958 83919−
4√2 = 1.18920 71150 02721 06671 74999 70560 47591 52930−

ln 2 = 0.69314 71805 59945 30941 72321 21458 17656 80755+
ln 3 = 1.09861 22886 68109 69139 52452 36922 52570 46475−

ln 10 = 2.30258 50929 94045 68401 79914 54684 36420 76011+
1/ln 2 = 1.44269 50408 88963 40735 99246 81001 89213 74266+

1/ln 10 = 0.43429 44819 03251 82765 11289 18916 60508 22944−
π = 3.14159 26535 89793 23846 26433 83279 50288 41972−

1◦ = π/180 = 0.01745 32925 19943 29576 92369 07684 88612 71344+
1/π = 0.31830 98861 83790 67153 77675 26745 02872 40689+
π2 = 9.86960 44010 89358 61883 44909 99876 15113 53137−√

π = Γ (1/2) = 1.77245 38509 05516 02729 81674 83341 14518 27975+
Γ (1/3) = 2.67893 85347 07747 63365 56929 40974 67764 41287−
Γ (2/3) = 1.35411 79394 26400 41694 52880 28154 51378 55193+

e = 2.71828 18284 59045 23536 02874 71352 66249 77572+
1/e = 0.36787 94411 71442 32159 55237 70161 46086 74458+
e2 = 7.38905 60989 30650 22723 04274 60575 00781 31803+
γ = 0.57721 56649 01532 86060 65120 90082 40243 10422−

lnπ = 1.14472 98858 49400 17414 34273 51353 05871 16473−
ϕ = 1.61803 39887 49894 84820 45868 34365 63811 77203+
eγ = 1.78107 24179 90197 98523 65041 03107 17954 91696+

eπ/4 = 2.19328 00507 38015 45655 97696 59278 73822 34616+
sin 1 = 0.84147 09848 07896 50665 25023 21630 29899 96226−
cos 1 = 0.54030 23058 68139 71740 09366 07442 97660 37323+
−ζ′(2) = 0.93754 82543 15843 75370 25740 94567 86497 78979−
ζ(3) = 1.20205 69031 59594 28539 97381 61511 44999 07650−
lnϕ = 0.48121 18250 59603 44749 77589 13424 36842 31352−

1/lnϕ = 2.07808 69212 35027 53760 13226 06117 79576 77422−
−ln ln 2 = 0.36651 29205 81664 32701 24391 58232 66946 94543−

748
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Table 2
QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES

AND IN ANALYSIS OF COMPUTER PROGRAMS (45 OCTAL PLACES)

The names at the left of the “=” signs are given in decimal notation.

0.1 = 0.06314 63146 31463 14631 46314 63146 31463 14631 46315−
0.01 = 0.00507 53412 17270 24365 60507 53412 17270 24365 60510−

0.001 = 0.00040 61115 64570 65176 76355 44264 16254 02030 44672+
0.0001 = 0.00003 21556 13530 70414 54512 75170 33021 15002 35223−

0.00001 = 0.00000 24761 32610 70664 36041 06077 17401 56063 34417−
0.000001 = 0.00000 02061 57364 05536 66151 55323 07746 44470 26033+

0.0000001 = 0.00000 00153 27745 15274 53644 12741 72312 20354 02151+
0.00000001 = 0.00000 00012 57143 56106 04303 47374 77341 01512 63327+

0.000000001 = 0.00000 00001 04560 27640 46655 12262 71426 40124 21742+
0.0000000001 = 0.00000 00000 06676 33766 35367 55653 37265 34642 01627−√

2 = 1.32404 74631 77167 46220 42627 66115 46725 12575 17435+√
3 = 1.56663 65641 30231 25163 54453 50265 60361 34073 42223−√
5 = 2.17067 36334 57722 47602 57471 63003 00563 55620 32021−√

10 = 3.12305 40726 64555 22444 02242 57101 41466 33775 22532+
3√2 = 1.20505 05746 15345 05342 10756 65334 25574 22415 03024+
3√3 = 1.34233 50444 22175 73134 67363 76133 05334 31147 60121−
4√2 = 1.14067 74050 61556 12455 72152 64430 60271 02755 73136+

ln 2 = 0.54271 02775 75071 73632 57117 07316 30007 71366 53640+
ln 3 = 1.06237 24752 55006 05227 32440 63065 25012 35574 55337+

ln 10 = 2.23273 06735 52524 25405 56512 66542 56026 46050 50705+
1/ln 2 = 1.34252 16624 53405 77027 35750 37766 40644 35175 04353+

1/ln 10 = 0.33626 75425 11562 41614 52325 33525 27655 14756 06220−
π = 3.11037 55242 10264 30215 14230 63050 56006 70163 21122+

1◦ = π/180 = 0.01073 72152 11224 72344 25603 54276 63351 22056 11544+
1/π = 0.24276 30155 62344 20251 23760 47257 50765 15156 70067−
π2 = 11.67517 14467 62135 71322 25561 15466 30021 40654 34103−√

π = Γ (1/2) = 1.61337 61106 64736 65247 47035 40510 15273 34470 17762−
Γ (1/3) = 2.53347 35234 51013 61316 73106 47644 54653 00106 66046−
Γ (2/3) = 1.26523 57112 14154 74312 54572 37655 60126 23231 02452+

e = 2.55760 52130 50535 51246 52773 42542 00471 72363 61661+
1/e = 0.27426 53066 13167 46761 52726 75436 02440 52371 03355+
e2 = 7.30714 45615 23355 33460 63507 35040 32664 25356 50217+
γ = 0.44742 14770 67666 06172 23215 74376 01002 51313 25521−

lnπ = 1.11206 40443 47503 36413 65374 52661 52410 37511 46057+
ϕ = 1.47433 57156 27751 23701 27634 71401 40271 66710 15010+
eγ = 1.61772 13452 61152 65761 22477 36553 53327 17554 21260+

eπ/4 = 2.14275 31512 16162 52370 35530 11342 53525 44307 02171−
sin 1 = 0.65665 24436 04414 73402 03067 23644 11612 07474 14505−
cos 1 = 0.42450 50037 32406 42711 07022 14666 27320 70675 12321+
−ζ′(2) = 0.74001 45144 53253 42362 42107 23350 50074 46100 27706+
ζ(3) = 1.14735 00023 60014 20470 15613 42561 31715 10177 06614+
lnϕ = 0.36630 26256 61213 01145 13700 41004 52264 30700 40646+

1/lnϕ = 2.04776 60111 17144 41512 11436 16575 00355 43630 40651+
−ln ln 2 = 0.27351 71233 67265 63650 17401 56637 26334 31455 57005−
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Several interesting constants without common names have arisen in con-
nection with the analyses of sorting and searching algorithms. These constants
have been evaluated to 40 decimal places in Eqs. 5.2.3–(19) and 6.5–(6), and in
the answers to exercises 5.2.3–27, 5.2.4–13, 5.2.4–23, 6.2.2–49, 6.2.3–7, 6.2.3–8,
and 6.3–26.

Table 3
VALUES OF HARMONIC NUMBERS, BERNOULLI NUMBERS,

AND FIBONACCI NUMBERS, FOR SMALL VALUES OF n

n Hn Bn Fn n

0 0 1 0 0
1 1 −1/2 1 1
2 3/2 1/6 1 2
3 11/6 0 2 3
4 25/12 −1/30 3 4
5 137/60 0 5 5
6 49/20 1/42 8 6
7 363/140 0 13 7
8 761/280 −1/30 21 8
9 7129/2520 0 34 9

10 7381/2520 5/66 55 10
11 83711/27720 0 89 11
12 86021/27720 −691/2730 144 12
13 1145993/360360 0 233 13
14 1171733/360360 7/6 377 14
15 1195757/360360 0 610 15
16 2436559/720720 −3617/510 987 16
17 42142223/12252240 0 1597 17
18 14274301/4084080 43867/798 2584 18
19 275295799/77597520 0 4181 19
20 55835135/15519504 −174611/330 6765 20
21 18858053/5173168 0 10946 21
22 19093197/5173168 854513/138 17711 22
23 444316699/118982864 0 28657 23
24 1347822955/356948592 −236364091/2730 46368 24
25 34052522467/8923714800 0 75025 25
26 34395742267/8923714800 8553103/6 121393 26
27 312536252003/80313433200 0 196418 27
28 315404588903/80313433200 −23749461029/870 317811 28
29 9227046511387/2329089562800 0 514229 29
30 9304682830147/2329089562800 8615841276005/14322 832040 30
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For any x, let Hx =

n≥1

 1
n
− 1

n + x


. Then

H1/2 = 2− 2 ln 2,

H1/3 = 3− 1
2 π/
√

3− 3
2 ln 3,

H2/3 = 3
2 + 1

2 π/
√

3− 3
2 ln 3,

H1/4 = 4− 1
2 π − 3 ln 2,

H3/4 = 4
3 + 1

2 π − 3 ln 2,

H1/5 = 5− 1
2 πϕ3/25−1/4 − 5

4 ln 5− 1
2
√

5 ln ϕ,

H2/5 = 5
2 −

1
2 πϕ−3/25−1/4 − 5

4 ln 5 + 1
2
√

5 ln ϕ,

H3/5 = 5
3 + 1

2 πϕ−3/25−1/4 − 5
4 ln 5 + 1

2
√

5 ln ϕ,

H4/5 = 5
4 + 1

2 πϕ3/25−1/4 − 5
4 ln 5− 1

2
√

5 ln ϕ,

H1/6 = 6− 1
2 π
√

3− 2 ln 2− 3
2 ln 3,

H5/6 = 6
5 + 1

2 π
√

3− 2 ln 2− 3
2 ln 3,

and, in general, when 0 < p < q (see exercise 1.2.9–19),

Hp/q = q

p
− π

2 cot p

q
π − ln 2q + 2


1≤n<q/2

cos 2pn

q
π · ln sin n

q
π.
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INDEX TO NOTATIONS

In the following formulas, letters that are not further qualified have the following
significance:

j, k integer-valued arithmetic expression
m, n nonnegative integer-valued arithmetic expression
x, y real-valued arithmetic expression

z complex-valued arithmetic expression
f real-valued or complex-valued function
P pointer-valued expression (either Λ or a computer address)

S, T set or multiset
α, β strings of symbols

Where
Formal symbolism Meaning defined

V ← E give variable V the value of expression E 1.1
U ↔ V interchange the values of variables U and V 1.1

An or A[n] the nth element of linear array A 1.1
Amn or A[m, n] the element in row m and column n of rect-

angular array A 1.1
NODE(P) the node (group of variables that are indi-

vidually distinguished by their field names)
whose address is P, assuming that P ̸= Λ 2.1

F(P) the variable in NODE(P) whose field name is F 2.1
CONTENTS(P) contents of computer word whose address is P 2.1

LOC(V) address of variable V within a computer 2.1
P⇐ AVAIL set the value of pointer variable P to the

address of a new node 2.2.3
AVAIL⇐ P return NODE(P) to free storage; all its fields

lose their identity 2.2.3
top(S) node at the top of a nonempty stack S 2.2.1
X ⇐ S pop up S to X: set X ← top(S); then delete

top(S) from nonempty stack S 2.2.1
S⇐ X push down X onto S: insert the value X as

a new entry on top of stack S 2.2.1
752
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Where
Formal symbolism Meaning defined

(R? a: b) conditional expression: denotes
a if relation R is true, b if R is false

[R] characteristic function of relation R:
(R? 1: 0) 1.2.3

δkj Kronecker delta: [j = k] 1.2.3
[zn] g(z) coefficient of zn in power series g(z) 1.2.9
R(k)

f(k) sum of all f(k) such that the variable k is an
integer and relation R(k) is true 1.2.3

R(k)

f(k) product of all f(k) such that the variable k
is an integer and relation R(k) is true 1.2.3

min
R(k)

f(k) minimum value of all f(k) such that the var-
iable k is an integer and relation R(k) is true 1.2.3

max
R(k)

f(k) maximum value of all f(k) such that the var-
iable k is an integer and relation R(k) is true 1.2.3

j\k j divides k: k mod j = 0 and j > 0 1.2.4
S \ T set difference: {a | a in S and a not in T}

gcd(j, k) greatest common divisor of j and k:
j = k = 0? 0: max

d\j, d\k
d


1.1

j ⊥ k j is relatively prime to k: gcd(j, k) = 1 1.2.4
AT transpose of rectangular array A:

AT [j, k] = A[k, j]

αR left-right reversal of α

xy x to the y power (when x is positive) 1.2.2
xk x to the kth power:

k ≥ 0?


0≤j<k

x: 1/x−k


1.2.2

xk x to the k rising: Γ (x + k)/Γ (x) =
k ≥ 0?


0≤j<k

(x + j): 1/(x + k)−k


1.2.5

xk x to the k falling: x!/(x− k)! =
k ≥ 0?


0≤j<k

(x− j): 1/(x− k)−k


1.2.5
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Where
Formal symbolism Meaning defined

n! n factorial: Γ (n + 1) = nn 1.2.5
x

k


binomial coefficient: (k < 0? 0: xk/k!) 1.2.6

n

n1, n2, . . . , nm


multinomial coefficient (defined only when
n = n1 + n2 + · · ·+ nm) 1.2.6

n

m


Stirling number of the first kind:

0<k1<k2<···<kn−m<n

k1k2 . . . kn−m 1.2.6


n

m


Stirling number of the second kind:

1≤k1≤k2≤···≤kn−m≤m

k1k2 . . . kn−m 1.2.6

{a | R(a)} set of all a such that the relation R(a) is true

{a1, . . . , an} the set or multiset {ak | 1 ≤ k ≤ n}

{x} fractional part (used in contexts where a
real value, not a set, is implied): x− ⌊x⌋ 1.2.11.2

[a . . b] closed interval: {x | a ≤ x ≤ b} 1.2.2

(a . . b) open interval: {x | a < x < b} 1.2.2

[a . . b) half-open interval: {x | a ≤ x < b} 1.2.2

(a . . b] half-closed interval: {x | a < x ≤ b} 1.2.2

|S| cardinality: the number of elements in set S

|x| absolute value of x: (x ≥ 0? x: − x)

|α| length of α

⌊x⌋ floor of x, greatest integer function: maxk≤xk 1.2.4

⌈x⌉ ceiling of x, least integer function: mink≥x k 1.2.4

x mod y mod function:

y = 0? x: x− y⌊x/y⌋


1.2.4

x ≡ x′ (modulo y) relation of congruence: x mod y = x′ mod y 1.2.4

O

f(n)


big-oh of f(n), as the variable n→∞ 1.2.11.1

O

f(z)


big-oh of f(z), as the variable z → 0 1.2.11.1

Ω

f(n)


big-omega of f(n), as the variable n→∞ 1.2.11.1

Θ

f(n)


big-theta of f(n), as the variable n→∞ 1.2.11.1
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Where
Formal symbolism Meaning defined

logb x logarithm, base b, of x (when x > 0,
b > 0, and b ̸= 1): the y such that x = by 1.2.2

ln x natural logarithm: loge x 1.2.2
lg x binary logarithm: log2 x 1.2.2

exp x exponential of x: ex 1.2.9
⟨Xn⟩ the infinite sequence X0, X1, X2, . . .

(here the letter n is part of the symbolism) 1.2.9
f ′(x) derivative of f at x 1.2.9
f ′′(x) second derivative of f at x 1.2.10

f (n)(x) nth derivative:

n = 0? f(x): g′(x)


,

where g(x) = f (n−1)(x) 1.2.11.2

H(x)
n harmonic number of order x:


1≤k≤n

1/kx 1.2.7

Hn harmonic number: H
(1)
n 1.2.7

Fn Fibonacci number:
(n ≤ 1? n: Fn−1 + Fn−2) 1.2.8

Bn Bernoulli number: n! [zn] z/(ez − 1) 1.2.11.2
det(A) determinant of square matrix A 1.2.3
sign(x) sign of x: [x > 0]− [x < 0]

ζ(x) zeta function: limn→∞ H
(x)
n (when x > 1) 1.2.7

Γ (x) gamma function: (x− 1)! = γ(x,∞) 1.2.5
γ(x, y) incomplete gamma function:

 y

0 e−ttx−1dt 1.2.11.3
γ Euler’s constant: limn→∞(Hn − ln n) 1.2.7
e base of natural logarithms:


n≥0 1/n! 1.2.2

π circle ratio: 4


n≥0(−1)n/(2n + 1) 1.2.2
∞ infinity: larger than any number
Λ null link (pointer to no address) 2.1
ϵ empty string (string of length zero)
∅ empty set (set with no elements)
ϕ golden ratio: 1

2

1 +
√

5


1.2.8

φ(n) Euler’s totient function:


0≤k<n

[k⊥n] 1.2.4

x ≈ y x is approximately equal to y 1.2.5
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Where
Formal symbolism Meaning defined

Pr

S(X)


probability that statement S(X) is true, for
random values of X 1.2.10

E X expected value of X:


x x Pr(X = x) 1.2.10

mean(g) mean value of the probability distribution
represented by generating function g: g′(1) 1.2.10

var(g) variance of the probability distribution
represented by generating function g:

g′′(1) + g′(1)− g′(1)2 1.2.10

(min x1, ave x2,
max x3, dev x4)

a random variable having minimum
value x1, average (expected) value x2,
maximum value x3, standard deviation x4 1.2.10

ℜz real part of z 1.2.2
ℑz imaginary part of z 1.2.2

z complex conjugate: ℜz − iℑz 1.2.2
(. . . a1a0.a−1 . . . )b radix-b positional notation:


k akbk 4.1

//x1, x2, . . . , xn// continued fraction:
1


x1 + 1/(x2 + 1/( · · ·+ 1/(xn) . . . ))


4.5.3

α β intercalation product 5.1.2
S ⊎ T multiset sum; e.g., {a, b}⊎{a, c} = {a, a, b, c} 4.6.3
f(x)

b
a function growth: f(b)− f(a)

end of algorithm, program, or proof 1.1
␣ one blank space 1.3.1

rA register A (accumulator) of MIX 1.3.1
rX register X (extension) of MIX 1.3.1

rI1, . . . , rI6 (index) registers I1, . . . , I6 of MIX 1.3.1
rJ (jump) register J of MIX 1.3.1

(L:R) partial field of MIX word, 0 ≤ L ≤ R ≤ 5 1.3.1
OP ADDRESS,I(F) notation for MIX instruction 1.3.1, 1.3.2

u unit of time in MIX 1.3.1
* “self” in MIXAL 1.3.2

0F, 1F, 2F, . . . , 9F “forward” local symbol in MIXAL 1.3.2
0B, 1B, 2B, . . . , 9B “backward” local symbol in MIXAL 1.3.2
0H, 1H, 2H, . . . , 9H “here” local symbol in MIXAL 1.3.2
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INDEX TO ALGORITHMS AND THEOREMS

Algorithm 5.1.1C, 591–592.
Theorem 5.1.2A, 26.
Theorem 5.1.2B, 27.
Theorem 5.1.2C, 28–29.
Theorem 5.1.4A, 51–52.
Corollary 5.1.4B, 54.
Theorem 5.1.4B, 53–54.
Theorem 5.1.4C, 55.
Algorithm 5.1.4D, 50.
Theorem 5.1.4D, 57.
Algorithm 5.1.4G, 69.
Algorithm 5.1.4H, 612.
Theorem 5.1.4H, 60.
Algorithm 5.1.4I, 49–50.
Algorithm 5.1.4P, 70.
Algorithm 5.1.4Q, 614.
Algorithm 5.1.4S, 55.
Algorithm 5.1.4S0, 70.
Algorithm 5.2B, 617.
Algorithm 5.2C, 76.
Program 5.2C, 76–77, 615.
Algorithm 5.2D, 78.
Program 5.2D, 616.
Algorithm 5.2D0, 618.
Algorithm 5.2M, 618.
Algorithm 5.2P, 616–617.
Program 5.2P, 617.
Algorithm 5.2.1D, 84.
Program 5.2.1D, 84–85.
Program 5.2.1D0, 620.
Corollary 5.2.1H, 88–89.
Theorem 5.2.1H, 88.
Theorem 5.2.1I, 92.
Theorem 5.2.1K, 90.
Algorithm 5.2.1L, 96.
Lemma 5.2.1L, 90.
Program 5.2.1L, 97, 625.
Program 5.2.1M, 100, 625.

Algorithm 5.2.1P, 624.
Theorem 5.2.1P, 91.
Algorithm 5.2.1S, 80–81.
Program 5.2.1S, 81, 625.
Algorithm 5.2.2B, 107.
Program 5.2.2B, 107.
Algorithm 5.2.2D, 635.
Theorem 5.2.2I, 108.
Algorithm 5.2.2M, 111.
Program 5.2.2M, 629–630.
Algorithm 5.2.2Q, 115–117.
Program 5.2.2Q, 117–118.
Program 5.2.2Q0, 638.
Algorithm 5.2.2R, 123, 125.
Program 5.2.2R, 125–126.
Algorithm 5.2.3H, 145.
Program 5.2.3H, 146–147.
Theorem 5.2.3H, 153–154.
Algorithm 5.2.3H0, 642.
Algorithm 5.2.3I, 642.
Algorithm 5.2.3M, 645.
Lemma 5.2.3M, 141.
Algorithm 5.2.3P, 641–642.
Algorithm 5.2.3S, 139.
Program 5.2.3S, 140.
Program 5.2.3S0, 640–641.
Algorithm 5.2.4L, 164–165.
Program 5.2.4L, 165–166.
Algorithm 5.2.4M, 158–159.
Algorithm 5.2.4M0, 646.
Algorithm 5.2.4N, 160–161.
Algorithm 5.2.4S, 162–163.
Algorithm 5.2.5H, 172.
Algorithm 5.2.5R, 171–172.
Program 5.2.5R, 173–174.
Theorem 5.2.5T, 177.
Algorithm 5.3.2H, 203.
Theorem 5.3.2K, 202.

Theorem 5.3.2M, 198.
Algorithm 5.3.3A, 219.
Theorem 5.3.3L, 214.
Theorem 5.3.3S, 209–210.
Theorem 5.3.4A, 233–234.
Theorem 5.3.4F, 230.
Algorithm 5.3.4T, 238.
Theorem 5.3.4Z, 223.
Theorem 5.4.1K, 261–262.
Algorithm 5.4.1N, 265.
Algorithm 5.4.1R, 257–258.
Algorithm 5.4.2A, 267.
Algorithm 5.4.2B, 267.
Algorithm 5.4.2D, 270–271.
Algorithm 5.4.3C, 292–293.
Algorithm 5.4.4P, 308.
Algorithm 5.4.5B, 313–315, 691.
Algorithm 5.4.5O, 691.
Theorem 5.4.6A, 338.
Algorithm 5.4.6F, 321–322.
Algorithm 5.4.8K, 354–355.
Theorem 5.4.8K, 354–355.
Lemma 5.4.9C, 366.
Theorem 5.4.9F, 375.
Theorem 5.4.9H, 363.
Theorem 5.4.9K, 364.
Theorem 5.4.9L, 366.
Theorem 5.4.9M, 367.
Algorithm 6.1Q, 397.
Program 6.1Q, 397–398.
Program 6.1Q0, 398.
Algorithm 6.1S, 396.
Program 6.1S, 397.
Theorem 6.1S, 404.
Algorithm 6.1S0, 702.
Program 6.1S0, 702.
Algorithm 6.1T, 398–399.
Algorithm 6.2.1B, 410.
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Program 6.2.1B, 411.
Theorem 6.2.1B, 412–413.
Algorithm 6.2.1C, 415.
Program 6.2.1C, 415–416, 705.
Algorithm 6.2.1F, 418.
Program 6.2.1F, 418–419.
Algorithm 6.2.1U, 414.
Theorem 6.2.2B, 444–445.
Subroutine 6.2.2C, 452.
Algorithm 6.2.2D, 432, 435.
Lemma 6.2.2E, 444.
Algorithm 6.2.2G, 451.
Theorem 6.2.2H, 432–434.
Algorithm 6.2.2K, 439.
Theorem 6.2.2M, 445–446.
Algorithm 6.2.2T, 427–428.

Program 6.2.2T, 429.
Lemma 6.2.2W, 447.
Lemma 6.2.2X, 447.
Lemma 6.2.2Y, 447, 449.
Lemma 6.2.2Z, 449.
Algorithm 6.2.3A, 462–464.
Program 6.2.3A, 464–466.
Theorem 6.2.3A, 460.
Algorithm 6.2.3B, 472.
Algorithm 6.2.3C, 472–473.
Algorithm 6.2.3G, 717.
Algorithm 6.3D, 497.
Program 6.3D, 722.
Algorithm 6.3P, 500.
Algorithm 6.3T, 492.
Program 6.3T, 493–494.

Theorem 6.3T, 501.
Algorithm 6.4A, 729–730.
Algorithm 6.4C, 521–522.
Program 6.4C, 523–524.
Program 6.4C0, 729.
Algorithm 6.4D, 528–529.
Program 6.4D, 530.
Theorem 6.4K, 537.
Algorithm 6.4L, 526.
Program 6.4L, 527.
Theorem 6.4P, 538.
Algorithm 6.4R, 533–534.
Theorem 6.4S, 518.
Theorem 6.4U, 540–541.

One of my mathematician friends told me he would be willing
to recognize computer science as a worthwhile field of study

as soon as it contains 1,000 deep theorems.
This criterion should obviously be changed to include algorithms

as well as theorems — say 500 deep theorems and 500 deep algorithms.
But even so, it is clear that computer science today doesn’t measure up

to such a test, if “deep” means that a brilliant person would need
many months to discover the theorem or the algorithm.

. . . The potential for “1,000 deep results” is there,
but only perhaps 50 have been discovered so far.

— DONALD E. KNUTH, Computer Science and Mathematics (1973)
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If you don’t find it in the Index,

look very carefully through the entire catalogue.
— SEARS, ROEBUCK AND CO., Consumers Guide (1897)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

�1, 4, 142–144, 156, 214, 663–664,
685, 707.

0–1 matrices, 660.
0–1 principle, 223, 224, 245, 667, 668.
1/3–2/3 conjecture, 197.
2-3 trees, 476–477, 480, 483, 715.
(2, 4)-trees, 477.
2-d trees, 565.
2-descending sequence, 451.
2-ordered permutations, 86–88, 103,

112–113, 134.
80-20 rule, 400–401, 405, 456.
1, 4, 138–139, 257–258, 263, 521,

624–625, 646.
as sentinel, 159, 252, 308, 324.

’(x) (number of 0s), 235; see also

Zeta function.
‹(x) (number of 1s), 235, 643, 644, 717.
fi (circle ratio), 372, 520, 748–749.

as “random” example, 17, 370, 385,
547, 552, 733.

„ (golden ratio), xiv, 138, 517–518, 748–749.

(a, b)-trees, 477.
Abbreviated keys, 512, 551.
Abel, Niels Henrik, binomial formula, 552.

limit theorem, 740.
Abraham, Chacko Thakadiparambil, 578.
Absorption laws, 239.
Adaptive sorting, 389.
Addition of apples to oranges, 401.
Addition of polynomials, 165.
Addition to a list, see Insertion.
Address calculation sorting, 99–102,

104–105, 176–177, 380, 389, 698.
Address table sorting, 74–75, 80.
Adelson-Velsky, Georgii Maximovich

(
), 459, 460.

Adjacent transpositions, 13, 240, 403,
404, 640, 668.

Adversaries, 198–202, 205–207, 209–210,
218, 671.

AF-heaps, 152.
Agarwal, Ramesh Chandra (rm⇤f c⌃d̋

ag}vAl), 359, 389.
Agenda, see Priority queue.
Aggarwal, Alok (aAlok ag}vAl), 698.

Aho, Alfred Vaino, 476, 479, 652.
Aigner, Martin, 241.
Airy, George Biddle, function, 611.
Ajtai, Miklós, 228, 673, 740.
al-Khwārizmı, Abū ‘Abd Allāh

Muh. ammad ibn Mūsā
( ), 8.

Aldous, David John, 728.
Alekseev, Vladimir Evgenievich (

), 232, 233,
237, 238.

Alexanderson, Gerald Lee, 599.
ALGOL language, 454.
Algorithms, analysis of, see Analysis.

comparison of, see Comparison.
proof of, see Proof.

Allen, Brian Richard, 478.
Allen, Charles Grant Blairfindie, 558.
Alphabetic binary encoding, 452–454.
Alphabetic order, 7, 420–421, 453.
Altenkamp, Doris, 713.
Alternating runs, 46, 607.
Amble, Ole, 556.
Amdahl, Gene Myron, 547.
American Library Association rules, 7–8.
AMM: American Mathematical Monthly,

published by the Mathematical
Association of America since 1894.

Amortized cost, 478, 549.
Amphisbaenic sort, 347, 388.
Anagrams, 9, see also Permutations

of a multiset.
Analysis of algorithms, 3, 77–78, 80, 82,

85–95, 100–105, 108–109, 118–122,
140, 152–158, 161–162, 167–168,
174–177, 185–186, 255–256, 259–266,
274–279, 285–287, 294–299, 330–335,
339–343, 379, 382, 387–388, 397–408,
412–413, 424–425, 430–431, 454–458,
466–471, 479–480, 485–486, 490,
500–512, 524–525, 534–539, 543–544,
552–557, 565–566, 576, 619, see also

Complexity analysis.
Analytical Engine, 180.
AND (bitwise and), 111, 134, 531, 589,

592, 629.
André, Antoine Désiré, 68, 605.
Anti-stable sorting, 347, 615, 650.
Antisymmetric function, 66.
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Anuyogadvārasūtra (an� yogíArs
�

/), 23.
Apollonius Sophista, son of Archibius

(
), 421.

Appell, Paul Émile, 679.
Approximate equality, 9, 394–395.
Aragon, Cecilia Rodriguez, 478.
Archimedes of Syracuse (

), 13.
solids, 593.

Arge, Lars Allan, 489.
Argument, 392.
Arisawa, Makoto ( ), 574.
Arithmetic overflow, 6, 519, 585.
Arithmetic progressions, 517.
Armstrong, Philip Nye, 225, 244, 245, 675.
Arora, Sant Ram (s⌃t rAm arowA), 455.
Arpacı-Dusseau, Andrea Carol, 390.
Arpacı-Dusseau, Remzi Hussein, 390.
Ascents of a permutation, 35.
Ashenhurst, Robert Lovett, 344, 348.
Askey, Richard Allen, 601.
Associated Stirling numbers, 266.
Associative block designs, 574–575, 582.
Associative law, 24, 35, 239, 461, 592.
Associative memories, 392, 579.
Asymptotic methods, 41–42, 45, 47,

62–64, 69, 128–134, 136–138, 194–195,
286–287, 405, 479, 490, 504–506,
509–510, 555–557, 644.

limits of applicability, 318.
Attitude, 73.
Attributes, 559.

binary, 567–576.
compound, 564, 566–567.

auf der Heide, see Meyer auf der Heide.
Automatic programming, 387.
AVL trees, 459, see Balanced trees.
Avni, Haim ( ), 707.

B-trees, 482–491, 549, 563.
B+-trees, 486.
B⇤-trees, 488.
Babbage, Charles, 180.
Baber, Robert Laurence, 704.
Babylonian mathematics, 420.
Bachrach (= Gilad-Bachrach), Ran

( - ), 403.
Backward reading, see Read-backward.
Baeza-Yates, Ricardo Alberto, 489, 713, 715.
Bafna, Vineet (EvnFt bAPnA), 615.
Baik, Jinho ( ), 611.
Bailey, Norman Thomas John, 740.
Balance factor, 459, 479.
Balanced filing, 576–578, 581.
Balanced incomplete block designs, 576.
Balanced merging, 248–251, 267, 297,

299–300, 311, 325, 333, 386–387, 587.
with rewind overlap, 297.

Balanced radix sorting, 343, 386.

Balanced trees, 150–151, 458–491,
547, 592, 713.

weight-balanced, 476, 480.
Balancing a binary tree, 480.
Balancing a k-d tree, 566.
Balbine, Guy de, 528.
Ball, Walter William Rouse, 593.
Ballot problem, 61, 66.
Barnett, John Keith Ross, 168.
Barton, David Elliott, 44, 602, 603, 605.
Barve, Rakesh Dilip (rAk⇤f EdlFp bv⇤�), 371.
Barycentric coordinates, 437.
Basic query, 569, 574–576, 579–582.
Batcher, Kenneth Edward, 111, 223, 226,

230–232, 235, 381, 389, 667.
Batching, 98, 159, 560, 563.
Baudet, Gérard Maurice, 671.
Bayer, Paul Joseph, 454, 458.
Bayer, Rudolf, 477, 482, 483, 487, 490, 721.
Bayes, Anthony John, 346.
Bell, Colin James, 337.
Bell, David Arthur, 167, 388, 647.
Bell, James Richard, 531, 532.
Bellman, Richard Ernest, ix.
Ben-Amram, Amir Mordechai

( - ), 181.
Bencher, Dennis Leo, 312, 313, 316.
Benchmarks, 389–391.
Bender, Edward Anton, 605, 609, 696.
Bennett, Brian Thomas, 378.
Bennett, Mary Katherine, 718–719.
Bent, Samuel Watkins, 213, 478, 666.
Bentley, Jon Louis, 122, 403, 512,

565–566, 633, 635.
Bergeron, Anne, 615.
Berkeley, George, 782.
Berkovich, Simon Yakovlevich (

), 496.
Berman, Joel David, 669.
Berners-Lee, Conway Maurice, 98, 453.
Bernoulli, Jacques (= Jakob = James),

numbers, 506, 602, 637, 750.
numbers, calculation of, 611.

Berra, Lawrence Peter “Yogi”, 476.
Bertrand, Joseph Louis François, 605.
Best-fit allocation, 480.
Best possible, 180.
Beta distribution, 586.
Betz, Bernard Keith, 268, 288.
Beus, Hiram Lynn, 245–246.
Bhāskara II, Ācārya, son of Maheúvara

(BA-krAcAy�, mh⇤òrp
�

/), 23.
Bhattacharya, Kailash Nath (

), 746.
Biased trees, 478.
Bienaymé, Irénée Jules, 605.
Bierce, Ambrose Gwinnett, 558.
BINAC computer, 386.
Binary attributes, 567–576.
Binary computers, 411.
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Binary insertion sort, 82–83, 97, 183,
186, 193, 225, 386.

Binary merging, 203–204, 206.
Binary quicksort, see Radix exchange.
Binary recurrences, 135, 167, 630, 644, 653.
Binary search, 82, 203, 409–417, 420,

422–423, 425, 435, 546, 643.
uniform, 414–416, 423.

Binary search trees, 426–481, 565.
optimum, 436–454, 456–458, 478.
pessimum, 457, 711.

Binary tree: Either empty, or a root
node and its left and right binary
subtrees; see also Complete binary
tree, Extended binary tree.

enumeration, 60–61, 157, 295, 467, 479.
triply linked, 158, 475.

Binary tries, 500–502.
Binomial coe�cients, 30–31, 87, 190.
Binomial probability distribution, 100–101,

341, 539, 555.
Binomial queues, 152.
Binomial transforms, 136–137, 508.
Biquinary number system, 694.
Birkho�, Garrett, 719.
Birthday paradox, 513, 549.
Bisection, 410, see Binary search.
BIT: Nordisk Tidskrift for Informations-

Behandling, an international journal
published in Scandinavia since 1961.

Bit reversal, 621.
Bit strings, 561–562, 572–573.
Bit vectors, 235.
Bitner, James Richard, 403, 478, 703.
Bitonic sequence, 231.
Bitonic sorter, 230–232, 243, 244.
Bits of information, 183, 442–443.
Bitwise and, 111, 134, 531, 589, 592, 629.
Bitwise or, 529, 571.
Björner, Anders, 609.
Blake, Ian Fraser, 740.
Blanks, algebra of, 592.
Bleier, Robert Edward, 578.
Block designs, 576–578.
Blocks of records, 258.

on disk, 358–359, 369.
on tape, 318–320.

Bloom, Burton Howard, 572–573, 578, 745.
Blum, Manuel, 214.
Blum, Norbert Karl, 718.
Boas, Peter van Emde, 152.
Boehm McGraw, Elaine Marie (= Elaine

Marie Hall), 547.
Boerner, Hermann, 669.
Boesset, Antoine de, 24.
Bollobás, Béla, 645.
Book of Creation ( ), 23.
Boolean queries, 559, 562, 564.
Booth, Andrew Donald, 396, 400,

422, 453, 454.

Boothroyd, John, 617.
Borwein, Peter Benjamin, 155.
Bose, Raj Chandra ( ), 226,

578, 746.
Bostic, Keith, 177, 652.
Bottenbruch, Hermann, 422, 425.
Bouricius, Willard Gail, 195, 223.
Bourne, Charles Percy, 395, 578.
Brandwood, Leonard, 400.
Bravais, Auguste, 518.
Bravais, Louis, 518.
Brawn, Barbara Severa, 698.
Breaux, Nancy Ann Eleser, 680.
Brent, Richard Peirce, 532–533, 546, 718.
Briandais, René Edward de la, 494.
Brouwer, Andries Evert, 575, 747.
Brown, John, 7.
Brown, Mark Robbin, 152, 479.
Brown, Randy Lee, 152.
Brown, William Stanley, 157.
Bruhat, François, order, 628, 670.

weak, 13, 19, 22, 628, 670.
Bruijn, Nicolaas Govert de, 130, 138,

602, 668, 670, 671, 744.
Bubble sort, 106–109, 128–130, 134,

140, 222–223, 240, 244, 246–247,
348–349, 380, 387, 390.

multihead, 244–245.
Buchholz, Werner, 396, 548.
Buchsbaum, Adam Louis, 481.
Bucket sorting, 169.
Buckets, 541–544, 547–548, 555, 564.
Bu�ering, 339–343, 387, 488.

size of bu�ers, 332–333, 349, 360,
367–368, 376–377.

Bulk memory, 356, see Disk storage.
Bundala, Daniel, 666.
Burge, William Herbert, 279, 297, 337.
Burkhard, Walter Austin, 747.
Burton, Robert, v.
Butterfly network, 227, 236–237.

C language, 426.
Cache memory, 389.
CACM: Communications of the ACM,

a publication of the Association for
Computing Machinery since 1958.

Calendar queues, 152.
Calhorda Cruz Filipe, Luís, 226.
Cancellation laws, 24.
Canfield, Earl Rodney, 673.
Cards, see also Playing cards.

edge-notched, 1, 569–570, 578.
feature, 569–570, 578.
machines for sorting, 169–170, 175,

383–385.
Carlitz, Leonard, 39, 47, 613, 620.
Caron, Jacques, 279, 280, 286, 287.
Carries, 691.
Carroll, Lewis (= Dodgson, Charles

Lutwidge), 207–208, 216, 584.
Carter, John Lawrence, 519, 557, 743.
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Carter, William Caswell, 279, 288, 297.
Cartesian trees, 478.
Cascade merge, 288–300, 311, 326,

333, 338, 389.
read-backward, 328, 334.
with rewind overlap, 299, 327,

333–334, 342.
Cascade numbers, 294–299.
Cascading pseudo-radix sort, 347.
Catalan, Eugène Charles, numbers, 61, 295.
Catenated search, 407.
Cawdrey (= Cawdry), Robert, 421.
Cayley, Arthur, 628, 653.
Celis Villegas, Pedro, 741.
Cells, 564.
Census, 383–386, 395.
Césari, Yves, 193, 279.
Chaining, 520–525, 542–544, 547, 553, 557.

to reduce seek time, 368–369.
Chakravarti, Gurugovinda (

), 23.
Chandra, Ashok Kumar (afok k� mAr

c⌃

}

dA), 422.
Chang, Shi-Kuo ( ), 458.
Chartres, Bruce Aylwin, 156.
Chase, Stephen Martin, 196.
Chazelle, Bernard Marie, 583.
Chebyshev (= Tschebysche�), Pafnutii

Lvovich (
=

), 395.
polynomials, 296, 685.

Chen, Wen-Chin ( ), 548.
Cherkassky, Boris Vasilievich (

), 152.
Chessboard, 14, 46, 69.
Chinese mathematics, 36.
Choice of data structure, 95–96, 141,

151–152, 163–164, 170–171, 459,
561–567.

Chow, David Kuo-kien, 578.
Christen, Claude André, 204, 658.
Chronological order, 372, 379.
Chung, Moon Jung ( = ), 673.
Chung Graham, Fan Rong King

( ), 402.
Church, Randolph, 669.
CI: MIX’s comparison indicator, 6.
Cichelli, Richard James, 513.
Circular lists, 407, 729.
Ciura, Marcin Grzegorz, 95, 623.
Clausen, Thomas, 157.
Cleave, John Percival, 400.
Clément, Julien Stephane, 728.
Cliques, 9.
Closest match, search for, 9, 394, 408,

563, 566, 581.
CMath: Concrete Mathematics, a book

by R. L. Graham, D. E. Knuth,
and O. Patashnik.

CMPA (compare rA), 585.
Coalesced chaining, 521–525, 543, 548,

550–554, 557, 730.
COBOL language, 339, 532.
Cocktail-shaker sort, 110, 134, 356, 676, 694.
Codes for di�culty of exercises, ix–xi.
Codish, Michael ( ), 226.
Co�man, Edward Grady, Jr., 496.
Coldrick, David Blair, 638.
Cole, Richard John, 583.
Colin, Andrew John Theodore, 453, 454.
Collating, 158, 385–387, see Merging.
Collating sequence, 7, 420–421.
Collision resolution, 514, 520–557.
Column sorting, 343.
Combinatorial hashing, 573–575, 579–580,

582, 746.
Combinatorial number system, 573.
Comer, Douglas Earl, 489.
Commutative laws, 239, 455.
Comp. J.: The Computer Journal, a

publication of the British Computer
Society since 1958.

Comparator modules, 221, 234, 241.
Comparison counting sort, 75–80, 382, 387.
Comparison-exchange tree, 196.
Comparison matrix, 188.
Comparison of algorithms, 151, 324–338,

347–348, 380–383, 471, 545–547.
Comparison of keys, 4.

minimizing, 180–247, 413, 425, 549.
multiprecision, 6, 136, 169.
parallel, 113, 222–223, 228–229, 235,

390, 425, 671.
searching by, 398–399, 409–491, 546–547.
sorting by, 80–122, 134–168, 180–197,

219–343, 348–383.
Comparison trees, 181–182, 192–197,

217, 219–220, 411–417.
Compiler techniques, 2–3, 426, 532.
Complement notations, 177.
Complementary pairs, 9.
Complemented block designs, 581.
Complete binary trees, 144, 152–153, 158,

211, 217, 253–254, 258, 267, 425.
Complete P -ary tree, 361, 697.
Complete ternary trees, 157.
Complex partitions, 21.
Complexity analysis of algorithms, 168,

178–179, 180–247, 302–311, 353–356,
374–378, 388, 412–413, 425, 491,
539–541, 549, 578.

Components of graphs, 189.
Compositions, 286–287.
Compound attributes, 564, 566–567.
Compound leaf of a tree, 688.
Compressed tries, 507.

dynamic, 722.
Compression of data, 453, 512.
Compromise merge, 297.
Computational complexity, see Complexity.
Computational geometry, 566.
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Computer operator, skilled, 325, 337, 349.
Computer Sciences Corporation, 2.
Comrie, Leslie John, 170, 385.
Concatenation of balanced trees, 474, 479.
Concatenation of linked lists, 172.
Concave functions, 443, 456, 458.
Concurrent access, 491.
Conditional expressions, 753.
Connected graphs, 189, 733, 742.
Consecutive retrieval, 567, 579.
Convex functions, 366, 375.
Convex hulls, 478, 670.
Cookies, 567–571, 577.
Coordinates, 564–566.
Copyrights, iv, 387.
Corless, Robert Malcolm, 606.
Cormen, Thomas H., 477.
Coroutines, 259.
Cotangent, 194.
Counting, sorting by, 75–80.
Covering, 235.
Coxeter, Harold Scott MacDonald, 593.
Cramer, Gabriel, 11.
Cramer, Michael, 650.
Crane, Clark Allan, 149–150, 152, 474,

475, 479, 716.
Crelle: Journal für die reine und angewandte

Mathematik, an international journal
founded by A. L. Crelle in 1826.

Criss-cross merge, 312–315, 317.
Cross-indexing, see Secondary key retrieval.
Cross-reference routine, 7.
Crossword-puzzle dictionary, 573.
Cruz-Filipe, Luís Calhorda, 226.
Cube, n-dimensional, linearized, 408.
Culberson, Joseph Carl, 435.
Culler, David Ethan, 390.
Cundy, Henry Martyn, 593.
Cunto Pucci, Walter, 218.
Curtis, Pavel, 251.
Cycles of a permutation, 25–32, 62, 156,

617, 628, 639–640, 657.
Cyclic occupancy problem, 379.
Cyclic rotation of data, 619.
Cyclic single hashing, 556–557.
Cylinders of a disk, 357, 376, 482, 489, 562.
Cypher, Robert Edward, 623.
Czech, Zbigniew Janusz, 513.
Czen Ping ( ), 186.

Daly, Lloyd William, 421.
Dannenberg, Roger Berry, 583.
Data compression, 453, 512.
Data structure, choice of, 95–96, 141,

151–152, 163–164, 170–171, 459,
561–567.

Database, 392.
David, Florence Nightingale, 44, 602, 605.
Davidson, Leon, 395.
Davies, Donald Watts, 388.

Davis, David Robert, 578.
Davison, Gerald A., 152.
de Balbine, Guy, 528.
de Bruijn, Nicolaas Govert, 130, 138,

602, 668, 670, 671, 744.
de la Briandais, René Edward, 494.
de Peyster, James Abercrombie, Jr., 544.
de Staël, Madame, see Staël-Holstein.
Deadlines, 407.
Deadlocks, 721.
Debugging, 520.
Decision trees, 181–182, 192–197, 217,

219–220, 411–417, 443–444.
Dedekind, Julius Wilhelm Richard, 239.

sums, 20.
Degenerate trees, 430, 454, 711.
Degenerative addresses, 547.
Degree path length, 363–367.
Degrees of freedom, 258–259.
Deift, Percy Alec, 611.
Deletion: Removing an item.

from a B-tree, 490.
from a balanced tree, 473, 479.
from a binary search tree, 431–435,

455, 458.
from a digital search trees, 508.
from a hash table, 533–534, 548–549,

552, 556, 741.
from a heap, 157.
from a leftist tree, 158.
from a multidimensional tree, 581.
from a trie, 507.

Demuth, Howard B., 109, 184, 246, 348,
353, 387, 388, 676.

Den, Vladimir Eduardovich (
), 7.

Denert, Marlene, 596.
Dent, Warren Thomas, 455.
Derangements, 679.
Derr, John Irving, 547.
Descents of a permutation, 35, 46, 47, 606.
Determinants, 11, 14, 19, 33–34.

Vandermonde, 59, 610, 729.
Deutsch, David Nachman, 204.
Devroye, Luc Piet-Jan Arthur, 565,

713, 721, 728.
Diaconis, Persi Warren, 597.
Diagram of a partial order, 61–62,

183–184, 187.
Dictionaries of English, 1–2, 421, 558, 589.
Dictionary order, 5.
Dietzfelbinger, Martin Johannes, 549.
Digital search trees, 502–505, 508–511,

576, 646.
optimum, 511.

Digital searching, 492–512.
Digital sorting, 169, 343, see Radix sorting.
Digital tree search, 496–498, 517, 546–547.
Dijkstra, Edsger Wybe, 636.
Dilcher, Karl Heinrich, 726.
Diminishing increment sort, 84.
Dinsmore, Robert Johe, 258.
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Direct-access memory, 356, see Disk storage.
Direct sum of graphs, 189–191.
Directed graphs, 9, 61–62, 184.
Discrete entropy, 374–375.
Discrete logarithms, 10.
Discrete system simulation, 149.
Discriminant, 59, 66, 68.
Disk storage, 357–379, 389–390, 407,

481–491, 562–563.
Disk striping, 370, 378, 389.
Disorder, measures of, 11, 22, 72, 134, 389.
Displacements, variance of, 556, 619.
Distribution counting sort, 78–80, 99,

170, 176–177, 380–382.
Distribution functions, 105, see Probability.
Distribution patterns, 343–348.
Distribution sorting, see Radix sorting.
Distributive laws, 239.
Divide and conquer, 175.

recurrence, 168, 224, 674.
Divisor function d(n), 138.
Dixon, John Douglas, 611.
DNA, 34, 72.
Dobkin, David Paul, 583.
Dobosiewicz, W≥odzimierz, 176, 266,

628, 680.
Dodd, Marisue, 520.
Dodgson, Charles Lutwidge, 207, see Carroll.
Dor, Dorit ( ), 664.
Doren, David Gerald, 212, 218.
Dot product, 406.
Double-entry bookkeeping, 561.
Double hashing, 528–533, 546, 548,

551–552, 556, 557, 742.
Double rotation, 461, 464, 477.
Doubly exponential sequences, 467, 715.
Doubly linked list, 393, 375, 543, 646, 713.
Douglas, Alexander Shafto, 98, 388, 396.
Dowd, Martin John, 673.
Drake, Paul, 1.
Driscoll, James Robert, 152, 583.
Drmota, Michael, 713.
Dromey, Robert Geo�rey, 634.
Drum storage, 359–362.
Drysdale, Robert Lewis (Scot), III, 228.
Dual of a digraph, 191.
Dual tableaux, 56–57, 69.
Dubost, Pierre, 747.
Dudeney, Henry Ernest, 589, 670.
Dugundji, James, 245.
Dull, Brutus Cyclops, 6, 45, 549.
Dumas, Philippe, 134.
Dumey, Arnold Isaac, 255, 396, 422,

453, 547.
Dummy runs, 248–249, 270–272, 276,

289–293, 299, 302, 312, 316–317,
682, 686.

Dumont, Dominique, 605.
Duplication of code, 398, 418, 429,

625, 648, 677.
Dutch national flag problem, 636.
Dwyer, Barry, 574.
Dynamic programming, ix, 438.
Dynamic searching, 393.
Dynamic storage allocation, 11, 480.

e (base of natural logarithms), 41, 526,
748–749, 755.

Ebbenhorst Tengbergen, Cornelia van, 744.
Eckert, John Presper, 386–387.
Eckler, Albert Ross, Jr., 590.
Eddy, Gary Richard, 389.
Edelman, Paul Henry, 670, 719.
Edge-notched cards, 1, 569–570, 578.
Edigho�er, Judy Lynn Harkness, 645.
Edmund, Norman Wilson, 1.
EDVAC computer, 385, 386.
Efe, Kemal, 680.
E�ective power, 676, see Growth ratio.
E�ciency of a digraph, 188.
Ehresmann, Charles, 628.
Eichelberger, Edward Baxter, 704.
Eisenbarth, Bernhard, 489.
El-Yaniv, Ran ( ), 403.
Elcock, Edward Wray, 551, 730.
Elementary symmetric functions, 239, 609.
Eleser, see Breaux.
Elevators, 353–356, 374–375, 377–378.
Elias, Peter, 581.
Elkies, Noam David, 9.
Ellery, Robert Lewis John, 395.
Emde Boas, Peter van, 152.
Emden, Maarten Herman van, 128, 633, 638.
Empirical data, 94–95, 403, 434–435,

468–470.
English language, 1–2, 9, 421.

common words, 435–437, 492–493,
496–497, 513–515.

dictionaries, 1–2, 421, 558, 589.
letter frequencies, 448–450.

Entropy, 442–446, 454, 457–458.
Enumeration of binary trees, 60–61, 295.

balanced, 467, 479.
leftist, 157.

Enumeration of permutations, 12, 22–24.
Enumeration of trees, 287.
Enumeration sorting, 75–80.
Eppinger, Je�rey Lee, 434, 435.
Equal keys, 194–195, 341, 391, 395, 431, 635.

approximately, 9, 394–395.
in heapsort, 655.
in quicksort, 136, 635–636.
in radix exchange, 127–128, 137.

Equality of sets, 207.
Eratosthenes of Cyrene (

), 642.
Erdélyi, Artúr (= Arthur), 131.
Erd�s, Pál (= Paul), 66, 155, 658.
Erdwinn, Joel Dyne, 2.
Erkiö, Hannu Heikki Antero, 623.
Error-correcting codes, 581.
Ershov, Andrei Petrovich (

), 547.
Espelid, Terje Oskar, 259.
Estivill-Castro, Vladimir, 389.
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Euler, Leonhard ( =
), 8–9, 19–21, 35,

38–39, 395, 593–594, 726.
numbers (secant numbers), 35, 610–611.
summation formula, 64, 129, 626, 702.

Eulerian numbers, 35–40, 45–47, 653.
table, 37.

Eusterbrock, Jutta, 213.
Eve, James, 496.
Even-odd merge, 244.
Even permutations, 19, 196.
Evolutionary process, 226, 401.
Exact cover problem, 721.
Exchange selection sort, 106.
Exchange sorting 73, 105–138.

optimum, 196.
Exclusive or, 20, 519, 589, 667, 723.
Exercises, notes on, ix–xi.
Exponential function, q-generalized, 594.
Exponential integral, 105, 137, 735.
Extended binary tree: Either a single

“external” node, or an “internal” root
node plus its left and right extended
binary subtrees, 181.

Extendible hashing, 549.
External nodes, 181, 254.
External path length: Sum of the level

numbers of all external nodes, 192,
303, 306, 344, 347, 361, 363–367,
413, 434, 502, 505–506.

modified, 502–503, 511.
External searching, 403–408, 481–491,

496, 498–500, 541–544, 549, 555,
562–563, 572–573.

External sorting, 4–5, 6–10, 248–379.

Factorials, 23, 187.
generalized, 32, 594.

Factorization of permutations, 25–35.
Fagin, Ronald, 549.
Fallacious reasoning, 45, 60, 424, 553.
Falling powers, 638–639, 661, 734, 753.
False drops, 571–573, 579, 590.
Fanout, 232, 241.
Fast Fourier transforms, 237.
Fawkes, Guido (Guy), 339.
Feature cards, 569–570, 578.
Feigenbaum, Joan, 478.
Feijen, Wilhelmus (= Wim) Hendricus

Johannes, 636.
Feindler, Robert, 385.
Feit, Walter, 609.
Feldman, Jerome Arthur, 578.
Feldman, Paul Neil, 426.
Feller, Willibald (= Vilim = Willy =

William), 513.
Felsner, Stefan, 658.
Fenner, Trevor Ian, 645.
Ferguson, David Elton, 2, 290–291, 297,

299, 367, 422, 525, 685.

Fermat, Pierre de, 584.
Ferragina, Paolo, 489.
Feurzeig, Wallace, 79.
Fiat, Amos ( ), 708.
Fibonacci, Leonardo, of Pisa (= Leonardo

filio Bonacii Pisano), 424.
Fibonacci hashing, xiv, 517–518.
Fibonacci heaps, 152.
Fibonacci number system, 348, 424, 729.

generalized, 286.
Fibonacci numbers, 93, 268, 287, 418, 426,

518, 623, 687, 746, 750.
generalized, 270, 286, 287, see also

Cascade numbers.
Fibonacci search, 417.
Fibonacci trees, 417, 422–424, 457, 459,

460, 468, 474, 479, 714.
Fibonaccian search, 417–419, 422–424.
Field, Daniel Eugene, 583.
FIFO, 149, 299, 310, see Queues.
File: A sequence of records, 4, 392.

self-organizing, 401–403, 405–406,
478, 521, 646.

Finding the maximum, 141, 209.
and minimum, 218.

Fingers, 718.
Finite fields, 549–550.
Finkel, Raphael Ari, 565, 566, 566.
First-fit allocation, 480, 721.
First-in-first-out, 149, 299, 310, see Queues.
Fischer, Michael John, 152.
Fishburn, John Scot, 721.
Fishspear, 152.
Fixed points of a permutation, 62, 66, 617.
Flajolet, Philippe Patrick Michel, 134,

565, 566, 576, 630, 644, 649, 703,
726, 728, 742.

Flip operation, 72.
Floating bu�ers, 323, 324, 340, 369.
Floating point accuracy, 41.
Flores, Ivan, 388.
Floyd, Robert W, 145, 156, 215, 217, 218,

226, 230, 237, 238, 240, 297, 374, 375,
377, 378, 455, 468, 519, 614, 661, 695.

Foata, Dominique Cyprien, 17, 21, 24, 27,
33, 39, 43, 599, 618, 732, 733.

FOCS: Proceedings of the IEEE Symposia
on Foundations of Computer Science
(1975–), formerly called the Symposia
on Switching Circuit Theory and
Logic Design (1960–1965), Symposia
on Switching and Automata Theory
(1966–1974).

Folding a path, 112–113, 134.
Foldout illustration, 324–325.
Fomin, Sergey Vladimirovich (

), 671.
Ford, Donald Floyd, 395.
Ford, Lester Randolph, Jr., 184, 186.
Forecasting, 321–324, 340, 341, 369,

387, 388, 693.
Forest: Zero or more trees, 47, 494–496,

508, 512.
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FORTRAN language, 2–3, 7, 426, 549.
Forward-testing-backward-insertion, 204.
Foster, Caxton Croxford, 470, 473, 475, 714.
Fractal probability distribution, 400.
Fractile insertion, 660.
Frame, James Sutherland, 60.
Françon, Jean, 152.
Frank, Michael ( ), 226.
Frank, Robert Morris, 93.
Franklin, Fabian, 19, 21, 599.
Fraser, Christopher Warwick, 583.
Frazer, William Donald, 122, 259,

678, 704, 708.
Fredkin, Edward, 492.
Fredman, Michael Lawrence, 152, 181,

442, 480, 549, 578, 614.
Free distributive lattice, 239.
Free groups, 511–512.
Free trees, 356, 590.
Frequency of access, 399–408, 435, 532, 538.
Friedman, Haya, 718.
Friedman, Jerome Harold, 566.
Friend, Edward Harry, 79, 109, 141, 170,

255, 324, 337, 338, 347, 388, 650.
Frieze, Alan Michael, 645.
Fringe analyses, 715.
Frobenius, Ferdinand Georg, 59.
Front and rear compression, 512.
Fussenegger, Frank, 217.

Gabow, Harold Neil, 152, 217.
Gaines, Helen Fouché, 435.
Gale, David, 668.
Galen, Claudius ( ), 421.
Galil, Zvi ( ), 181.
Gamma function ≈ (z), 131–134, 138,

510, 611, 636–637, 702.
Gandz, Solomon, 23.
Gardner, Erle Stanley, 1.
Gardner, Martin, 370, 585, 590, 651, 697.
Gardy, Danièle, 703.
Garsia, Adriano Mario, 454, 597, 711.
Garsia–Wachs algorithm, 446–452, 458.
Gasarch, William Ian, 213.
Gassner, Betty Jane, 40–41, 262.
Gaudette, Charles H., 347.
Gauß (= Gauss), Johann Friderich Carl

(= Carl Friedrich), 395.
integers, 21.

gcd: Greatest common divisor.
Generable integer, 103.
Generating functions, techniques for using,

15–17, 19–20, 32–34, 38–42, 45–47,
68, 102–104, 135, 177, 194, 261–262,
270, 275–276, 294–299, 340–341,
425, 455, 479, 490, 503–506, 539,
553, 619, 678, 695, 703.

Genes, 72.
Genetic algorithms, 226, 229.
Genoa, Giovanni di, 421.

Geometric data, 563–566.
George, John Alan, 707.
Gessel, Ira Martin, 597.
Getu, Seyoum (sÏm g±), 607.
Ghosh, Sakti Pada ( ), 395,

487, 578, 579.
Gibson, Kim Dean, 589.
Gilad-Bachrach, Ran ( - ), 403.
Gilbert, Edgar Nelson, 453, 454.
Gilbreath, Norman Laurence, 370.

principle, 370, 378.
Gillis, Joseph ( ), 601.
Gilstad, Russell Leif, 268, 301, 336, 721.
Gini, Corrado, 401.
Gleason, Andrew Mattei, 193, 648.
Goetz, Martin Alvin, 297, 315, 316,

338, 368, 388, 680.
Goldberg, Andrew Vladislav (

), 152.
Golden ratio, xiv, 138, 517–518, 748–749.
Goldenberg, Daniel, 387.
Goldstein, Larry Joel, 673.
Golin, Mordecai Jay ( ,

), 649.
Gonnet Haas, Gaston Henry, 489, 533,

565, 606, 707, 734.
Good, Irving John, 513.
Goodman, Jacob Eli, 566.
Goodwin, David Thomas, 302.
Gore, John Kinsey, 385.
Gotlieb, Calvin Carl, 388, 442.
Goto, Eiichi ( ), 534.
Gourdon, Xavier Richard, 134.
GPX system, 738.
Grabner, Peter Johannes, 644.
Graham, Ronald Lewis ( ), 198, 202–

203, 205–206, 242, 550, 597, 729, 762.
Grasselli, Antonio, 670.
Grassl, Richard Michael, 69.
Gray, Harry Joshua, Jr., 578.
Gray, James Nicholas, 390.
Greatest common divisor, 91, 185, 683–684.
Green, Milton Webster, 227, 239, 667,

668, 673.
Greene, Curtis, 70, 670, 718, 744.
Greene, Daniel Hill, 736.
Greek mathematics, 420.
Greniewski, Marek Józef, 513.
Grid files, 564, 565.
Gries, David Joseph, 618.
Grinberg, Victor Simkhovich (

), 671.
Griswold, William Gale, 549.
Gross, Oliver Alfred, 194, 653.
Grossi, Roberto, 489.
Group, free, 511–512.
Group divisible block designs, 746.
Grove, Edward Franklin, 371.
Growth ratio, 273.
Guibas, Leonidas John (

), 477, 525, 709, 737.
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Guilbaud, Georges Théodule, 593.
Gunji, Takao ( ), 534.
Gustafson, Richard Alexander, 573.
Gustavson, Frances Goertzel, 698.
Gwehenberger, Gernot, 498.
Gyrating sort, 315.

h-ordered sequence, 86, 103–104, 243.
Hadian, Abdollah, 186, 212, 217.
Hajela, Dhananjay (Dn�jy hj⇤lA), 402.
Hajnal, András, 747.
Half-balanced trees, 477.
Hall, Marshall, Jr., 511, 578.
Halperin, John Harris, 625.
Halpern, Mark Irwin, 422.
Hamilton, Douglas Alan, 711.
Han, Guo-Niu ( ), 595, 596, 599, 602.
Hanan, Maurice, 729.
Hannenhalli, Sridhar Subrahmanyam

(ÄFDr s�
}

bú⌫y

^

m h⌃n⇤nhSlF), 615.
Haralambous, Yannis (

), 782.
Hardy, Godfrey Harold, 704.
Hardy, Norman, 590.
Hare, David Edwin George, 606.
Harmonic numbers, 633, 750–751.

generalized, 400, 405.
Harper, Lawrence Hueston, 704.
Harrison, Malcolm Charles, 572, 579, 745.
Hash functions, 514–520, 529, 549–550,

557–558.
combinatorial, 573–575, 579–580, 582, 746.

Hash sequences, 535, 552.
Hashing, 513–558.
Havas, George, 513.
Hayward, Ryan Bruce, 636, 642.
Heap: A heap-ordered array, 144–145, 149,

156–157, 253, 336, 646, 680, 705.
t-ary, 644.

Heap order, 144–145.
Heaps, Harold Stanley, 578.
Heapsort, 144–148, 152–158, 336, 381,

382, 389, 698.
with equal keys, 655.

Heide, see Meyer auf der Heide.
Height-balanced trees, 475, 480.
Height of extended binary tree, 195,

459, 463.
of random binary search tree, 458.
of random digital search tree, 728.
of random (M + 1)-ary search tree, 721.
of random Patricia tree, 728.
of random trie, 512.

Heilbronn, Hans Arnold, 395.
Heising, William Paul, 400, 739.
Heller, Robert Andrew, 512.
Hellerman, Herbert, 548.
Hellerstein, Joseph Meir, 390.
Hellman, Martin Edward, 591.
Hendricks, Walter James, 703.

Hennequin, Pascal Daniel Michel Henri, 632.
Hennie, Frederick Clair, 351, 356.
Hermite, Charles, polynomial, 62.
Herrick, Robert, 408.
Hibbard, Thomas Nathaniel, 20, 93, 196,

226, 388, 389, 413, 432, 453, 657.
Hilbert, David, 395.
Hildebrandt, Paul, 128.
Hillman, Abraham P, 69.
Hindenburg, Carl Friedrich, 14.
Hindu mathematics, 23.
Hinrichs, Klaus Helmer, 564.
Hinterberger, Hans, 564.
Hinton, Charles Howard, 593.
Hoare, Charles Antony Richard, 114,

121–122, 136, 381, 389.
Hobby, John Douglas, 782.
Hoey, Daniel J., 215.
Holberton, Frances Elizabeth Snyder,

324, 386, 387.
Hollerith, Herman, 383–385.
Holt Hopfenberg, Anatol Wolf, 738.
Homer ( ), 421.
Homogeneous polynomial, 66.
Hooker, William Weston, 42.
Hooking-up of queues, 172, 177.
Hooks, 59–60, 69–71.

generalized, 67.
Hopcroft, John Edward, 245, 476,

477, 590, 652.
Hoshi, Mamoru ( ), 727.
Hosken, James Cuthbert, 388, 391.
Hot queues, 152.
Hsu, Meichun ( ), 488.
Hu, Te Chiang ( ), 454, 711, 713.
Hu–Tucker algorithm, 454.
Huang Bing-Chao ( ), 702.
Hubbard, George Underwood, 363, 389.
Huddleston, Charles Scott, 477, 718.
Hu�man, David Albert, trees, 361, 438, 458.
Human-computer interaction, 588.
Hunt, Douglas Hamilton, 88.
Hurwitz, Henry, 633.
Hwang, Frank Kwangming ( ),

188, 195, 202–206.
Hwang, Hsien-Kuei ( ), 650.
Hyafil, Laurent Daniel, 218, 377.
Hybrid searching methods, 496.
Hybrid sorting methods, 122, 163, 381, 297.
Hypercube, linearized, 408.
Hypergeometric functions, 537, 565, 739.
Hyphenation, 531, 572, 722.
Hysterical B-trees, 477.

IBM 701 computer, 547.
IBM 705 computer, 82–83.
IBM Corporation, 8, 169, 193, 316,

385, 489, 547.
IBM RS/6000 computer, 389.
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Idempotent laws, 239.
Identifier: A symbolic name in an

algebraic language, 2.
Identity element, 24.
Implicit data structures, 426, 481.
in situ permutation, 79–80, 178.
In the past, see Persistent data structures.
Inakibit-Anu of Uruk ( ), 420.
Incerpi, Janet Marie, 91, 93.
Inclusion and exclusion principle, 586,

703, 744.
Inclusion of sets, 393–394.
Inclusive queries, 569–573, 577.
Incomplete gamma function “(a, z), 555.
Increasing forests, 47.
Independent random probing, 548, 555.
Index keys for file partitioning, 512.
Index of a permutation, 16–17, 21–22, 32.
Index to this book, 561–562, 757–782.
Indexed-sequential files, 482.
Indian mathematics, 23.
Infinity, 4, 138–139, 142–144, 156, 214,

257–258, 263, 521, 624–625, 646,
663–664, 685, 707.

as sentinel, 159, 252, 308, 324.
Information retrieval, 392, 395.
Information theory, 183, 198, 442–444, 633.

lower bounds from, 183, 194, 202,
204, 655.

Inner loop: Part of a program whose
instructions are performed much more
often than the neighboring parts, 162,
see Loop optimization.

Insertion: adding a new item.
into a 2-3 tree, 476–477.
into a B-tree, 483–485.
into a balanced tree, 461–473, 479.
into a binary search tree, 427–429,

458, 482.
into a digital search tree, 497.
into a hash table, 522, 526, 529, 551.
into a heap, 156.
into a leftist tree, 150, 157.
into a trie, 507.
into a weight-balanced tree, 480.

Insertion sorting, 73, 80–105, 222.
Interblock gaps, 318–319, 331.
Intercalation product of permutations,

24–35.
Interchanging blocks of data, 619, 701.
Internal (branch) node, 181, 254, see

Extended binary tree.
Internal path length, 413, 434, 455, 502, 565.

generating function for, 621.
Internal searching, 396–481, 492–512,

513–541, 545–558.
summary, 545–547.

Internal sorting, 4–5, 73–179.
summary, 380–383.

Internet, iv, x.

Interpolation search, 419–420, 422, 425.
Interval-exchange sort, 128.
Interval heap, 645.
Intervals, 578.
Inverse in a group, 511.
Inverse modulo m, 517.
Inverse of a permutation, 13–14, 18, 48,

53–54, 74, 134, 596, 605.
for multisets, 32.

Inversion tables of a permutation, 11–12,
17–18, 108, 134, 349, 605, 613, 619.

Inversions of a permutation, 11–22, 32,
77, 82, 86–90, 97, 100, 103, 108,
111, 134, 156, 168, 178, 349, 353,
599, 676, 678, 733.

with equality, 699.
Inversions of tree labelings, 609, 733.
Inverted files, 560–563, 567, 569–570, 577.
Involution coding, 426.
Involutions, 18, 48, 54, 62–64, 66, 69.
Isaac, Earl Judson, 99.
Isaiah, son of Amoz ( ), 247.
Isbitz, Harold, 128.
Isidorus of Seville, Saint (San Isidoro

de Sevilla), 421.
Ismail, Mourad El Houssieny

( ), 601.
Isomorphic invariants, 590.
Isomorphism testing, 9.
Itai, Alon ( ), 707, 711.
Iverson, Kenneth Eugene, 110, 142, 388,

396, 422, 423, 454, 704.

JACM: Journal of the ACM, a publication
of the Association for Computing
Machinery since 1954, 440.

Jackson, James Richard, 407.
Jacobi, Carl Gustav Jacob, 20–21.
Jacquet, Philippe Pierre, 726.
JAE (Jump if rA even), 125–126.
Jainism, 23.
Janson, Carl Svante, 607, 627, 734, 736.
JAO (Jump if rA odd), 125–126.
Japanese mathematics, 36.
Je�rey, David John, 606.
Jensen, Johan Ludvig William Valdemar,

711.
Jewish mathematics, 23.
Jiang Ling ( ), 589.
Johansson, Kurt Ove, 611.
John, John Welliaveetil, 213, 663, 666.
Johnsen, Robert Lawrence, 512.
Johnsen, Thorstein Lunde, 297.
Johnson, Lyle Robert, 502, 578.
Johnson, Selmer Martin, 184, 186.
Johnson, Stephen Curtis, 555.
Johnson, Theodore Joseph, 488.
Joke, 571.
Jonassen, Arne Tormod, 713.
Josephus, Flavius, son of Matthias

( =
), 17, 21.

problem, 17–18, 592.
Juillé, Hugues René, 226.
Jump operators of MIX, 6.
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k-d trees, 565–566, 581, 746.
k-d tries, 576.
Kaas, Robert, 152.
Kabbalah, 23.
Kaehler, Edwin Bruno, 658.
Kalai, Gil ( ), 676.
Kaman, Charles Henry, 531, 532.
Kant, Immanuel, 395.
Kanter, David Philip, 677.
Kaplan, Aryeh ( ), 23.
Kaplan, Haim ( ), 615.
Kaplansky, Irving, 46.
Karlin, Anna Rochelle, 549.
Karp, Richard Manning, 105, 198, 287,

302, 306, 308–311, 315, 347, 352,
353–354, 356, 636, 668, 707.

KarpiÒski (= Karpinski), Marek
Mieczys≥aw, 454.

Katajainen, Jyrki Juhani, 649.
Kaufman, Marc Thomas, 483.
Kautz, William Hall, 572, 581, 670.
Kececioglu, John Dmitri, 614.
Kelly, Wayne Anthony, 213.
Kemp, Rainer, 287, 645.
Kerov, Sergei Vasilievich (

), 611.
Keys, 4, 392.
Keysorting, 74, 335, 373–376, 378.
Khizder, Leonid Abramovich (

), 479.
Kingston, Je�rey H., 454.
Kipling, Joseph Rudyard, 74.
Kirchho�, Gustav Robert, first law,

118, 127.
Kirkman, Thomas Penyngton, 577, 580.

triple systems, 580–581.
Kirkpatrick, David Galer, 213, 218, 663.
Kirschenhofer, Peter, 576, 634, 644, 726.
Kislitsyn, Sergei Sergeevich (

), 197, 209, 210,
212, 217, 661.

Klarner, David Anthony, 585.
Klein, Christian Felix, 745.
Klein, Rolf, 714.
Kleitman, Daniel J (Isaiah Solomon),

452, 454, 744.
Klerer, Melvin, 297, 388.
Knockout tournament, 141–142, 207,

210, 212.
Knott, Gary Don, 21, 434, 519, 529,

549, 709, 710.
Knuth, Donald Ervin ( ), ii, iv, vii,

8, 58, 152, 226, 297, 385, 389, 395,
398, 420, 422, 454, 478, 536, 585,
594, 600, 603, 606, 627, 634, 658,
670, 696, 702, 713, 722, 734, 736,
741, 742, 758, 762, 782.

Koch, Gary Grove, 578.
Koester, Charles Edward, 390.
Köhler, Peter, 669.

Kollár, Ľubor, 656, 660.
Komlós, János, 228, 549, 673, 740.
Konheim, Alan Gustave, 376, 505,

548, 732, 740.
Koornwinder, Tom Hendrik, 601.
Korn, Granino Arthur, 297, 388.
Körner, János, 513.
Korshunov, Aleksey Dmitrievich

( ),
669.

Kreweras, Germain, 733.
Kronecker, Leopold, 753.
Kronmal, Richard Aaron, 99.
Kronrod, Mikhail Aleksandrovich (

), 168.
Krutar, Rudolph Allen, 551.
Kruyswijk, Dirk, 744.
Kummer, Ernst Eduard, 739.
Kwan, Lun Cheung, 657.
KWIC index, 439–442, 446, 494.
La Poutré, Johannes Antonius (= Han), 747.
Labelle, Gilbert, 565.
Ladner, Richard Emil, 389.
Laforest, Louise, 565.
Lagrange (= de la Grange), Joseph Louis,

Comte, inversion formula, 555.
Laguerre, Edmond Nicolas, polynomials,

601.
LaMarca, Anthony George, 389.
Lambert, Johann Heinrich, 644.

series, 644.
Lampson, Butler Wright, 525.
Landauer, Walter Isfried, 482, 578.
Lander, Leon Joseph, 8.
Landis, Evgenii Mikhailovich (

), 459, 460.
Langston, Michael Allen, 702.
Lapko, Olga Georgievna (

), 782.
Laplace (= de la Place), Pierre Simon,

Marquis de, 64.
LARC Scientific Compiler, 2.
Large deviations, 636.
Largest-in-first-out, see Priority queues.
Larmore, Lawrence Louis, 454.
Larson, Per-Åke, 549, 741.
Lascoux, Alain, 670.
Last-come-first-served, 742.
Last-in-first-out, 148, 299, 305.
Latency time, 358–359, 376, 489, 562–563.
Latin language, 421.
Lattice, of bit vectors, 235.

of permutations, 13, 19, 22, 628.
of trees, 718.

Lattice paths, 86–87, 102–103, 112–113,
134, 579.

Lawler, Eugene Leighton, 207.
Lazarus, Roger Ben, 93.
Least-recently-used page replacement,

158, 488.
Least-significant-digit-first radix sort,

169–179, 351.
Leaves, 483, 486, 507.
Lee, Der-Tsai ( ), 566.
Lee, Tsai-hwa ( ), 388.
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Leeuwen, Jan van, 645.
Leeuwen, Marcus Aurelius Augustinus

van, 611.
Lefkowitz, David, 578.
Left-to-right (or right-to-left) maxima

or minima, 12–13, 27, 82, 86, 100,
105, 156, 624.

Leftist trees, 150–152, 157–158.
deletion from, 158.
insertion into, 150, 157.
merging, 150, 157.

Lehmer, Derrick Henry, 422.
Leibholz, Stephen Wolfgang, 673.
Leiserson, Charles Eric, 477.
Levcopoulos, Christos (

), 389.
Level of a tree node: The distance

to the root.
Levenshtein, Vladimir Iosifovich

( ),
585.

LeVeque, William Judson, 584.
Levitt, Karl Norman, 670.
Levy, Silvio Vieira Ferreira, vii.
Lexicographic order, 5, 6, 70, 169, 171, 178,

394, 420–421, 453, 567, 590, 614, 615.
lg: Binary logarithm, 206, 755.
Li Shan-Lan ( ), 36.
Liang, Franklin Mark, 722, 729.
Library card sorting, 7–8.
Liddell Hargreaves, Alice Pleasance, 584.
Liddy, George Gordon, 395.
LIFO, 148, 299, 305, see Stacks.
Lin, Andrew Damon, 547, 578.
Lin, Shen ( ), 188, 195, 202–206.
Lineal chart, 424.
Linear algorithm for median, 214–215, 695.
Linear algorithms for sorting, 5, 102,

176–179, 196, 616.
Linear arrangements, optimum, 408.
Linear congruential sequence, 383.
Linear hashing, 548–549.
Linear lists, 248, 385, 459, see also

List sorting.
representation of, 96–97, 163–164,

471–473, 479–480, 491, 547.
Linear order, 4, 181.
Linear probing, 526–528, 533–534, 536–539,

543–544, 547, 548, 551–553, 555, 556.
optimum, 532.

Ling, Huei ( ), 578.
Linial, Nathan ( ), 660.
Linked allocation, 74–75, 96, 99–102, 104,

164–165, 170–173, 399, 405, 459, 547.
Linn, John Charles, 425.
Lint, Jacobus Hendricus van, 729, 747.
Lissajous, Jules Antoine, 395.
List head, 267, 462.
List insertion sort, 95–98, 104, 380, 382.
List merge sort, 164–168, 183, 381, 382, 390.

List sorting, 74–75, 80, 164–168, 171–178,
382, 390, 698.

Littlewood, Dudley Ernest, 610, 612.
Littlewood, John Edensor, 704.
Litwin, Samuel, 578.
Litwin, Witold André, 548–549.
Livius, Titus, v.
Lloyd, Stuart Phinney, 395.
Load factor, 524, 542.
Load point, 319, 320.
Logan, Benjamin Franklin (= Tex), Jr., 611.
Logarithmic search, 410.
Logarithms, 206.

discrete, 10.
Logg, George Edward, 714.
Logical tape unit numbers, 271, 292–293.
Long runs, 47.
Longest common prefix, 446, 512.
Longest increasing subsequence, 66, 68, 614.
Longest match, 493, 512.
Loop optimization, 85, 104–105, 136,

156, 167, 397–398, 405, 418, 423,
425, 429, 551, 625.

Losers, 253–254, 257–258, 263, 267.
Louchard, Guy, 707, 713.
Lozinskii, Eliezer Leonid Solomonovich

( ,
), 647.

LSD: Least significant digit, 175.
Lucas, François Édouard Anatole, 611.

numbers Ln, 467, 708.
£uczak, Tomasz Jan, 734.
Lueker, George Schick, 742.
Luhn, Hans Peter, 440, 547.
£ukasiewicz, Jan, 395, 672.
Luke, Richard C., 547.
Lum, Vincent Yu-sun ( ), 520, 578.
Lynch, William Charles, 682, 709.

m-d tree, see k-d tree.
m-d trie, see k-d trie.
Machiavelli, Niccolò di Bernardo, 1.
MacLaren, Malcolm Donald, 176, 178,

179, 380, 618.
MacLeod, Iain Donald Graham, 617.
MacMahon, Percy Alexander, 8, 16–17, 20,

27, 33, 43, 45, 59, 61, 70, 600, 613, 653.
Master Theorem, 33–34.

Macro language, 457.
Magic trick, 370.
Magnetic tapes, 6–10, 248–251, 267–357,

403–407.
reliability of, 337.

Magnus, Wilhelm, 131.
Mahmoud, Hosam Mahmoud

( ), 713, 721.
Mahon, Maurice Harlang (= Magenta), xi.
Maier, David, 477.
Majewski, Bohdan Stanis≥aw, 513.
Major index, see Index.
Majorization, 406.
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Mallach, Efrem Gershon, 533.
Mallows, Colin Lingwood, 44, 603, 733.
Maly, Kurt, 721.
Manacher, Glenn Keith, 192, 204.
Maniac II computer, 187.
Mankin, Efrem S., 698.
Mann, Henry Berthold, 623.
Mannila, Heikki Olavi, 389.
Margoliash, Daniel Joseph, 573.
Markov (= Marko�), Andrei Andreevich

( ), the
elder, process, 340–341.

Marriage theorem, 747.
Marsaglia, George, 707.
Martin, Thomas Hughes, 487.
Martínez Parra, Conrado, 478, 634.
Marton, Katalin, 513.
Martzlo�, Jean-Claude, 36.
Mason, Perry, 1, 2.
Match, search for closest, 9, 394, 408,

563, 566, 581.
Matching, 747.
Math. Comp.: Mathematics of Computation

(1960– ), a publication of the American
Mathematical Society since 1965;
founded by the National Research
Council of the National Academy
of Sciences under the original title
Mathematical Tables and Other Aids
to Computation (1943–1959).

Mathsort, 79.
Matrix: A two-dimensional array.

representation of permutations, 14, 48.
searching in a, 207.
transpose of a, 6–7, 14, 567, 617.

Matsunaga, Yoshisuke ( ), 36.
Matula, David William, 216.
Mauchly, John William, 82, 346, 348,

386–387, 422.
Maximum-and-minimum finding, 218.
Maximum finding, 141, 209.
McAllester, Robert Linné, 282.
McAndrew, Michael Harry, 502.
McCabe, John, 402–403.
McCall’s Cook Book, 8, 568.
McCarthy, John, 8, 128, 167.
McCracken, Daniel Delbert, 388, 422.
McCreight, Edward Meyers, 480, 482,

483, 487–490, 578, 719.
McDiarmid, Colin John Hunter, 636,

642, 643.
McGeoch, Catherine Cole, 403.
McIlroy, Malcolm Douglas, 122, 177,

635, 652, 738.
McIlroy, Peter Martin, 177, 652.
McKellar, Archie Charles, 122, 378, 708.
McKenna, James, 266.
McNamee, Carole Mattern, 623.
McNutt, Bruce, 563–564.
Measures of disorder, 11, 22, 72, 134, 389.

Median, 122, 136, 214–215, 217–218,
238, 566, 695, 701.

linear algorithm for, 214–215, 695.
Median-of-three quickfind, 634.
Median-of-three quicksort, 122, 136,

138, 381, 382.
Mehlhorn, Kurt, 442, 454, 477, 489,

549, 713, 715, 718.
Meister, Bernd, 740.
Mellin, Robert Hjalmar, transforms,

133–134, 506, 644, 649.
Mendelson, Haim ( ), 728.
Merge exchange sort, 110–113, 134–135,

223, 226, 381, 382, 389.
Merge insertion sort, 184–187, 192,

193, 381, 389.
Merge numbers, 274.
Merge patterns, see Balanced merge,

Cascade merge, Oscillating sort,
Polyphase merge.

dual to distribution patterns,
345–348, 359.

for disks, 362–365, 376–377.
for tapes, 248–251, 267–317.
optimum, 302–311, 363–367, 376–377.
summary, 324–338.
tree representation of, 303–306, 309–311,

363–364, 377.
vector representation of, 302–303,

309, 310.
Merge replacement sort, 680.
Merge sorting, 98, 158–168; see List merge,

Natural merge, Straight merge.
external, see Merge patterns.

Merge-until-empty strategy, 287.
Merging, 385, 390, 480, 698.

k-way, 166, 252–254, 321–324, 339–343,
360–373, 379.

networks for, 223–226, 230–232, 237, 239.
with fewest comparisons, 197–207.

Mersenne, Marin, 23–24.opqrstuq, iv, vi, 782.
METAPOST, vii, 782.
Meyer, Curt, 20.
Meyer, Werner, 606.
Meyer auf der Heide, Friedhelm, 549.
Middle square, 515, 516.
Middle third, 240, 241.
Miles, Ernest Percy, Jr., 285.
Miltersen, Peter Bro, 230.
Minimax, 192, 195.
Minimean, 192, 195–196.
Minimum average cost, 192–197, 207,

215–216, 413, 663.
Minimum-comparison algorithms, 180–219.

for merging, 197–207.
for searching, 413–414.
for selection, 207–219.
for sorting, 180–197.

Minimum path length, 192, 195, 361.
weighted, 196, 337, 361, 438, 451, 458.

Minimum-phase tape sorting, 311.
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Minimum-space algorithms,
for merging, 168, 390, 702.
for rearranging, 178, 617.
for selection, 218.
for sorting, 79–80, 389.
for stable sorting, 390.

Minimum-stage tape sorting, 311.
Minimum-time algorithms,

for merging, 241.
for sorting, 235, 241.

Minker, Jack, 578.
MinuteSort, 390.
Mises, Richard, Edler von, 513.
Misspelled names, 394–395.
Mitchell, Oscar Howard, 69, 611.
MIX computer: A hypothetical machine

defined in Section 1.3, vi, 75, 382.
MIXAL: The MIX assembly language, 426.
MIXT tape units, 318–320, 330–331, 358.
MIXTEC disks and drums, 357–358, 562–563.
Miyakawa, Masahiro ( ), 727.
Möbius, August Ferdinand,

function µ(fi), 33.
Modified external path length, 502–503, 511.
Mo�at, Alistair, 389.
Molodowitch, Mariko, 742.
Monomial symmetric function, 609.
Monotone Boolean functions, 239.
Monotonic subsequences, 66, 68, 614.
Monotonicity property, 439.
Mönting, see Schulte Mönting.
Mooers, Calvin Northrup, 571.
Moore, Edward Forrest, 255, 263, 453–454.
Moore School of Electrical Engineering, 386.
Morgenthaler, John David, 713.
Morris, Robert, 548, 738, 741.
Morrison, Donald Ross, 498.
Morse, Samuel Finley Breese, code, 623.
Mortenson, John Albert, 684.
Moser, Leo, 64.
Most-significant-digit-first radix sort,

175–179.
Motzkin, Theodor (= Theodore) Samuel

( ), 704.
Move-to-front heuristic, 402–403,

405–406, 646.
MSD: Most significant digit, 175.
Muir, Thomas, 11.
Mullin, James Kevin, 573, 583.
Multi-attribute retrieval, 395, see Secondary

key retrieval.
Multidimensional binary search trees,

see k-d trees.
Multidimensional tries, see k-d tries.
Multihead bubble sort, 244–245.
Multikey quicksort, 389, 633, 728.
Multilist system, 561, 562, 578.
Multinomial coe�cients, 23, 30, 32, 457, 735.
Multiple list insertion sort, 99–102, 104–105,

196, 380, 382, 520.

Multiple-precision constants, 155, 566, 644,
648, 650, 713, 715, 726, 748–750.

Multiples of an irrational number mod 1,
xiv, 517–518, 550.

Multiprecision comparison, 6, 136, 169.
Multiprocessing, 267, 390.
Multireel files, 337, 342, 348, 356.
Multiset: Analogous to a set, but elements

may appear more than once, 22, 158,
211, 217, 241, 298, 648, 670, 744.

ordering, 311.
permutations, 22–35, 42–45, 66.
sum and union, 597.

Multivalued logic, 672.
Multiway trees, 453, 481–491, 707,

see also Tries.
Multiword keys, 136, 168.
Munro, James Ian, 218, 435, 478, 533, 583,

655, 708, 734, 741, 742.
Muntz, Richard, 482, 490.
Muroga, Saburo ( ), 729.
Music, 23–24.
Musser, David Rea, 122.
Myers, Eugene Wimberly, Jr., 583.

Nagler, Harry, 82, 347, 646, 648.
Nakayama, Tadasi ( ), 69, 612.
Naor, Simeon (= Moni;

, ), 708.
Narasimhan, Balasubramanian

( ), 707.
Nārāyan. a Pan. d. ita, son of Nr.siṁha

(nArAyZ pE⌫Xt, n
⇥

Es\h-y p

�

/,), 270.
Natural correspondence between forests

and binary trees, 706.
Natural merge sort, 160–162, 167.
Natural selection, 259–261, 263–266.
Nearest neighbors, 563, 566.
Needle, 1, 569, 572, 573–574.
Negative links, 164, 175.
Neighbors of a point, 563, 566.
Neimat, Marie-Anne Kamal

( ), 549.
Nelson, Raymond John, 225, 226, 244, 245.
Netto, Otto Erwin Johannes Eugen,

286, 592.
Networks of comparators,

for merging, 223–226, 230–232, 237, 239.
for permutations, 243–244.
for selection, 232–234, 238.
for sorting, 219–247.
primitive, 240, 668.
standard, 234, 237–238, 240, 244.
with minimum delay, 228–229, 241.

Networks of workstations, 267, 390.
Neumann, John von (= Margittai Neumann

János), 8, 159, 385.
Newcomb, Simon, 42, 45.
Newell, Allen, 729.
Newman, Donald Joseph, 505.
Nielsen, Jakob, 511–512.
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Nievergelt, Jürg, 476, 480, 549, 564.
Nijenhuis, Albert, 70.
Nikitin, Andrei Ivanovich (

), 351.
Nitty-gritty, 317–343, 357–379.
Nodine, Mark Howard, 698.
Non-messing-up theorem, 90, 238, 668–669.
Nondeterministic adversary, 219.
Nörlund, Niels Erik, 638.
Normal deviate, 69.
Normal distribution, approximately, 45, 650.
Norwegian language, 520.
Noshita, Kohei ( ), 213, 218.
Notations, index to, 752–756.
Novelli, Jean-Christophe, 614.
NOW-Sort, 390.
NP-complete problems, 242.
Nsort, 390.
Null permutation, 25, 36.
Number-crunching computers, 175,

381, 389–390.
Numerical instability, 41.
Nyberg, Christopher, 390.

Oberhettinger, Fritz, 131.
Oblivious algorithms, 219–220.
O’Connor, Daniel Gerard, 225.
Octrees, 565.
Odd-even merge, 223–226, 228, 230,

243, 244.
Odd-even transposition sort, 240.
Odd permutations, 19, 196.
Odell, Margaret King, 394.
Odlyzko, Andrew Michael, 630, 715.
Oettinger, Anthony Gervin, 491.
Okoma, Seiichi ( ), 644.
Oldham, Je�rey David, vii.
Olivié, Hendrik Johan, 477.
Olson, Charles Arthur, 544.
Omega network, 227, 236–237.
One-sided height-balanced trees, 480.
One-tape sorting, 353–356.
O’Neil, Patrick Eugene, 489.
Ones’ complement notation, 177.
Online merge sorting, 167.
Open addressing, 525–541, 543–544,

548, 551–557.
optimum, 539–541, 555–556.

Operating systems, 149, 158, 338.
Optimization of loops, 85, 104–105, 136,

156, 167, 397–398, 405, 418, 423,
425, 429, 551, 625.

Optimization of tests, 406.
Optimum binary search trees, 436–454,

456–458, 478.
Optimum digital search trees, 511.
Optimum exchange sorting, 196.
Optimum linear arrangements, 408.
Optimum linear probing, 532.
Optimum linked trie, 508.

Optimum merge patterns, 302–311,
363–367, 376–377.

Optimum open addressing, 539–541,
555–556.

Optimum permutations, 403–408.
Optimum polyphase merge, 274–279,

286, 337.
Optimum searching, 413, 425, 549.
Optimum sorting, 180–247.
OR (bitwise or), 529, 571.
Order ideals, 669.
Order relations, 4.
Order statistics, 6, 44.
Ordered hashing, 531, 741.
Ordered partitions, 286–287.
Ordered table, searching an, 398–399,

409–426.
Ordering of permutations, 19, 22, 105, 670.
Organ-pipe order, 407, 452, 704.
Oriented trees, 47, 71, 599.
Orosz, Gábor, 745.
O’Rourke, Joseph, 566.
Orthogonal range queries, 564, 566.
Oscillating radix sort, 347.
Oscillating sort, 311–317, 328–329, 334,

337, 338, 342, 389.
Overflow, arithmetic, 6, 519, 585.

in B-trees, 487–490.
in hash tables, 522, 525, 526, 529,

542–543, 547, 551.
Overmars, Markus (= Mark) Hendrik, 583.
Own coding, 339.

P -way merging, 166, 252–254, 321–324,
339–343, 360–373, 379.

Packing, 721.
Page, Ralph Eugene, 385.
Paging, 158, 378, 481–482, 541, 547.
Pagodas, 152.
Paige, Robert Allan, 652.
Painter, James Allan, 256.
Pairing heaps, 152.
Pak, Igor Markovich (

), 70, 614.
Palermo, Frank Pantaleone, 729.
Pallo, Jean Marcel, 718.
Panny, Wolfgang Christian, 629, 630, 648.
Papernov, Abram Alexandrovich (

), 91.
Pappus of Alexandria (

), 593.
Parallel processing, 267, 370, 390, 693.

merging, 231, 241.
searching, 425.
sorting, 113, 222–223, 228–229,

235, 390, 671.
Pardo, see Trabb Pardo.
Pareto, Vilfredo, 401.
Pareto distribution, 401, 405, 710.
Parker, Ernest Tilden, 8.
Parkin, Thomas Randall, 8.
Parking problem, 552, 553, 742.
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Parsimonious algorithms, 391.
Partial match retrieval, 559–582.
Partial ordering, 31–32, 68–69, 183–184,

187, 216, 217.
of permutations, 19, 22, 105, 670.

Partition-exchange sort, 114.
Partitioning a file, 113–115, 123–124,

128, 136.
into three blocks, 137.

Partitions of a set, 605, 653.
Partitions of an integer, 19–20, 504,

613, 621, 697, 700.
ordered, 286–287.
plane, 69–70.

Pasanen, Tomi Armas, 649.
Pass: Part of the execution of an algorithm,

traversing all the data once, 5, 268, 272.
Patashnik, Oren, 762.
Patents, vi, 225, 231, 244, 255, 312, 315–316,

369, 384–385, 394, 675, 729.
Paterson, Michael Stewart, 152, 215, 230,

594, 655, 689, 736.
Path length of a tree, see External path

length, Internal path length.
minimum, 192, 195, 361.
weighted, 196, 337, 361, 438, 451, 458.
weighted by degrees, 363–367.

Paths on a grid, 86–87, 102–103, 112–113,
134, 579.

Patricia, 489, 498–500, 505–506, 508,
510–511, 576, 726.

Patt, Yale Nance, 508.
Pattern matching in text, 511, 572, 578.
Patterns in permutations, 61.
Patterson, David Andrew, 390.
Patterson, George William, 386, 422.
Peaks of a permutation, 47, 604.
Peczarski, Marcin Piotr, 192.
Pentagonal numbers, 15, 19.
Percentiles, 136, 207–219, 472, see

also Median.
Perfect balancing, 480.
Perfect distributions, 268–272, 276–277,

286, 288–289.
Perfect hash functions, 513, 549.
Perfect shu�es, 237.
Perfect sorters, 245.
Periodic sorting networks, 243.
Perl, Yehoshua ( ), 673, 707.
Permanent, 660.
Permutahedron, 13, 18, 240, 593.
Permutation in place, 79–80, 178.
Permutation networks, 243–244.
Permutations, 11–72, 579.

2-ordered, 86–88, 103, 112–113, 134.
cycles of, 25–32, 62, 156, 617, 628,

639–640, 657.
enumeration of, 12, 22–24.
even, 19, 196.
factorization of, 25–35.

fixed points of, 62, 66, 617.
indexes of, 16–17, 21–22, 32.
intercalation product of, 24–35.
inverses of, 13–14, 18, 48, 53–54, 74,

134, 596, 605.
inversions of, see Inversion tables,

Inversions.
lattice of, 13, 19, 22, 628.
matrix representations of, 14, 48.
of a multiset, 22–35, 42–45, 66.
optimum, 403–408.
partial orderings of, 19, 22, 105, 670.
pessimum, 405.
readings of, 46–47.
runs of, 35–47, 248, 259–266, 387.
signed, 615.
two-line notation for, 13–14, 24, 35,

43–44, 51–54, 64–65.
up-down, 68.

Persistent data structures, 583.
Perturbation trick, 404.
Pessimum binary search trees, 457, 711.
Peter, Laurence Johnston, principle, 143.
Peterson, William Wesley, 396, 422,

526, 534, 538, 548.
Petersson, Ola, 389.
Pevzner, Pavel Arkadjevich (

), 615.
Peyster, James Abercrombie de, Jr., 544.
Phi („), xiv, 138, 517–518, 748–749.
Philco 2000 computer, 256.
Pi (fi), 372, 520, 748–749.

as “random” example, 17, 370, 385,
547, 552, 733.

Picard, Claude François, 183, 196, 215.
Ping-pong tournament, 142.
Pinzka, Charles Frederick, 728.
Pipeline computers, 175, 381, 389–390.
Pippenger, Nicholas John, 215, 234, 549.
Pitfalls, 41, 707, 729.
Pittel, Boris Gershon (

), 713, 721, 728, 734.
PL/I language, 339, 532.
Plane partitions, 69–70.
Plankalkül, 386.
Plaxton, Charles Gregory, 623, 667.
Playing cards, 42–45, 169, 178, 370.
Plücker, Julius, 745.
Poblete Olivares, Patricio Vicente, 646,

740, 741, 742.
Pocket sorting, 343.
Podderjugin, Viktor Denisowitsch

( ),
548.

Pohl, Ira Sheldon, 218, 663.
Pohlig, Stephen Carl, 591.
Point quadtrees, 566.
Poisson, Siméon Denis, distribution, 555.

transform, 734.
Polish prefix notation, 3.
Pollard, John Michael, 591, 669, 672.
Pólya, György (= George), 599, 704.
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Polygons, regular, 289.
Polynomial arithmetic, 165, 520.
Polynomial hashing, 520, 550.
Polyphase merge sorting, 268–287, 297,

298, 300, 311, 325–326, 333, 342,
346, 389, 425.

Caron variation, 279–280, 286–287.
optimum, 274–279, 286, 337.
read-backward, 300–302, 308, 328,

334, 338, 342.
tape-splitting, 282–285, 287, 298,

326–327, 333, 338.
Polyphase radix sorting, 348.
Pool, Jan Albertus van der, 739.
Pool of memory, 369.
Poonen, Bjorn, 104.
Porter, Thomas K, 642.
Post o�ce, 175.
Post-o�ce trees, 563–564, 746.
Posting, see Insertion.
Pouring liquid, 672.
Power of merge, 676, see Growth ratio.
Powers, James, 385.
Pratt, Richard Don, 310.
Pratt, Vaughan Ronald, 91, 104, 245,

457, 622, 675, 701.
sorting method, 91–93, 104, 113, 235.

Prediction, see Forecasting.
Preferential arrangements, see Weak

orderings.
Prefetching, 369–373.
Prefix, 492.
Prefix code, 452–453.

for all nonnegative integers, 6.
Prefix search, see Trie search.
Preorder merge, 307–309.
Prestet, Jean, 24.
Prime numbers, 156, 516, 529, 557, 627.
Primitive comparator networks, 240, 668.
Principle of optimality, 363, 438.
Pring, Edward John, 564.
Prins, Jan Fokko, 618.
Priority deques, 157.
Priority queues, 148–152, 156–158,

253, 646, 705.
merging, 150, 157.

Priority search trees, 578.
Probability density functions, 177.
Probability distributions, 105, 399–401.

beta, 586.
binomial, 100–101, 341, 539, 555.
fractal, 400.
normal, 45, 69, 650.
Pareto, 401, 405, 710.
Poisson, 555.
random, 458.
uniform, 6, 16, 20, 47, 127, 606.
Yule, 401, 405.
Zipf, 400, 402, 435, 455.

Probability generating functions, 15–16,
102, 104, 135, 177, 425, 490, 539,
553, 555, 739.

Prodinger, Helmut, 576, 634, 644, 648, 726.
Product of consecutive binomial

coe�cients, 612.
Proof of algorithms, 49–51, 112–113,

315, 323, 355, 677.
Prusker, Francis, 377.
Prywes, Noah Shmarya, 578.
Pseudolines, 670.
Psi function Â(z), 637, 751.
Puech, Claude Henri Clair Marie Jules,

565, 566, 576.
Pugh, William Worthington, Jr., 213, 478.
Punched cards, 169–170, 175, 383–385.
Pyke, Ronald, 732.

q-multinomial coe�cients, 32.
q-nomial coe�cients, 32, 594, 595.
q-series, 20, 32, 594–596, 644.
Quadrangle inequality, 457.
Quadratic probing, 551.
Quadratic selection, 141.
Quadruple systems, 581, 746.
Quadtrees, 565–566, 581, 746.
Queries, 559–582.
Questionnaires, 183.
Queues, 135, 148–149, 156, 171, 299,

310, 322–323.
Quickfind, 136.

median-of-three, 634.
Quicksort, 113–122, 135–138, 148, 159,

246, 349–351, 356, 381, 382, 389,
389, 431, 698.

binary, see Radix exchange.
median-of-three, 122, 136, 138, 381, 382.
multikey, 389, 633, 728.
with equal keys, 136, 635–636.

Rabbits, 424.
Rabin, Michael Oser ( ), 242.
Radix-2 sorting, 387.
Radix exchange sort, 122–128, 130–133,

136–138, 159, 177, 351, 382, 389,
500–501, 509, 698.

with equal keys, 127–128, 137.
Radix insertion sort, 176–177.
Radix list sort, 171–175, 382.
Radix sorting, 5, 169–179, 180–181,

343–348, 351, 359, 374, 381, 385,
389, 421, 502, 698.

dual to merge sorting, 345–348, 359.
Radke, Charles Edwin, 297.
Räihä, Kari-Jouko, 717.
Railway switching, 168.
Rais, Bonita Marie, 726.
Raman Rajeev, 634.
Raman, Venkatesh (

), 655.
Ramanan, Prakash Viriyur (

), 218.
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Ramanujan Iyengar, Srinivasa
( ),

function Q(n), 701.
Ramshaw, Lyle Harold, 729.
Random data for sorting, 20, 47, 76,

383, 391.
Random probability distribution, 458.
Random probing, independent, 548, 555.

with secondary clustering, 548, 554.
Randomized adversary: An adversary

that flips coins, 219.
Randomized algorithms, 121–122, 351,

455, 517, 519, 557–558.
Randomized binary search trees, 478.
Randomized data structures, vii, 478.
Randomized striping, 371–373, 379, 698.
Randow, Rabe-Rüdiger von, 606.
Randrianarimanana, Bruno, 713.
Raney, George Neal, 297, 298.
Range queries, 559, 578.
RANK field, 471, 476, 479, 713, 718.
Ranking, 181, see Sorting.
Raver, Norman, 729.
Ravikumar, Balasubramanian

( ), 673.
Rawlings, Don Paul, 595.
Ray-Chaudhuri, Dwijendra Kumar (

), 578.
Read-back check, 360.
Read-backward balanced merge,

327–328, 334.
Read-backward cascade merge, 328, 334.
Read-backward polyphase merge, 300–302,

308, 328, 334, 338, 342.
Read-backward radix sort, 346–347.
Read-forward oscillating sort, 315–316,

329, 334.
Reading tape backwards, 299–317,

349, 356, 387.
Readings of a permutation, 46–47.
Real-time applications, 547.
Rearrangements of a word, see Permutations

of a multiset.
Rearranging records in place, 80, 178.
Rebalancing a tree, 461, 463–464, 473–474,

479; see also Reorganizing.
Reciprocals, 420.
Records, 4, 392.
Recurrence relations, techniques for solving,

120, 135, 137, 168, 185–186, 205–206,
224–225, 283, 356, 424, 430–431,
467, 490, 502, 506, 604–605, 638–639,
648, 674, 688, 725, 737.

Recurrence relations for strings, 274–275,
284, 287, 308.

Recursion induction, 315.
Recursion versus iteration, 168, 313, 717.
Recursive methods, 114, 214, 218, 243, 313,

350, 452, 592, 596, 713, 715, 717.
Red-black trees, 477.

Redundant comparisons, 182, 240, 242,
245–246, 391.

Reed, Bruce Alan, 643, 713.
Reference counts, 534.
Reflection networks, 670.
Régnier, Mireille, 565, 632.
Regular polygons, 289.
Reiner, Victor Schorr, 719.
Reingold, Edward Martin ( ,

), 207, 476, 480, 715.
Relaxed heaps, 152.
Remington Rand Corporation, 385, 387.
Removal, see Deletion.
Reorganizing a binary tree, 458, 480.
Replacement selection, 212, 253–266,

325, 329, 331–332, 336, 347, 348,
360, 364–365, 378.

Replicated blocks, 489.
Replicated instructions, 398, 418, 429,

625, 648, 677.
Reservoir, 259–261, 265.
Restructuring, 480.
Reversal of data, 65, 72, 310, 670, 701.
Reverse lexicographic order, 394.
Rewinding tape, 279–287, 297, 299–300, 316,

319–320, 326, 331, 342, 407.
Ribenboim, Paulo, 584.
Rice, Stephan Oswald, 138.
Richards, Ronald Cli�ord, 479.
Richmond, Lawrence Bruce, 726.
Riemann, Georg Friedrich Bernhard,

integration, 177, 652.
Riesel, Hans Ivar, 406.
Right-threaded trees, 267, 454–455, 464.
Right-to-left (or left-to-right) maxima

or minima, 12–13, 27, 82, 86, 100,
105, 156, 624.

Riordan, John, 39, 46, 679, 732, 733, 738.
RISC computers, 175, 381, 389–390.
Rising, Hawley, 128.
Rivest, Ronald Linn, 214, 215, 389, 403,

477, 573–576, 580, 747.
Roberts, Charles Sheldon, 573.
Robin Hood hashing, 741–742.
Robinson, Gilbert de Beauregard, 58, 60.
Robson, John Michael, 565, 713.
Rochester, Nathaniel, 547.
Rodgers, William Calhoun, 704.
Rodrigues, Benjamin Olinde, 15, 592.
Roebuck, Alvah Curtis, 757.
Rogers, Lawrence Douglas, 707.
Rohnert, Hans, 549.
Rollett, Arthur Percy, 593.
Romik, Dan ( ), 614.
Rooks, 46, 69.
Rose, Alan, 672.
Roselle, David Paul, 47, 597.
Rosenstiehl, Pierre, 593.
Rösler, Uwe, 632.
Rosser, John Barkley, 672.
Rost, Hermann, 614, 671.
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Rotations in a binary tree, 481.
double, 461, 464, 477.
single, 461, 464, 477.

Rotem, Doron ( ), 61.
Rothe, Heinrich August, 14, 48, 62, 592.
Rouché, Eugène, theorem, 681.
Roura Ferret, Salvador, 478.
Roving pointer, 543.
Rovner, Paul David, 578.
Royalties, use of, 407.
Rubin, Herman, 728.
Rudolph, Lawrence Set, 673.
Runs of a permutation, 35–47, 248,

259–266, 387.
Russell, Robert Cli�ord, 394.
Russian roulette, 21.
Rustin, Randall Dennis, 315, 353.
Rytter, Wojciech, 454.

Sable, Jerome David, 578.
Sackman, Bertram Stanley, 279, 684.
Sagan, Bruce Eli, 48.
Sager, Thomas Joshua, 513.
Sagiv, Yehoshua Chaim

( ), 721.
Sagot, Marie-France, 615.
Saks, Michael Ezra, 452, 660, 673.
Salveter, Sharon Caroline, 477.
Salvy, Bruno, 565.
Samadi, Behrokh ( ), 721.
Samet, Hanan ( ), 566.
Samplesort, 122, 720.
Sampling, 587.
Samuel, son of Elkanah

( ), 481.
Samuel, Arthur Lee, 547.
Sandelius, David Martin, 656.
Sanko�, David Lawrence, 614.
Sapozhenko, Alexander Antonovich

( ),
669.

Sarnak, Neil Ivor, 583.
Sasson, Azra ( ), 369.
Satellite information: Record minus

key, 4, 74.
Satisfiability, 242, 666.
Saul, son of Kish ( ), 481.
Sawtooth order, 452.
Sawyer, Thomas, 747.
SB-tree, 489.
SB-tree, 489.
Scatter storage, 514.
Schachinger, Werner, 576.
Schä�er, Alejandro Alberto, 708.
Scha�er, Russel Warren, 155, 157, 645.
Schay, Géza, Jr., 538, 555, 729.
Schensted, Craige Eugene (= Ea Ea),

57–58, 66.
Scherk, Heinrich Ferdinand, 644.
Schkolnick, Mario, 721.

Schlegel, Stanislaus Ferdinand Victor, 270.
Schlumberger, Maurice Lorrain, 366.
Schmidt, Jeanette Pruzan, 708, 742.
Schneider, Donovan Alfred, 549.
Schneider-Kamp, Peter Jan (= Jan Peter),

226.
Schönhage, Arnold, 215, 218.
Schott, René Pierre, 713.
Schreier, Jozef, 209.
Schulte Mönting, Jürgen, 192, 659.
Schur, Issai, function, 611–612.
Schützenberger, Marcel Paul, 17, 21, 39,

55, 57–58, 66, 68, 70, 670.
Schwartz, Eugene Sidney, 401.
Schwartz, Jules Isaac, 128.
Schwiebert, Loren James, II, 229.
Scoville, Richard Arthur, 47.
Scrambling function, 517, 590, 709.
Search-and-insertion algorithm, 392.
Searching, 392–583; see External searching,

Internal searching; Static table
searching, Symbol table algorithms.

by comparison of keys, 398–399,
409–491, 546–547.

by digits of keys, 492–512.
by key transformation, 513–558.
for closest match, 9, 394, 408, 563,

566, 581.
for partial match, 559–582.
geometric data, 563–566.
history, 395–396, 420–422, 453,

547–549, 578.
methods, see B-trees, Balanced trees,

Binary search, Chaining, Fibonaccian
search, Interpolation search, Open
addressing, Patricia, Sequential search,
Tree search, Trie search.

optimum, 413, 425, 549, see also

Optimum binary search trees, Optimum
digital search trees.

parallel, 425.
related to sorting, v, 2, 393–394, 409, 660.
text, 511, 572, 578.
two-dimensional, 207.

Sears, Richard Warren, 757.
Secant numbers, 610–611.
Secondary clustering, 529, 551, 554.
Secondary hash codes, 741.
Secondary key retrieval, 395, 559–582.
Sedgewick, Robert, 91, 93, 95, 114, 115, 122,

136, 152, 155, 157, 477, 512, 623, 629,
630, 633, 638, 645, 674, 726.

Seeding in a tournament, 208.
Seek time, 358, 362–365, 368–369,

407, 562–563.
Sefer Yetzirah ( ), 23.
Seidel, Philipp Ludwig von, 611.
Seidel, Raimund, 478.
Selection of t largest, 218–219, 408.

networks for, 232–234, 238.
Selection of tth largest, 136, 207–219, 472.

networks for, 234, 238.
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Selection sorting, 54–55, 73, 138–158, 222.
Selection trees, 141–144, 252, 256–258.
Self-adjusting binary trees, see Splay trees.
Self-inverse permutations, 599, see

also Involutions.
Self-modifying programs, 85, 107, 174, 640.
Self-organizing files, 401–403, 405–406,

478, 521, 646.
Selfridge, John Lewis, 8.
Senko, Michael Edward, 487.
Sentinel: A special value placed in a table,

designed to be easily recognizable
by the accompanying program, 4,
105, 159, 252, 308, 387.

Separation sorting, 343.
Sequential allocation, 96, 149, 163–164,

170–171, 386, 459.
Sequential file processing, 2–3, 6–10, 248.
Sequential search, 396–409, 423.
Sets, testing equality, 207.

testing inclusion, 393–394.
Sevcik, Kenneth Clem, 564.
Seward, Harold Herbert, 79, 170, 255,

387, 670, 696.
Sexagesimal number system, 420.
Seymour, Paul Douglas, 402.
Shackleton, Patrick, 136.
Shadow keys, 588.
Shanks, Daniel Charles, 591.
Shannon, Claude Elwood, Jr., 442, 457, 712.
Shapiro, Gerald Norris, 226–227, 229, 243.
Shapiro, Henry David, 668.
Shapiro, Louis Welles, 607.
Shar, Leonard Eric, 416, 423, 706.
Shasha, Dennis Elliott, 488.
Shearer, James Bergheim, 660.
Sheil, Beaumont Alfred, 457.
Shell, Donald Lewis, 83, 93, 279.
Shellsort, 83–95, 98, 102–105, 111, 148,

380, 382, 389, 669, 698.
Shepp, Lawrence Alan, 611.
Sherman, Philip Martin, 492.
Shields, Paul Calvin, 728.
Shift-register device, 407.
Shifted tableaux, 67.
Shockley, William Bradford, 668.
Sholmov, Leonid Ivanovich (

), 351.
Shrairman, Ruth, 152.
Shrikhande, Sharadchandra Shankar
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X⇤), 746.
Shu�e network, 227, 236–237.
Shu�ing, 7, 237.
SICOMP: SIAM Journal on Computing,

published by the Society for Industrial
and Applied Mathematics since 1972.

Sideways addition, 235, 643, 644, 717.
Siegel, Alan Richard, 708, 742.
Siegel, Shelby, 623.
Sifting, 80, see Straight insertion.

Siftup, 70, 145–146, 153–154, 157.
Signed magnitude notation, 177.
Signed permutations, 615.
Silicon Graphics Origin2000, 390.
Silver, Roland Lazarus, 591.
Silverstein, Craig Daryl, 152.
Simon, István Gusztáv, 642.
Simulation, 351–353.
Singer, Theodore, 279.
Singh, Parmanand (prmAn⌃d Es�h), 270.
Single hashing, 556–557.
Single rotation, 461, 464, 477.
Singleton, Richard Collom, 99, 115,

122, 136, 572, 581.
Sinking sort, 80, 106, see Straight insertion.
Skew heaps, 152.
Skip lists, 478.
Slagle, James Robert, 704.
SLB (shift left rAX binary), 516, 529.
Sleator, Daniel Dominic Kaplan, 152,

403, 478, 583, 718.
Sloane, Neil James Alexander, 479.
S≥upecki, Jerzy, 209.
Smallest-in-first-out, see Priority queues.
Smith, Alan Jay, 168, 695.
Smith, Alfred Emanuel, 392.
Smith, Cyril Stanley, 593.
Smith, Wayne Earl, 405.
Snow job, 255–256, 260–261, 263–266.
Snyder Holberton, Frances Elizabeth,

324, 386, 387.
Sobel, Milton, 212, 215, 216, 217, 218.
Sobel, Sheldon, 311, 316.
SODA: Proceedings of the ACM–SIAM

Symposia on Discrete Algorithms,
inaugurated in 1990.

Software, 387–390.
Solitaire (patience), 42–45.
Sort generators, 338–339, 387–388.
Sorting (into order), 1–391; see External

sorting, Internal sorting; Address
calculation sorting, Enumeration
sorting, Exchange sorting, Insertion
sorting, Merge sorting, Radix sorting,
Selection sorting.

adaptive, 389.
by counting, 75–80.
by distribution, 168–179.
by exchanging, 105–138.
by insertion, 73, 80–105, 222.
by merging, 98, 158–168.
by reversals, 72.
by selection, 138–158.
history, 251, 383–390, 421.
in O(N) steps, 5, 102, 176–179, 196, 616.
into unusual orders, 7–8.
methods, see Binary insertion sort, Bitonic

sort, Bubble sort, Cocktail-shaker sort,
Comparison counting sort, Distribution
counting sort, Heapsort, Interval
exchange sort, List insertion sort, List
merge sort, Median-of-three quicksort,
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Merge exchange sort, Merge insertion
sort, Multiple list insertion sort, Natural
merge sort, Odd-even transposition sort,
Pratt sort, Quicksort, Radix exchange
sort, Radix insertion sort, Radix list
sort, Samplesort, Shellsort, Straight
insertion sort, Straight merge sort,
Straight selection sort, Tree insertion
sort, Tree selection sort, Two-way
insertion sort; see also Merge patterns.

networks for, 219–247.
optimum, 180–247.
parallel, 113, 222–223, 228–229,

235, 390, 671.
punched cards, 169–170, 175,

383–385, 694.
related to searching, v, 2, 393–394,

409, 660.
stable, 4–5, 17, 24, 25, 36–37, 79, 102, 134,

155, 167, 347, 390, 584, 615, 653.
topological, 9, 31–32, 62, 66–67, 187,

216, 393, 593.
two-line arrays, 34.
variable-length strings, 177, 178, 489, 633.
with one tape, 353–356.
with two tapes, 348–353, 356.

Sós, Vera Turán Pálné, 518, 747.
Soundex, 394–395.
Spacings, 458.
Sparse arrays, 721–722.
Spearman, Charles Edward, 597.
Speedup, see Loop optimization.
Spelling correction, 394, 573.
Sperner, Emanuel, theorem, 744.
Splay trees, 478.
Splitting a balanced tree, 474–475, 480.
Sprugnoli, Renzo, 513.
Spruth, Wilhelm Gustav Bernhard, 538, 555.
Spuler, David Andrew, 711.
SRB (shift right rAX binary), 125–126,

134, 411.
Stable merging, 390.
Stable sorting, 4–5, 17, 24, 25, 36–37,

79, 102, 134, 155, 167, 347, 390,
584, 615, 653.

Stacks, 21, 60, 114–117, 122, 123–125, 135,
148, 156, 168, 177, 299, 310, 350, 473.

Stacy, Edney Webb, 704.
Staël-Holstein, Anne Louise Germaine

Necker, Baronne de, 589.
Standard networks of comparators, 234,

237–238, 240, 244.
Stanfel, Larry Eugene, 457.
Stanley, Richard Peter, 69, 600, 605,

606, 670, 671.
Stasevich, Grigory Vladimirovich (

), 91.
Stasko, John Thomas, 152.
Static table searching, 393, 409–426,

436–458, 492–496, 507–508, 513–515.

Stearns, Richard Edwin, 351, 356.
Steiner, Jacob, 745.
Steiner triple systems, 576–577,

580–581, 745.
Steinhaus, Hugo Dyonizy, 186, 209, 422, 518.
Stepdowns, 160, 262.
Stevenson, David Kurl, 671.
Stirling, James,

approximation, 63, 129, 182, 197.
numbers, 45, 175, 455, 602, 653,

679, 739, 754.
STOC: Proceedings of the ACM

Symposia on Theory of Computing,
inaugurated in 1969.

Stockmeyer, Paul Kelly, 202.
Stone, Harold Stuart, 237, 425.
Stop/start time, 319–320, 331, 342.
Stoyanovskii, Alexander Vasil’evich

(
), 70, 614.

Straight insertion sort, 80–82, 96, 102,
105, 110, 116–117, 127, 140, 148, 163,
222–223, 380, 382, 385, 386, 390, 676.

Straight merge sort, 162–163, 167,
183, 193, 387.

Straight selection sort, 110, 139–140, 148,
155–156, 381, 382, 387, 390.

Stratified trees, 152.
Straus, Ernst Gabor, 704.
Strings: Ordered subsequences, 248,

see Runs.
Strings: Sequences of items, 22, 27–28,

72, 248, 494.
recurrence relations for, 274–275,

284, 287, 308.
sorting, 177, 178, 489, 633.

Striping, 342, 370–373, 378, 379, 389, 698.
Strong, Hovey Raymond, Jr., 549.
Strongly T -fifo trees, 310–311, 345, 348.
Successful searches, 392, 396, 532, 550.
Sue, Je�rey Yen ( ), 693.
Suel, Torsten, 623, 667.
Sugito, Yoshio ( ), 727.
Sum of uniform deviates, 47.
Summation factor, 120.
Sun SPARCstation, 782.
Superblock striping, 370, 371, 379.
Superfactorials, 612.
Superimposed coding, 570–573, 579.
Surnames, encoding, 394–395.
Sussenguth, Edward Henry, Jr., 496.
åwierczkowski, Stanis≥aw S≥awomir, 518.
Swift, Jonathan, vii.
Sylvester, James Joseph, 622.
Symbol table algorithms, 3, 426–435,

455, 496–512, 520–558.
Symmetric binary B-trees, 477.
Symmetric functions, 239, 608–609.
Symmetric group, 48, see Permutations.
Symmetric order: Left subtree, then root,

then right subtree, 412, 427, 658.
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Symvonis, Antonios (
), 702.

SyncSort, 369, 371, 699.
Szekeres, György (= George), 66.
Szemerédi, Endre, 228, 549, 673, 740.
Szpankowski, Wojciech, 726, 727, 728.

T -fifo trees, 310–311.
strongly, 310–311, 345, 348.

T -lifo trees, 305–310, 346, 348.
Tableaux, 47–72, 240, 670–671.
Tables, 392.

of numerical quantities, 748–751.
Tag sorting, see Keysorting.
Tail inequalities, 379, 636.
Tainiter, Melvin, 740.
Takács, Lajos, 745.
Tamaki, Jeanne Keiko ( ), 454.
Tamari, Dov ( ), born Bernhard

Teitler, 718.
Tamminen, Markku, 176–177, 179.
Tan, Kok Chye ( ), 457, 711.
Tangent numbers, 602, 610–611.
Tanner, Robert Michael, 660.
Tannier, Eric, 615.
Tanny, Stephen Michael, 606.
Tape searching, 403–407.
Tape splitting, 281–287.

polyphase merge, 282–285, 287, 298,
326–327, 333, 338.

Tapes, see Magnetic tapes.
Tardiness, 407.
Tarjan, Robert Endre, 152, 214, 215,

403, 477, 478, 549, 583, 590, 649,
652, 713, 718, 722.

Tarter, Michael Ernest, 99.
Tarui, Jun ( ), 230.
Telephone directories, 409, 561, 573.
Tengbergen, Cornelia van Ebbenhorst, 744.
Tenner, Bridget Eileen, 669.
Tennis tournaments, 207–208, 216.
Terabyte sorting, 390.
Ternary comparison trees, 194.
Ternary heaps, 157.
Ternary trees for tries, 512.
Terquem, Olry, 591.
Tertiary clustering, 554.
Testing several conditions, 406.
Teuhola, Jukka Ilmari, 649.
TEX, iv, vi–vii, 531, 722, 782.
Text searching, 511, 572, 578.
Theory meets practice, 318.
Thiel, Larry Henry, 578.
Thimbleby, Harold William, 627.
Thimonier, Loÿs, 703.
Thorup, Mikkel, 181.
Thrall, Robert McDowell, 60, 67.
Threaded trees, 267, 454–455, 464, 708.
Three-distance theorem, 518, 550.

Three-way radix quicksort, see Multikey
quicksort.

Thue, Axel, 422, 494.
trees, 426.

Thumb indexes, 419, 492.
Thurston, William Paul, 718.
Tichy, Robert Franz, 644.
Tie-breaking trick, 404.
Ting, Tze Ching ( ), 261.
Tobacco, 72.
Togetherness, 2.
Tokuda, Naoyuki ( ), 95.
Topological sorting, 9, 31–32, 62, 66–67,

187, 216, 393, 593.
Total displacement, 22, 102.
Total order, 4.
Total variance, 735, 742.
Touchard, Jacques, 653.
Tournament, 141–142, 207–212, 216,

253–254.
Townsend, Gregg Marshall, 549.
Trabb Pardo, Luis Isidoro, 645, 702.
Tracks, 357, 482.
Trading tails, 64.
Transitive law, 4–5, 18–19, 182, 207, 456.
Transpose of a matrix, 6–7, 14, 567, 617.
Transposition sorting, see Exchange sorting.
Treadway, Jennifer Ann, 595.
Treaps, vii, 478.
Tree function T (z), 606, 713, 740.
Tree hashing, 553.
Tree insertion sort, 98, 389, 431, 453, 675.
Tree network of processors, 267.
Tree representation of algorithms, see

Decision trees.
Tree representation of distribution patterns,

344–345, 348.
Tree representation of merge patterns,

303–306, 309–311, 363–364, 377.
Tree search, 427–431, 482, 546–547.

generalized, 490.
Tree selection sort, 141–144, 167, 183,

210, 217, 388, 664.
Tree traversal, 138, 427, 431.
Trees, 1.
Treesort, see Tree selection sort, Heapsort.
Tribolet, Charles Siegfried, 623.
Tribonacci sequence, 270.
Trichotomy law, 4–5.
Tricomi, Francesco Giacomo Filippo, 131.
Trie memory, see Tries.
Trie search, 492–496, 500–502, 508–509.
Tries, 492–496, 507–509, 512.

binary, 500–502.
compressed, 507, 722.
generalized, 576.
multidimensional, 576.
optimum, 508.
represented as forests, 494–496, 508, 512.
represented as ternary trees, 512.

Tripartitioning, 633, 635.
Triple systems, 576–577, 580–581, 745.
Triply linked trees, 158, 475.
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Trotter, William Thomas, 658.
Trousse, Jean-Michel, 747.
Truesdell, Leon Edgar, 384.
Truncated octahedron, 13, 18.
Trybu≥a, Stanis≥aw, 186.
Tsetlin, Mikhail L’vovich (

), 703.
Tucker, Alan Curtiss, 454.
Tumble instruction, 82.
Turba, Thomas Norbert, 496.
Turing, Alan Mathison, 583.

machine, 676.
Turski, W≥adys≥aw Marek, 513.
Twain, Mark (= Clemens, Samuel

Langhorne), 747.
Twin heaps, 645.
Twin primes, 529.
Two-line notation for permutations, 13–14,

24, 35, 43–44, 51–54, 64–65.
Two-tape sorting, 348–353, 356.
Two-way branching, 425, 457.
Two-way insertion sort, 83, 98.
Two-way merging, 158–159, 166, 248,

370, 379, 386.
Two’s complement notation, 177.

Ut(n) and Ût(n), 218, 232, 238.
Ullman, Je�rey David, 476, 539–540, 652.
UltraSPARC computer, 390.
Underflow during deletions, 720.
Uniform binary search, 414–416, 423.
Uniform distribution, 6, 16, 20, 47, 127, 606.
Uniform probing, 530, 534–535, 548,

555–557.
Uniform sorting, 245–246.
Unimodal function, 417.
UNIVAC I computer, 386–387, 738.
UNIVAC III computer, 688.
UNIVAC LARC computer, 2.
Universal hashing, 519, 557–558.
UNIX operating system, 122.
Unreliable comparisons, 702.
Unsuccessful searches, 392, 396, 531, 572.
Unusual correspondence, 27.
Up-down permutations, 68.
Updating a file, 166, 370.
Uzgalis, Robert Charles, 482, 490.

Vt(n) and V̂t(n), 209, 232, 238.
Vallée, Brigitte, 728.
van der Pool, Jan Albertus, 739.
van Ebbenhorst Tengbergen, Cornelia, 744.
van Emde Boas, Peter, 152.
van Emden, Maarten Herman, 128, 633, 638.
van Leeuwen, Jan, 645.
van Leeuwen, Marcus Aurelius Augustinus,

611.
van Lint, Jacobus Hendricus, 729, 747.
Van Valkenburg, Mac Elwyn, 8.
Van Voorhis, David Curtis, 228–229, 240.

van Wijngaarden, Adriaan, 8.
Vandermonde, Alexandre Théophile, 8.

determinant, 59, 610, 729.
Variable-length code, 452–453.
Variable-length keys, searching for, 429, 487,

490, 496, 519, 556, 557, 720.
Variable-length records, 266, 339, 403.
Variable-length strings, sorting, 177,

178, 489, 633.
Variance, di�erent notions of, 709, 735, 742.
Vector representation of merge patterns,

302–303, 309, 310.
Velthuis, Frans Jozef, 782.
Venn, John Leonard, 302.
Verbin, Elad ( ), 615.
Vershik, Anatoly Moiseevich (

), 611.
Viennot, Gérard Michel François

Xavier, 152.
Viola Deambrosis, Alfredo, 740, 741, 742.
Virtual memory, 378, 389, 547.
Vitter, Je�rey Scott ( ), 152, 371, 489,

548, 698, 730, 731, 735, 736.
von Mises, Richard, Edler, 513.
von Neumann, John (= Margittai Neumann

János), 8, 159, 385.
von Randow, Rabe-Rüdiger, 606.
von Seidel, Philipp Ludwig, 611.
VSAM system, 489.
Vuillemin, Jean Etienne, 152, 366, 377, 478.
Vyssotsky, Victor Alexander, 738.

Wt(n) and Ŵt(n), 209, 232, 238.
Wachs, Michelle Lynn, 395, 454, 609, 711.
Waks, David Je�rey, 339.
Waksman, Abraham, 226, 670.
Walker, Ewing Stockton, 367.
Walker, Wayne Allan, 442.
Wallis, John, 24.
Walters, John Rodney, Jr., 256.
Wang, Ya Wei ( ), 261.
Wang, Yihsiao ( ), 128.
Ward, Morgan, 669.
Watanabe, Masatoshi ( ), 782.
Waters, Samuel Joseph, 367.
Waugh, Evelyn Arthur St. John, 395.
Weak Bruhat order, 13, 19, 22, 628, 670.
Weak orderings, 194.
Wedekind, Hartmut, 312.
Wegener, Ingo Werner, 643, 645.
Wegman, Mark N, 519, 557, 743.
Wegner, Lutz Michael, 635.
Weight-balanced trees, 476, 480.
Weighted path length, 196, 216, 337,

361, 438, 451, 458.
Weisert, Conrad, 281.
Weiss, Benjamin, 548, 732.
Weiss, Harold, 388.
Weiss, Mark Allen, 95, 623.
Weissblum, Walter, 47.
Wells, Mark Brimhall, 187, 192.
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Wessner, Russell Lee, 711.
Wheeler, David John, 98, 453.
Whirlwind computer, 387.
Whitlow, Duane Leroy, 369.
Wiedemann, Douglas Henry, 669.
Wiener, Norbert, 7.
Wigram, George Vicesimus, 179.
Wijngaarden, Adriaan van, 8.
Wiles, Andrew John, 584.
Wilf, Herbert Saul, 70.
Willard, Dan Edward, 152, 181.
Williams, Francis A., Jr., 521.
Williams, John William Joseph, 144–145,

149, 152, 156, 157, 389.
Williamson, Stanley Gill, 673.
Wilson, David Bruce, 670.
Windley, Peter Francis, 453, 709, 735.
Winkler, Phyllis Astrid Benson, vii.
Woan, Wen-jin ( ), 607.
Wobbles, 133, 636, 727.
Wölfel (= Woelfel), Peter Philipp, 558.
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Character code: 00
�

01
A

02
B

03
C

04
D

05
E

06
F

07
G

08
H

09
I

10
´

11
J

12
K

13
L

14
M

15
N

16
O

17
P

18
Q

19
R

20
˚

21
˝

22
S

23
T

24
U

00 1
No operation

NOP(0)

01 2
rA rA + V

ADD(0:5)
FADD(6)

02 2
rA rA�V

SUB(0:5)
FSUB(6)

03 10
rAX rA⇥V

MUL(0:5)
FMUL(6)

08 2
rA V

LDA(0:5)

09 2
rI1 V

LD1(0:5)

10 2
rI2 V

LD2(0:5)

11 2
rI3 V

LD3(0:5)

16 2
rA �V

LDAN(0:5)

17 2
rI1 �V

LD1N(0:5)

18 2
rI2 �V

LD2N(0:5)

19 2
rI3 �V

LD3N(0:5)

24 2
M(F) rA

STA(0:5)

25 2
M(F) rI1

ST1(0:5)

26 2
M(F) rI2

ST2(0:5)

27 2
M(F) rI3

ST3(0:5)

32 2
M(F) rJ

STJ(0:2)

33 2
M(F) 0

STZ(0:5)

34 1
Unit F busy?

JBUS(0)

35 1 + T

Control, unit F

IOC(0)

40 1
rA : 0, jump

JA[+]

41 1
rI1 : 0, jump

J1[+]

42 1
rI2 : 0, jump

J2[+]

43 1
rI3 : 0, jump

J3[+]

48 1
rA [rA]? ± M

INCA(0) DECA(1)
ENTA(2) ENNA(3)

49 1
rI1 [rI1]? ± M

INC1(0) DEC1(1)
ENT1(2) ENN1(3)

50 1
rI2 [rI2]? ± M

INC2(0) DEC2(1)
ENT2(2) ENN2(3)

51 1
rI3 [rI3]? ± M

INC3(0) DEC3(1)
ENT3(2) ENN3(3)

56 2
CI rA(F) : V

CMPA(0:5)
FCMP(6)

57 2
CI rI1(F) : V

CMP1(0:5)

58 2
CI rI2(F) : V

CMP2(0:5)

59 2
CI rI3(F) : V

CMP3(0:5)

General form:
C t
Description

OP(F)

C = operation code, (5 : 5) field of instruction
F = op variant, (4 : 4) field of instruction
M = address of instruction after indexing
V = M(F) = contents of F field of location M

OP = symbolic name for operation
(F) = normal F setting

t = execution time; T = interlock time



25
V

26
W

27
X

28
Y

29
Z

30
0

31
1

32
2

33
3

34
4

35
5

36
6

37
7

38
8

39
9

40
.

41
,

42
(

43
)

44
+

45
-

46
*

47
/

48
=

49
$

50
<

51
>

52
@

53
;

54
:

55
‚

04 12
rA rAX/V

rX remainder
DIV(0:5)
FDIV(6)

05 10
Special
NUM(0)
CHAR(1)
HLT(2)

06 2
Shift M bytes

SLA(0) SRA(1)
SLAX(2) SRAX(3)
SLC(4) SRC(5)

07 1 + 2F
Move F words
from M to rI1

MOVE(1)

12 2
rI4 V

LD4(0:5)

13 2
rI5 V

LD5(0:5)

14 2
rI6 V

LD6(0:5)

15 2
rX V

LDX(0:5)

20 2
rI4 �V

LD4N(0:5)

21 2
rI5 �V

LD5N(0:5)

22 2
rI6 �V

LD6N(0:5)

23 2
rX �V

LDXN(0:5)

28 2
M(F) rI4

ST4(0:5)

29 2
M(F) rI5

ST5(0:5)

30 2
M(F) rI6

ST6(0:5)

31 2
M(F) rX

STX(0:5)

36 1 + T

Input, unit F

IN(0)

37 1 + T

Output, unit F

OUT(0)

38 1
Unit F ready?

JRED(0)

39 1
Jumps

JMP(0) JSJ(1)
JOV(2) JNOV(3)
also [*] below

44 1
rI4 : 0, jump

J4[+]

45 1
rI5 : 0, jump

J5[+]

46 1
rI6 : 0, jump

J6[+]

47 1
rX : 0, jump

JX[+]

52 1
rI4 [rI4]? ± M

INC4(0) DEC4(1)
ENT4(2) ENN4(3)

53 1
rI5 [rI5]? ± M

INC5(0) DEC5(1)
ENT5(2) ENN5(3)

54 1
rI6 [rI6]? ± M

INC6(0) DEC6(1)
ENT6(2) ENN6(3)

55 1
rX [rX]? ± M

INCX(0) DECX(1)
ENTX(2) ENNX(3)

60 2
CI rI4(F) : V

CMP4(0:5)

61 2
CI rI5(F) : V

CMP5(0:5)

62 2
CI rI6(F) : V

CMP6(0:5)

63 2
CI rX(F) : V

CMPX(0:5)

rA = register A
rX = register X

rAX = registers A and X as one
rIi = index register i, 1  i  6
rJ = register J
CI = comparison indicator

[*]: [+]:
JL(4) < N(0)
JE(5) = Z(1)
JG(6) > P(2)

JGE(7) � NN(3)
JNE(8) 6= NZ(4)
JLE(9)  NP(5)
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